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Abstract

Displacement-Based Seismic Design of Structures is a book pri
marily directed towards practicing structural designers who are 
interested in applying performance-based concepts to seismic 
design. Since much of the material presented in the book has not 
been published elsewhere, it will also be of considerable interest 
to researchers, and to graduate and upper-level undergraduate 
students of earthquake engineering who wish to develop a deep
er understanding of how design can be used to control seismic 
response.
The design philosophy is based on determination of the optimum 
structural strength to achieve a given performance limit state, 
related to a defined level of damage, under a specified level of seis
mic intensity. Emphasis is also placed on how this strength is dis
tributed through the structure. This takes two forms: methods of 
structural analysis and capacity design. It is shown that equilibri
um considerations frequendy lead to a more advantageous distri
bution of strength than that resulting from stiffness considera
tions. Capacity design considerations have been re-examined, and 
new and more realistic design approaches are presented to insure 
against undesirable modes of inelastic deformation.
The book considers a wide range of structural types, including 
separate chapters on frame buildings, wall buildings, dual 
wall/frame building, masonry buildings, timber structures, 
bridges, structures with isolation or added damping devices, and 
wharves. These are preceded by introductory chapters discussing 
conceptual problems with current force-based design, seismic 
input for displacement-based design, fundamentals of direct dis- 
placement-based design, and analytical tools appropriate for dis
placement-based design. The final two chapters adapt the princi
ples of displacement-based seismic design to assessment of exist
ing structures, and present the previously developed design infor
mation in the form of a draft building code.
The text is illustrated by copious worked design examples (39 in 
all), and analysis aids are provided in the form of a CD contain
ing three computer programs covering moment-curvature analy
sis (Cumbia)> linear-element-based inelastic time-history analysis 
(.Ruaumoko), and a general fibre-element dynamic analysis pro
gram (SeismoStruct).
The design procedure developed in this book is based on a secant- 
stiffness (rather than initial stiffness) representation of structural 
response, using a level of damping equivalent to the combined 
effects of elastic and hysteretic damping. The approach has been 
fully verified by extensive inelastic time history analyses, which 
are extensively reported in the text. The design method is 
extremely simple to apply, and very successful in providing 
dependable and predictable seismic response.
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"Jiiery truth passes through three stages (before it is recognised)
In the first\ it is ridictded
In the second, it is violently opposed
In the third\ it is regarded as self evident ”

Arthur Schopenhauer (1788-1860)

"Analysis should be as simple as possible, but no simpler”
Albert Einstein (1879-1955)

"Strength is essential, but othenvise unimportant ”
Hardy Cross1 (1885-1959)

1 Hardy Cross was the developer o f the moment distribution method for structural calculation of
stadcally indeterminate frames, generally used from the late thirdes to the sixties, when it was 
superseded by structural analysis computer programs. It seems somehow prophetic that a brilliant 
engineer, who based the solution of structural problems on relative stiffness, wrote this aphorism 
that must have sounded enigmatic in the context o f elastic analysis and design.
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PREFACE
Performance-based seismic design is a term widely used by, and extremely popular 

me seismic research community, but which is currendy rather irrelevant in the 
of design and construction. In its purest form, it involves a large number of 

rrrb-ibilistic considerations, relating to variability of seismic input, of material properties, 
: dimensions, of gravity loads, and of financial consequences associated with damage, 

: or loss of usage following seismic attack, amongst other things. As such, it is a
tool to use in the assessment of existing structures, and almost impossible to use, 

“v_h my expectation of realism, in the design of new structures, where geometry becomes 
: :her variable, and an almost limitless number of possible design solutions exists. 
Currendy, probability theory is used, to some extent, in determination of the seismic 

which is typically based on uniform-hazard spectra. However, structural engineers 
:his information and design structures to code specified force levels which have been 

ir:emnned without any real consideration of risk of damage or collapse. Structural 
^5?Licements, which can be directly related to damage potential through material strains 
T'-rucrural damage) and drifts (non-structural damage), are checked using coarse and 

_r_rtiiable methods at the end of the design process. At best, this provides designs that 
-msrv damage-control criteria, but with widely variable risk levels. At worst, it produces 
irfi^ns of unknown safety.

This text attempts to bridge the gap between current structural design, and a full (and 
r-: >5 ibly unattainable) probabilistic design approach, by using deterministic approaches, 
: ised on the best available information on analysis and material properties to produce 
rrucrures that should achieve, rather than be bounded by, a structural or non-structural 

state under a specified level of seismic input. Structures designed to these criteria 
r_^nt be termed “uniform-risk” structures. The approach used is very simple — 
r-divalent in complexity to the most simple design approach permitted in seismic design 
: :-ies the “equivalent lateral force procedure”), but will be unfamiliar to most designers, 
if :hc design displacement is the starting point. The design procedure determines the 
ri-e-shear force, and the distribution of strength in the structure, to achieve this 
ii5olacement. The process (displacements lead to strength) is thus the opposite of current 
iz'ign, where strength leads to an estimate of displacement. Although this requires a 
:hi.nge in thinking on the part of the designer, it rapidly becomes automatic, and we 
relieve, intellectually satisfying.

xv
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This book is primarily directed towards practising structural designers, and follows 
from two earlier books with which the principal author has been involved (“Seismic 
Design of Reinforced Concrete and Masonry Structures’" (with T. Paulay), John Wiley, 
1992, and “Seismic Design and Retrofit of Bridges” (with F. Seible and G.M. Calvi), John 
Wiley, 1996). These books primarily address issues of section design and detailing, and to 
a limited extent force-distribution in the class of structures addressed. Although great 
emphasis is given in these books to seismic design philosophy in terms of capacity design 
considerations, comparatively little attention is directed towards an examination of the 
optimum level of strength required of the building or bridge. This text addresses this 
aspect specifically, but also considers the way in which we distribute the required system 
strength (the base-shear force) through the structure. This takes two forms: methods of 
structural analysis, and capacity design. It is shown that current analysis methods have a 
degree of complexity incompatible with the coarseness of assumptions of member 
stiffness. Frequently, equilibrium considerations rather than stiffness considerations can 
lead to a simpler and more realistic distribution of strength. Recent concepts of inelastic 
torsional response have been extended and adapted to displacement-based design. 
Combination of gravity and seismic effects, and P-A effects are given special 
consideration.

Capacity design considerations have been re-examined on the basis of a large number 
of recent research studies. Completely new and more realistic information is provided for 
a wide range of structures. Section analysis and detailing are considered only where new 
information, beyond that presented in the previous two texts mentioned above, has 
become available.

The information provided in this book will be of value, not just to designers using 
displacement-based principles, but also to those using more conventional force-based 
design, who wish to understand the seismic response of structures in more detail, and to 
apply this understanding to design.

Although the primary focus of this book is, as noted above, the design profession, it is 
also expected to be of interest to the research community, as it provides, to our 
knowledge, the first attempt at a complete design approach based on performance 
criteria. A large amount of new information not previously published is presented in the 
book. We hope it will stimulate discussion and further research in the area. The book 
should also be of interest to graduate and upper-level undergraduate students of 
earthquake engineering who wish to develop a deeper understanding of how design can 
be used to control seismic response.

The book starts with a consideration in Chapter 1 as to why it is necessary to move 
from force-based to displacement-based seismic design. This is largely related to the 
guesses of initial stiffness necessary in force-based design, and the inadvisability of using 
these initial stiffness values to distribute seismic lateral force through the structure. 
Chapter 2 provides a state-of-the-science of seismic input for displacement-based design, 
particularly related to characteristics of elastic and inelastic displacement spectra. The 
fundamental concepts behind “direct displacement-based seismic design” — so-called 
because no iteration is required in the design process -  are developed in Chapter 3.
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INTRODUCTION: THE NEED FOR DISPLACEMENT- 
BASED SEISMIC DESIGN

1.1 HISTORICAL CONSIDERATIONS

Earthquakes induce forces and displacements in structures. For elastic systems these 
iirecdy related by the system stiffness, but for structures responding inelastically, the 

' ^ “onship is complex, being dependent on both the current displacement, and the 
ry of displacement during the seismic response. Traditionally, seismic structural 

: : ;u  has been based primarily on forces. The reasons for this are largely historical, and 
':_^:cd to how we design for other actions, such as dead and live load. For such cases we 

' that force considerations are critical: if the strength of the designed structure does 
■ : exceed the applied loads, then failure will occur.

has been recognized for some considerable time that strength has a lesser
r- ?-: nance when considering seismic actions. We regularly design structures for less than 

reared elastic force levels, because we understand that well-designed structures 
ductility, and can deform inelastically to the required deformations imposed by 

t  r earthquake without loss of strength. This implies damage, but not collapse. Since 
: :  - -level earthquakes are by definition rare events, with a typical annual probability of 
: r_rrence (or exceedence) of about 0.002, we accept the possibility of damage under the 

; . earthquake as economically acceptable, and benefit economically from the reduced 
: 'f a c t io n  costs associated with the reduced design force levels.

The above premise is illustrated in Fig. 1.1, which is based on the well known “equal- 
—-T-LCcment” approximation. It has been found, from inelastic time-history analyses, that 
~ r structures whose fundamental period is in the range of (say) 0.6 — 2.0 seconds,

urn seismic displacements of elastic and inelastic systems with the same initial
- — and mass (and hence the same elastic periods) are very similar. Later, in Section

- 1 e . die assumptions behind these analyses will be questioned. Figure 1.1 represents
elasto-plastic seismic force-displacement envelopes of three simple bridge 

—-rrures of equal mass and elastic stiffness, but of different strength. As is discussed in 
to Fig. 1.4, the assumption of equal stiffness, but different strength is 

ni; rr.raable with properties of sections with equal dimensions, and is adopted here 
T'-r-." :o facilitate discussion. According to the equal displacement approximation, each 
—_ —_:rc will be subjected to the same maximum displacement Amax.

1.1 allows us to introduce the concepts of “force-reduction factors” and 
which are fundamental tools in current seismic design. For a structure with

1
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Structure Profile D isplacem ent
Fig. 1.1 Seismic Force-Displacement Response of Elastic and Inelastic Systems: 

The “Equal Displacement” Approximation

linear elastic response to the design earthquake, the maximum force developed at peak 
displacement is Fel. We label this as Structure 1. Structures 2 and 3 are designed for 
reduced ultimate strength levels of Fr2 and FR 3 where the strengths are related to the 
elastic response level by the force-reduction factors

FR2 —FellR 2 Fr 3 = Fe[ / ̂ 3  (1 -1)

“Ductility” can relate to any measure of deformation (e.g. displacement, curvature, 
strain) and is the ratio of maximum to effective yield deformation. In this context, 
“maximum deformation” could mean maximum expected deformation, in which case we 
talk of ductility demand, or it could mean deformation capacity, in which case we use the 
term ductility capacity. In the case of Fig. 1.1, lateral displacement is the measure of 
deformation, and the displacement ductility factors for the two inelastic systems are thus

/^2  “  ^ m a x  /  ^  v2 =  ^ el  ̂F R2 = ^2 > ~ ^ m a x  ^ v 3  =  ^ el  ̂̂ 3̂ =  ^3  (1 *2)

Thus, for the equal displacement approximation, the displacement ductility factor is 
equal to the force-reduction factor.

An important conclusion can be made from Fig. 1.1. That is, for inelastic systems, the 
strength is less important than the displacement. This is obvious, since the strengths FR 2 

and FR 3 have little influence on the final displacement Amax. It would thus seem more 
logical to use displacement as a basis for design. For elastic systems, it is exacdy 
equivalent to use either displacement or force as the fundamental design quantity. This is
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illustrated in Fig. 1.2, where the design earthquake, for a typical firm ground site is 
represented by both acceleration (Fig. 1.2a) and displacement (Fig. 1.2b) spectra.

Period T  (seconds) Period T  (seconds)
(a) Acceleration Spectrum for 5% dam ping (b D isplacem ent Spectrum for 5% dam ping

Fig. 1.2 Acceleration and Displacement Response Spectra for Firm Ground (0.4g)

Traditional seismic design has been based on the elastic acceleration spectrum. For an 
r.asucally responding single-degree-of-freedom (SDOF) structure, the response 
acceleration, corresponding to the fundamental period Ty is found and the
; jrresponding force, .Fand displacement A are given by

F = m-a(T) ■ g ; A = F/K (1.3)

v'nere K  is the system stiffness, m is the system mass and g is the acceleration due to 
gravity.

Alternatively the displacement spectrum of Fig.l.2(b) could be used direcdy. In this 
:.->e the response displacement A(T) corresponding to the elastic period is direcdy read, 
ir.d the corresponding force calculated as

F — K • (1.4)

In both cases the elastic period must first be calculated, but it is seen that working
::om the displacement spectrum requires one less step of calculation than working from
■__.c acceleration spectrum, since the mass is not needed once the period has been 
:Aicuiated. Although both approaches are direcdy equivalent, it would seem that using
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response displacement rather than response acceleration would be a more logical basis for 
design of elastic systems, as well as inelastic systems.

An approximate relationship between peak acceleration and displacement response 
ba$ed on steady-state sinusoidal response is given by:

t 2
^(T)  -  ^ 2  -a (T)g 0 - 5)

where st(j) is expressed as multiples of the acceleration of gravity (as in Fig. 1.2(a)). 
Although this relationship has been widely used in the past, it is approximate only, with 
the errors increasing with period.

The reason that seismic design is currently based on force (and hence acceleration) 
rather than displacement, is, as stated above, based largely on historical considerations. 
Prior to the 1930’s, few structures were specifically designed for seismic actions. In the 
1920’s and early 1930’s several major earthquakes occurred (Japan: 1925 Kanto 
earthquake, USA: 1933 Long Beach earthquake, New Zealand: 1932 Napier earthquake). 
It was noted that structures that had been designed for lateral wind forces performed 
better in these earthquakes than those without specified lateral force design. As a 
consequence, design codes started to specify that structures in seismic regions be 
designed for lateral inertia forces. Typically, a value of about 10% of the building weight, 
regardless of building period, applied as a vertically distributed lateral force vector, 
proportional to the mass vector, was specified.

During the 1940’s and 1950’s, the significance of structural dynamic characteristics 
became better understood, leading, by the 1960’s, to period-dependent design lateral 
force levels in most seismic design codes. Also in the 1960’s with increased understanding 
of seismic response, and the development of inelastic time-history analysis, came 
awareness that many structures had survived earthquakes that calculations showed should 
have induced inertia forces many times larger than those corresponding to the structural 
strength. This lead to development of the concept of ductility, briefly discussed earlier in 
this chapter, to reconcile the apparent anomaly of survival with inadequate strength. 
Relationships between ductility and force-reduction factor, such as those of Eq.(1.2), and 
others such as the “equal energy” approximation, which appeared more appropriate for 
short-period structures, were developed as a basis for determining the appropriate design 
lateral force levels.

During the 1970’s and 1980’s much research effort was directed to determining the 
available ductility7 capacity of different structural systems. Ductility considerations became 
a fundamental part of design, and key text books written in the 1960’s and 1970’s [e.g. 
C13,N4,P31] have remained as the philosophical basis for seismic design, essentially till 
the present time. In order to quantify the available ductility capacity, extensive 
experimental and analytical studies were performed to determine the safe maximum 
displacement of different structural systems under cyclically applied displacements. This 
may be seen as the first departure from force as the basis for design. Required strength
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was determined from a force-reduction factor that reflected the perceived ductility 
capacity of the structural system and material chosen for the design. Nevertheless, the 
design process was stall carried out in terms of required strength, and displacement 
rapacity, if direcdy checked at all, was the final stage of the design. Also during this era 
:ne concept of “capacity design” was introduced^31!, where locations of preferred flexural 
elastic hinging were identified, and alternative undesirable locations of plastic hinges, and 
undesirable modes of inelastic deformation, such as shear failure, were inhibited by 
'crung their strength higher than the force levels corresponding to that of the desired 
_nelastic mechanism. Ductility was perceived as more important than displacement 
opacity, though the two were clearly related.

In the 1990’s, textbooks [e.g. PI, P4] with further emphasis on displacement 
: .'nsiderations and capacity design became widely used for seismic design of concrete and 
rr.ASonry structures, and the concept of “performance-based seismic design”, based

Jelv on displacement considerations, and discussed in further detail at the end of this 
m pter, became the subject of intense research attention. It may be seen from this brief 
irfcription of the history of seismic design, that initially design was purely based on 
■_rength, or force, considerations using assumed rather than valid estimates of elastic 
-rYness. As the importance of displacement has come to be better appreciated in recent 
tirs. the approach has been to attempt to modify the existing force-based approach to 
■_:/jde consideration of displacement, rather than to rework the procedure to be based 
r. more rational displacement basis.

2 FORCE-BASED SEISMIC DESIGN

Although current force-based design is considerably improved compared with 
-: :edures used in earlier years, there are many fundamental problems with the
- ■ :edure, particularly when applied to reinforced concrete or reinforced masonry 
—_;:ures. In order to examine these problems, it is first necessary to briefly review the

: : :r-based design procedure, as currently applied in modern seismic design codes.
The sequence of operations required in force-based seismic design is summarized in

. The structural geometry, including member sizes is estimated. In many cases the 
_: ~ cor may be dictated by non-seismic load considerations.

1 Member elastic stiffnesses are estimated, based on preliminary estimates of 
ber size. Different assumptions are made in different seismic design codes about the 

-tt: :  ornate stiffnesses for reinforced concrete and masonry members. In some cases
— ' '  uncracked section) stiffness is used, while in some codes reduced section stiffness

to reflect the softening caused by expected cracking when approaching yield-
: . 'rsponse.
: Based on the assumed member stiffnesses, the fundamental period (equivalent 

„ rorce approach) or periods (multi-mode dynamic analysis) are calculated. For a 
:C : r representation of the structure, the fundamental period is given by:
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Fig. 1.3 Sequence of Operations for Force-Based Design
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T = 2* l f  (L6)

where me is the effective seismic mass (normally taken as the total mass).
In some building codes a height-dependent fundamental period is specified, 

independent of member stiffness, mass distribution, or structural geometry. The typical 
form al of this is given in Eq.(1.7):

T = C{(Hnr 5 (1.7)

where Cj depends on the structural system, and H„ is the building height. Recently USA 
codesP^4! have expressed the exponent of Eq.(1.7) as a variable dependent on structural 
material and system, with the value varying between 0.75 and 0.9.

Lateral force levels calculated from stiffness-based periods (single mode or multi- 
mode) are not permitted to deviate from the forces based on the height-dependent period 
equation by more than some specified percentage.

4. The design base shear Vgase.E for the structure corresponding to elastic response 
with no allowance for ductility is given by an equation of the form

V ^ = C T-I-(gme) (1.8)

where Ct is the basic seismic coefficient dependent on seismic intensity, soil conditions
and period T (e.g. Fig. 1.2(a)), / is an importance factor reflecting different levels of
acceptable risk for different structures, and g  is the acceleration of gravity.

5. The appropriate force-reduction factor R  ̂ corresponding to the assessed ductility 
capacity of the structural system and material is selected. Generally R  ̂is specified by the 
design code and is not a design choice, though the designer may elect to use a lesser value 
than the code specified one.

6. The design base shear force is then found from

Vy    Base,E
Base

R„
(1.9)

The base shear force is then distributed to different parts of the structure to provide 
the vector of applied seismic forces. For building structures, the distribution is typically 
proportional to the product of the height and mass at different levels, which is 
compatible with the displaced shape of the preferred inelastic mechanism (beam-end 
plastic hinges plus column-base plastic hinges for frames; wall-base plastic hinges for wall 
structures). The total seismic force is distributed between different lateral force-resisting 
elements, such as frames and structural walls, in proportion to their elastic stiffness.
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7. The structure is then analyzed under the vector of lateral seismic design forces, and 
the required moment capacities at potential locadons of inelastic action (plastic hinges) is 
determined. The final design values will depend on the member stiffness.

%8. Structural design of the member sections at plastic hinge locations is carried out, 
and the displacements under the seismic action are estimated.

9. The displacements are compared with code-specified displacement limits.
10. If the calculated displacements exceed the code limits, redesign is required. This is 

normally effected by increasing member si^es, to increase member stiffness.
11. If the displacements are satisfactory, the final step of the design is to determine the 

required strength of actions and members that are not subject to plastic hinging. The 
process known as capacity design [PI, P31] ensures that the dependable strength in shear, 
and the moment capacity of sections where plastic hinging must not occur, exceed the 
maximum possible input corresponding to maximum feasible strength of the potential 
plastic hinges. Most codes include a prescriptive simplified capacity design approach.

The above description is a simplified representation of current force-based design. In 
many cases the force levels are determined by multi-modal analysis (sometimes called 
dynamic analysis). The way in which the modal contributions are combined will be 
discussed in some detail in sections relating to different structural systems. Some design 
codes, such as the New Zealand Loadings Code [XI] define inelastic acceleration design 
spectra that directly include the influence of ductility rather than using an elastic spectrum 
and a force-reduction factor (see Fig. 1.20(a), e.g.).

1.3 PROBLEMS WITH FORCE-BASED SEISMIC DESIGN

1.3.1 Interdependency of Strength and Stiffness

A fundamental problem with force-based design, particularly when applied to 
reinforced concrete and reinforced masonry structures is the selection of appropriate 
member stiffness. Assumptions must be made about member sizes before the design 
seismic forces are determined. These forces are then distributed between members in 
proportion to their assumed stiffness. Clearly if member sizes are modified from the 
initial assumption, then the calculated design forces will no longer be valid, and 
recalculation, though rarely carried out, is theoretically required.

With reinforced concrete and reinforced masonry, a more important consideration is 
the way in which individual member stiffness is calculated. The stiffness of a component 
or element is sometimes based on the gross-section stiffness, and sometimes on a 
reduced stiffness to represent the influence of cracking. A common assumption is 50% of 
the gross section stiffness [X2, X3], though some codes specify stiffnesses that depend on 
member type and axial force. In the New Zealand concrete design code [X6] values as 
low as 35% of gross section stiffness are specified for beams. Clearly the value of 
stiffness assumed will significantly affect the design seismic forces. With the acceleration 
spectrum of Fig. 1.2(a), the response acceleration between T = 0.5 sec and T — 4.0 sec is 
inversely proportional to the period. In this period range the stiffness-based period
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Eq.(1.6) implies a reduction in seismic design force of 40% for a secdon stiffness of 35% 
cross versus 100% gross stiffness.

Regardless of what assumption is made, the member stiffness is traditionally assumed 
-q be independent of strength, for a given member section. To examine this assumption, 
consider the flexural rigidity which can be adequately estimated from the moment- 
:urvature relationship in accordance with the beam equation:

EI = M „ / 0 y (1.10)

•.■. here M is the nominal moment capacity, and (fa is the yield curvature based on the 
equivalent bi-linear representation of the moment-curvature curve. The assumption of 
:onstant member stiffness implies that the yield curvature is directly proportional to 
f.exural strength, as shown in Fig. 1.4(a). Detailed analyses, and experimental evidence 
'now that this assumption is invalid, in that stiffness is essentially proportional to 
^length, and the yield curvature is essentially independent of strength, for a given 
'ecuon, as shown in Fig. 1.4(b). Verification of this statement is provided in Section 4.4

(a) Design Assumption (b) Realistic Conditions
(constant stiffness) (constant yield curvature)

Fig. 1.4 Influence of Strength on Moment-Curvature Relationship

As a consequence of these findings it is not possible to perform an accurate analysis of 
ritiner the elastic structural periods, nor of the elastic distribution of required strength 
inroughout the structure, until the member strengths have been determined. Since .the 
required member strengths are the end product of force-based design, the implication is 
:r.at successive iteration must be carried out before an adequate elastic characterization of 
:r.c structure is obtained. Although this iteration is simple, it is rarely performed by 
cosigners, and does not solve additional problems associated with initial stiffness 

presentation, outlined later in this chapter.
It should be noted that the problem of estimating stiffness is not unique to concrete 

ind masonry structures. In design of a steel frame structure, the general dimensions of
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storey height, bay width, and even approximate beam depth may be established before 
the seismic design is started. The approximate beam depth will normally be defined by 
selecting an ASCE W-group [e.g. W18] or equivalent. Within each W-group, the variation 
in "weight (and in corresponding strength) is achieved by varying the distance between the 
rollers defining the total section depth. Within each W-group, the strength can vary by 
several hundred percent, as the flange thickness changes. It has been shownlS3] that 
despite the variation in strength, the yield curvature is essentially constant over the W- 
group, and hence the strength and stiffness are proportional, as for concrete beams. The 
constant of proportionality, however, varies between different W-groups. This is 
discussed in more detail in Section 5.3.6

The assumption that the elastic characteristics of the structure are the best indicator of 
inelastic performance, as implied by force-based design is in itself clearly of doubtful 
validity. With reinforced concrete and masonry structures the initial elastic stiffness will 
never be valid after yield occurs, since stiffness degrades due to crushing of concrete, 
Bauschinger softening of reinforcing steel, and damage on crack surfaces. This is 
illustrated in the idealized force-displacement hysteresis for a reinforced concrete 
structure shown in Fig. 1.5. A first cycle of inelastic response is represented by the lines 
1, 2, 3, 4, 5, and 6. A second cycle to the same displacement limits is represented by the 
lines 7, 8, 9. After yield and moderate inelastic response, the initial stiffness 1 becomes 
irrelevant, even to subsequent elastic response. Reloading stiffnesses 4, 7, and 9 are 
substantially lower than the initial value, as are the unloading stiffnesses 3, 6, and 8. It 
would seem obvious that structural characteristics that represented performance at 
maximum response might be better predictors of performance at maximum response 
than the initial values of stiffness and damping.

Fig. 1-5 Idealized Reinforced Concrete Force-Displacement Response

1.3.2 Period Calculation

As discussed in the previous section, considerable variation in calculated periods can 
result as a consequence of different assumptions for member stiffness. NXTien the height-
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dependent equations common in several codes are considered, the potential variations are 
exacerbated. As part of a recent studyF2!, fundamental periods of a number of structural 
wall buildings were calculated based on different design assumptions and compared. The 
results are shown in Table 1.1

Values based on the code equation refer to Eq. (1.7) with Cj =0.075, and Hn in 
metres, in accordance with EC8, the European seismic codeP^l. The centre column of 
Table 1.1 presents results of modal analysis based on 50% of the gross section stiffness. 
Values in the column labelled Moment-Curvature also are based on modal analysis, but 
the wall stiffnesses are found from moment-curvature analyses of the designed walls. It is 
clear that the height-dependent equation results in very low estimates of fundamental 
period, and that the use of 0.5IgrOss> though less conservative, is still unrealistically low.

It is often stated that it is conservative, and hence safe, to use artificially low periods in 
seismic design. However, as has been already discussed, strength is less of an issue in 
seismic design than is displacement capacity. Calculated displacement demand based on 
an artificially low period will also be low, and therefore non-conservative. Methods for 
estimating displacement demand for structures designed by force considerations are 
discussed in Section 1.3.7.

Table 1.1 Fundamental Periods of Wall Buildings from Different Approaches!1*2]
| WALL 

STOREYS
EQUATION

(1.7) I 0»51gfoss Moment-
Curvature

EQUATION
(1.12)

2 0.29 0.34 0.60 0.56
4 0.48 0.80 1.20 1.12
8 0.81 1.88 2.26 2.24
12 1.10 2.72 3.21 3.36
16 1.37 3.39 4.09 4.48
20 1.62 3.65 4.77 5.60

It should be noted that for a number of years NEHRPP8! has shown figures 
: .-mparing measured building periods with equations similar to Eq.(1.7), with reasonable 
i^reement. However the measurements have been taken at extremely low levels of 
rxcitation (normally resulting from ambient wind vibration), where non-structural 
TArncipation is high, and sections (in the case of concrete and masonry buildings) are 
-r.cracked. The periods obtained in this fashion have no relevance to response at or 
: rbroaching nominal strength of the building, which, as is discussed in Section 1.3.3 is 
irDropriate for elastic structural characterization.

It is worth noting that an alternative to the height-dependent Eq.(1.7), that in the past 
as been incorporated in some building codes for frame structures is:

T ~ 0.1/7 (1.11)
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where n is the number of storeys. Recent researchrc5l has suggested the use of an 
alternative simple expression:

*  T = 0AH n (Hn in m) = 0 .033Hn (Hn in ft) (1.12)

where Hn is the building height. With a 3m storey height, Eq.(1.12) predicts effective 
periods three times that from E q .(l,ll) . As noted, E q s.(l.ll) and (1.12) refer to frame 
buildings. However it is of interest to compare the results predicted from Eq.(1.12) with 
the wall periods of Table 1.1. These structures had storey heights of 2.8m. The 
predictions of Eq.(1.12) are included in the final column of Table 1.1, and are seen to be 
in very close agreement with the results from modal analysis based on moment-curvature 
derived stiffnesses for walls up to 12 storeys, and are still acceptable up to 20 storeys. 
This may indicate that fundamental elastic periods of frame and wall buildings designed 
to similar drift limits (as in this case) will be rather similar.

1.3.3 Ductility Capacity and Force-Reduction Factors

The concept of ductility demand, and its relation to force-reduction factor was 
introduced in relation to Fig.1.1. Although the definitions of Eq.(1.2) appear 
straightforward in the context of the idealizations made in Fig. 1.1, there are problems 
when realistic modelling is required. It has long been realized that the equal-displacement 
approximation is inappropriate for both very short-period and very long-period 
structures, and is also of doubtful validity for medium period structures when the 
hysteretic character of the inelastic system deviates significantly from elasto-plastic.

Further, there has been difficulty in reaching consensus within the research 
community as to the appropriate definition of yield and ultimate displacements. 
With reference to Fig. 1.6(b), the yield displacement has variously been defined as the 
intersection of the line through the origin with initial sdffness, and the nominal strength 
(point 1), the displacement at first yield (point 2), and the intersection of the line through 
the origin with secant stiffness through first yield, and the nominal strength (point 3), 
amongst other possibilities. Typically, displacements at point 3 will be 1.8 to 4 times the 
displacements at point 1. Displacement capacity, or ultimate displacement, also has had a 
number of definitions, including displacement at peak strength (point 4), displacement 
corresponding to 20% or 50% (or some other percentage) degradation from peak (or 
nominal) strength, (point 5) and displacement at initial fracture of transverse 
reinforcement (point 6), implying imminent failure.

Clearly, with such a wide choice of limit displacements, there has been considerable 
variation in the assessed experimental displacement ductility capacity of structures. This 
variation in assessed ductility capacity has, not surprisingly, been expressed in the codified 
force-reduction factors of different countries. In the United States of America, force- 
reduction factors as high as 8.0 are permitted for reinforced concrete frames [X4]. In 
other countries, notably Japan and Central America, maximum force-reduction factors of 
about 3.0 apply for frames. Common maximum values for force-reduction factors for
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different structural types and materials specified in different seismic regions are provided 
in Table 1.2. With such a wide diversity of opinion as to the appropriate level of force- 
reduction factor, the conclusion is inescapable that the absolute value of the strength is of 
relatively minor importance. This opinion has already been stated in this text.

(a) Equal Displacement (b) Definition of Yield and
Approximation Ultimate Displacement

Fig.1.6 Defining Ductility Capacity

Table 1.2 Examples of Maximum Force-Reduction Factors for the Damage- 
Control Limit State in Different Countries

Structural Type and 
Material

US West Coast Japan New**
Zealand

Europe
Concrete Frame 8 1. 8- 3.3 9 5.85

Cone. Struct. Wall 5 1 . 8- 3.3 7.5 4.4
Steel Frame 8 2 .0 - 4.0 9 6.3
Steel EBF* 8 2 .0 - 4.0 9 6.0

Masonry Walls 3.5 - 6 3.0
Timber (struct. Wall) - 2 . 0- 4.0 6 5.0

Prestressed Wall 1.5 - -

Dual Wall/Frame 8 1 . 8- 3.3 6 5.85
Bridges 3-4 3.0 6 3.5

eccentrically Braced Frame **Sp factor of 0.67 incorporated.

1-5.4 Ductility of Structural Systems

A kev tenet of force-based design, as currently practiced, is that unique ductility 
;:r:iciaes, and hence unique force-reduction factors can be assigned to different 
--jr-crural systems. Thus force-reduction factors of 6 and 4 might be assigned to 
rrjr.rorced concrete frame and wall structures respectively, and concrete bridges might be 
: ; 5:.ened a value of 3. Note, however, that we have already established that different
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codes will provide different force-reduction factors for identical systems and materials. 
In this section we investigate the validity of this tenet in some detail, and show it to be 
inappropriate.

^Before embarking on this journey, it is necessary to state our definition of ductility 
capacity. With reference to Fig. 1.6, the yield displacement is taken to be defined by point 
3, and the ultimate displacement by the lesser of displacement at point 6 or point 5, 
where point 5 is defined by a strength drop of 20% from the peak strength obtained. 
This assumes a bi-linear approximation to force-displacement (and to moment-curvature) 
response and enables direct relationships to be established between the displacement 
ductility and force-reduction factors. The choice of a yield displacement based on secant 
stiffness through the first-yield point is also based on rational considerations. A 
reinforced concrete structure loaded to first yield, unloaded and then reloaded, will 
exhibit essentially linear unloading and reloading, along the line defined by point 3. Thus 
once cracking occurs, the line from the origin to point 3 provided the best estimate of 
elastic stiffness at levels close to yield. For steel structures, points 1 and 3 will essentially 
be identical, and the argument is thus also valid.

The calculation of nominal strength, initial stiffness, and yield and ultimate 
displacement are covered in some detail in Chapter 4. It is noted that for design purposes, 
a maximum displacement for the damage-control limit state should be reduced from the 
expected ultimate, or collapse displacement by a displacement-reduction factor of 
approximately <j>̂ — 0.67.

(a) Bridge Columns o f Different Heights: An example of the influence of structural 
geometry on displacement capacity is provided in Fig. 1.7, which compares the ductility 
capacity of two bridge columns with identical cross-sections, axial loads and 
reinforcement details, but with different heights. The two columns have the same yield 
curvatures <f)y and ultimate curvatures <pu and hence the same curvature ductility factor fl̂  
— (/>u/Qy . Yield displacements, however, may be approximated by

A ,= ^ / / 2 /3

where H is the effective height, and the plastic displacement Ap — Au - Ay by

A p =(ppLpH  (1.14)

where (̂  — (/>u - </>y is the plastic curvature capacity, and Lp is the plastic hinge length.
The displacement ductility capacity is thus given by

(1.13)
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p

(a) Squat Column, JUa = 9.4 (b) Slender Column, fl^ — 5.1

Fig.1.7 Influence of Height on Displacement Ductility Capacity of Circular 
Columns (P = O.lf cAg; 2% longitudinal, 0.6% transverse reinforcement)

As is discussed in Section 4.2.8, the plastic hinge length depends on the effective 
height, extent of inclined shear cracking, and the strain penetration of longitudinal 
reinforcement into the footing. As a consequence, LP is rather weakly related to, and is 
frequently assumed to be independent of, H. Referring to Eq.(1.15) it is thus seen that 
the displacement ductility capacity reduces as the height increases. Using the approach of 
Section 4.2.8 where the height-dependency of LP is considered, it is found that the squat 
column of Fig. 1.7(a) has a displacement ductility capacity of 9.4, while for the more 
slender column of Fig. 1.7(b), jUa ~5.1. Clearly the concept of uniform displacement 
ductility capacity, and hence of a constant force-reduction factor is inappropriate for this 
very simple class of structure.

(b) Portal Frames with Flexible Beams: Current seismic design philosophy requires
the selection of members in which plastic hinges may form, and the identification of 
members which are to be protected from inelastic action (capacity design: see Section 
4.5). It will be shown that the elastic flexibility of the capacity-protected members 
influences the displacement ductility capacity of the structure, and hence might be 
expected to influence the choice of force-reduction factor in force-based design.

Consider the simple portal frame illustrated in Fig. 1.8. For simplicity of argument, we 
assume that the column bases are connected to the footings by pinned connections, and 
thus no moments can develop at the base. If the portal in Fig. 1.8 was representative of a 
section of a building frame, the design philosophy would require that plastic hinges 
should form only in the beam, and that the column remain elastic. If the portal was 
representative of a bridge bent supporting a superstructure, hinging would develop at the 
top of the columns, and the cap beam would be required to remain elastic. In the 
argument below, we assume the latter (bridge), alternative to apply, though identical 
conclusions are arrived at if hinging is assumed to develop in the beam.



16 Priestley, Calvi and Kowalsky. D isplacem ent-Based Seism ic Design of Structures

Fig. 1.8 Influence of Member Flexibility on Displacement of a Portal Frame

Consider first the case where the cap beam is assumed to be rigid. The yield 
displacement under lateral forces F  is thus Â  = Ac, resulting solely from column 
flexibility. All plastic displacement originates in the column plastic hinge regions, since 
the design philosophy requires the cap beam to remain elastic. With a plastic 
displacement of Ap corresponding to the rotational capacity of the column hinges, the 
structure displacement ductility is

A_ (1.16)

where the subscript r  refers to the case with rigid cap beam.
Cap beam flexibility will increase the yield displacement to Â  = Ac + A*, , where A* is 

the additional lateral displacement due to cap beam flexibility (see Fig. 1.8(b)), but will not 
result in additional plastic displacement, since this is still provided solely by column hinge 
rotation. For bent dimensions H  X Z,, as shown in Fig. 1.8(a), and cracked-section 
moments of inertia for beam and columns of //, and /c, respectively, the yield 
displacement is now

—A^+A- — A I 1 +
0.5 I CL 

IbH J
(1.17)

and the structural displacement ductility capacity is reduced to

M&f - 1 + p _= 1 +
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where the subscript /refers to the case with flexible cap beam. Thus:

M&f = 1 + ----- — —  -------■f 1 + 0.5 L L / LH
(1.18)

As an example, take L = 2Hy Ib ~IC , and jl^r — 5. From Eq.(1.18) it is found that the 
displacement ductility capacity is reduced to //a/ = 3. Again it would seem to be 
inappropriate to use the same force reduction for the two cases. Although consideration 
of this effect has been recommended elsewhere^4), it is not included in any design codes, 
and is rarely adopted in force-based design practice.

It is obvious that similar conclusions will apply to frame buildings, where the elastic 
flexibility of the columns will reduce the building displacement ductility capacity 
compared to that based on beam ductility capacity alone.

(c) Cantilever Walls with Flexible Foundations: Similar conclusions to those of the 
previous section are obtained when the influences of foundation flexibility are 
considered, or ignored, in seismic design. Consider the structural wall shown in Fig. 1.9. 
The displacements at first yield (Fig. 1.9(b) at the effective height He (centre of lateral 
force) are increased by rotation of the wall on the flexible foundation, while the plastic 
displacement , is a function of the rotational capacity of the wall-base plastic hinge 
detail alone, since the foundation is expected to remain elastic. In fact, in the example 
shown, a small increase in displacements due to foundation flexibility will occur as the 
wall deforms inelastically, since the base shear, as shown in Fig. 1.9(c) continues to

Response
Fig.1.9 Influence of Foundation Flexibility on Displacement Ductility Capacity
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increase, due to strain hardening of longitudinal reinforcement. This minor effect is 
ignored, in the interests of simplicity, in the following.

The similarity to the case of the previous example of the portal frame is obvious. By 
amJogy to the equations of that section, the displacement ductility of the wall, including 
foundation flexibility effects can be related to the rigid-base case by

where A  ̂and A/ are the wall displacements at yield due to structural deformation of the 
wall, and foundation rotation respectively, and — 1+Ap/Aw.

The reduction in displacement ductility capacity implied by Eq.(1.19) is more critical 
for squat walls than for slender walls, since the flexural component of the structural yield 
displacement, which normally dominates, is proportional to the square of the wall height, 
whereas the displacement due to foundation flexibility is directly proportional to wall 
height. It is not unusual, with squat walls on spread footings, to find the displacement 
ductility capacity reduced by a factor of two or more, as a consequence of foundation 
rotation effects. Similar effects have been noted for bridge columns on flexible 
foundations^4!. To some extent, however, the effects of additional elastic displacements 
resulting from this cause may be mitigated by additional elastic damping provided by soil 
deformation and radiation dampingfcn . For simplicity, shear deformation of the wall has 
not been considered in this example.

In the past it has been common for designers to ignore the increase in fundamental 
period resulting from the foundation flexibility discussed above. It may be felt that this to 
some extent compensates for the reduction in displacement ductility capacity, since the 
structure is designed for higher forces than those corresponding to its “true” fundamental 
period. However, the consequence may be that story drifts exceed codified limits without 
the designer being aware of the fact.

(d) Structures with Unequal Column Heights: Marginal wharves (wharves running 
parallel to the shore line) typically have a transverse section characterized by a simple 
reinforced or prestressed concrete deck supported by concrete or steel shell pile/columns 
whose free height between deck and dyke increases with distance from the shore. An 
example is shown in Fig. 1.10(a).

Conventional force-based design would sum the elastic stiffnesses of the different 
piles to establish a global structural stiffness, calculate the corresponding fundamental 
period, and hence determine the elastic lateral design force, in accordance with the 
sequence of operations defined in Fig. 1.3. A force-reduction factor, reflecting the 
assumed ductility capacity would then be applied to determine the seismic design lateral 
force, which would then be distributed between the piles in proportion to their stiffness. 
Implicit in this approach is the assumption of equal displacement ductility demand for all 
pile/columns.

(1.19)
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The illogical nature of this assumption is apparent when the individual pile/column 
force-displacement demands, shown in Fig.l.10(b), are investigated. Design is likely to be 
such that only one, or at most two pile designs will be used, varying the amount of 
prestressing or reinforcing steel, but keeping the pile diameter constant. In this case the 
pile/columns will all have the same yield curvatures, and yield displacements will be 
proportional to the square of the effective height from the deck to the point of effective 
fixity for displacements, at a depth of about five pile diameters below the dyke surface. 
This effective height is shown for piles F and C in Fig. 1.10(a) as H f or Me.

Concrete Deck

Fig.l.10 Transverse Seismic Response of a Marginal Wharf

The structure lateral force displacement response can be obtained by summing the 
individual pile/column force-displacement curves, shown in Fig. 1.10(b). Force-based
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design, allocating strength in proportion to the elastic stiffnesses would imply design 
strengths for the different pile/columns equal to the forces intersected by the line drawn 
in Fig. 1.10(b) at Ayp, the yield displacement of pile/column F. Since the yield 
displacements of the longer piles are much greater, the full strength of these piles will 
thus be under-utilized in the design. It is also clearly a gross error to assume that all piles 
will have the same ductility demand in the design-level earthquake. Fig. 1.10(b) includes 
the full force-displacement curves, up to ultimate displacement, for pile/columns F and 
E. The ultimate displacements for the longer pile/columns are beyond the edge of the 
graph. Clearly at the ultimate ductility capacity of the shortest pile column, F, the ductility 
demands on the longer columns are greatly reduced. Pile/columns A, and B will still be in 
the elastic range when the ultimate displacement of pile F is reached. The concept of a 
force-reduction factor based on equal ductility demand for all pile/columns is thus totally 
inapplicable for this structure. Wharf seismic design is discussed in depth in Chapter 12.

Similar conclusions (as well as a means for rationally incorporating the above within 
the framework of force-based design) have been reached by PaulayP26! referring to 
response of a rigid building on flexible piles of different lengths. The procedure suggested 
by Paulay requires that the concept of a specified structural force-reduction factor, which 
currendy is a basic tenet of codified force-based design, be abandoned, and replaced by 
rational analysis.

A second example, that of a bridge crossing a valley, and hence having piers of 
different heights, is shown in F ig.l.11. Under longitudinal seismic response, the 
deflections at the top of the piers will be equal. Assuming a pinned connection between 
the pier tops and the superstructure (or alternatively, fixed connections, and a rigid 
superstructure), force-based design will allocate the seismic design force between the 
columns in proportion to their elastic stiffnesses. If the columns have the same cross- 
section dimensions, as is likely to be the case for architectural reasons, the design shear 
forces in the columns, VAy V^and Vq, will be in inverse proportion to HA Hb3> and He3 
respectively, since the stiffness of column i  is given by

K .= C ,E I ,JH ]  (1.20a)

where Iie is the effective cracked-section stiffness of column l\ typically taken as 0.5^rO55, 
for all columns. The consequence of this design approach is that the design moment at 
the bases of the piers will be

M B, = C2ViHi = C ,C2EI:e /H ?, (1.20b)

that is, in inverse proportion to the square of the column heights (in Eqs.(1.20), Cj and 
C2 are constants dependent on the degree of fixity at the pier top). Consequendy the 
shortest piers will be allocated much higher flexural reinforcement contents than the 
longer piers. This has three undesirable effects. First, allocating more flexural strength to 
the short piers will increase their elastic flexural stiffness, E l even further, with respect 
to the more lightly reinforced longer piers, as has been discussed in relation to Fig. 1.4.
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Fig.1.11 Bridge with Unequal Column Heights

A redesign should stricdy be carried out with revised pier stiffnesses, which, in 
accordance with Eq. (1.20) would result in still higher shear and moment demands on the 
shorter piers. Second, allocating a large proportion of the total seismic design force to the 
short piers increases their vulnerability to shear failure. Third, the displacement capacity 
of the short piers will clearly be less than that of the longer piers. As is shown in Section 
1.3.5, the displacement capacity of heavily reinforced columns is reduced as the 
longitudinal reinforcement ratio increases, and hence the force-based design approach 
will tend to reduce the displacement capacity.

As with the marginal wharf discussed in the previous example, the ductility demands 
on the piers will clearly be different (inversely proportional to height squared), and the 
use of a force-reduction factor which does not reflect the different ductility demands will 
clearly result in structures of different safety.

Design of bridges with unequal column heights is considered further in Chapter 10.

1.3.5 Relationship between Strength and Ductility Demand.

A common assumption in force-based design is that increasing the strength of a 
structure (by reducing the force-reduction factor) improves its safety. The argument is 
presented by reference to Fig.1.1, of which the force-deformation graph is duplicated 
here as Fig. 1.12(a). Using the common force-based assumption that stiffness is 
independent of strength, for a given section, it is seen that increasing the strength from 
SI to S2 reduces the ductility demand, since the final displacement remains essentially 
constant (the “equal displacement” approximation is assumed), while the yield 
displacement increases. It has already been noted, in relation to Fig. 1.4 that this 
assumption is not valid. However, we continue, as it is essential to the argument that 
increasing strength reduces damage.

The reduction in ductility demand results in the potential for damage also being 
decreased, since structures are perceived to have a definable ductility demand, and the 
lower the ratio of ductility demand to ductility capacity, the higher is the safety.

We have already identified three flaws in this reasoning: 1) stiffness is not independent 
of strength; 2) the “equal displacement”, approximation is not valid; and 3) it is not 
possible to define a unique ductility capacity for a structural type.
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(a) Strength vs Ductility
Reinforcement Ratio (%)

(b) Influence of Rebar % on Parameters
Fig.1.12 Influence of Strength on Seismic Performance

It is of interest, however, to examine the argument by numeric example. The simple 
bridge pier of Fig. 1.1 is assumed to have the following properties: Height = 8 m (26.2 ft), 
diameter = 1.8 m (70.9 in), flexural reinforcement dia. = 40 mm (1.58 in), concrete 
strength Pc — 39 MPa (5.66 ksi), flexural reinforcement: yield strength fy — 462 MPa (67 
ksi), fu — 1.5fy\ transverse reinforcement: 20 mm (0.79 in) diameter at a pitch of 140 mm 
(5.5 in), fyh — 420 MPa (60.9 ksi); cover to main reinforcement = 50 mm (1.97 in), axial 
load P= 4960 kN (1115 kips) which is an axial load ratio of P/PcAg ~ 0.05.

A reference design with 1.5% flexural reinforcement is chosen, and analyses carried 
out, using the techniques described in Chapter 4 to determine the influence of changes to 
the flexural strength resulting from varying the flexural reinforcement ratio between the 
limits of 0.5% and 4%. Results are presented for different relevant parameters in 
Fig. 1.12(b) as ratios to the corresponding parameter for the reference design.

As expected, the strength increases, almost linearly with reinforcement ratio, with 
ratios between 0.5 times and 2.0 times the reference strength. We can thus use these data 
to investigate whether safety has increased as strength has increased. First we note that 
the effective stiffness has not remained constant (as assumed in Fig.l.12(a)) but has 
increased at very nearly the same rate as the strength. More importandy, we note that the 
displacement capacity displays the opposite trend from that expected by the force-based 
argument: that is, the displacement capacity decreases as the strength increases. At a 
reinforcement ratio of 0.5% it is 31% higher than the reference value, while at 4% 
reinforcement ratio the displacement capacity is 21% lower than the reference value. 
Thus, if the “equal displacement” approach was valid, as illustrated in Fig. 1.12(a), we have 
decreased the safety by increasing the strength, and we would be better off by reducing 
the strength.

Of course, the discussion above is incomplete, since we know that the yield 
displacements are not proportional to strength, since the stiffness and strength are closely
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related as suggested in Fig. 1.4(b), and demonstrated in Fig. 1.12(b). We use this to 
determine the influence on displacement ductility capacity, and find that it decreases 
slightly faster than the displacement capacity (see Fig. 1.12(b)). However, since the elasdc 
stiffness increases with strength, the elastic period reduces, and the displacement demand 
is thus also reduced. If we assume that the structural periods for all the different strength 
levels lie on the constant-velocity slope of the acceleration spectrum (i.e. the linear 
portion of the displacement response spectrum: see Fig. 1.2(b)), then since the period is 
proportional to the inverse of the square root of the stiffness (Eq.1.6), the displacement 
demand will also be related to 1/A0-5. We can then relate the ratio of displacement 
demand to displacement capacity, and compare with the reference value.

This ratio is also plotted in Fig. 1.12(b). It will be seen that taking realistic assessment 
of stiffness into account, the displacement demand/capacity ratio is insensitive to the 
strength, with the ratio only reducing from 1.25 to 0.92 as the strength ratio increases by 
400% (corresponding to the full range of reinforcement content). Clearly the reasoning 
behind the strength/safety argument is invalid.

1.3.6 Structural Wall Buildings with Unequal Wall Lengths

A similar problem with force-based design to that discussed in the previous section 
occurs when buildings are provided with cantilever walls of different lengths providing 
seismic resistance in a given direction. Force-based design to requirements of existing 
codes will require the assumption that the design lateral forces be allocated to the walls in 
proportion to their elastic stiffness, with the underlying assumption that the walls will be 
subjected to the same displacement ductility demand. Hence the force-reduction factor is 
assumed to be independent of the structural configuration.

It was discussed in relation to Fig. 1.4(b), that the yield curvature for a given section is 
essentially constant, regardless of strength. It will be shown in Section 4.4.3 that the form 
of the equation governing section yield curvature is

(j>y = C - £ y l h  (1.21)

where h is the section depth, and €y is the yield strain of the longitudinal reinforcement. 
Since the yield displacement can be related to the yield curvature by Eq.(1.13) for 
cantilever walls, as well as for columns, it follows that the yield displacements of walls of 
different lengths must be in inverse proportion to the wall lengths, regardless of the wall 
strengths. Hence displacement ductility demands on the walls must differ, since the 
maximum response displacements will be the same for each wall.

Figure 1.13 represents a building braced by two short walls (A and C) and one long 
wall (B) in the direction considered. The form of the force-displacement curves for the 
walls are also shown in Fig. 1.13. Force-based design mistakenly assumes that the shorter 
walls can be made to yield at the same displacement as the longer wall B, and allocates 
strength between the walls in proportion to since the elastic stiffnesses of the wall 
differ only in the value of the wall effective moments of inertia, Ie, which are proportional
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A B C

Fig.l.13 Building with Unequal Length Cantilever Walls

to the cube of wall length. Again strength is unnecessarily, and unwisely concentrated in 
the stiffest elements, underutilizing the more flexible members. A more rational decision 
would be to design the walls for equal flexural reinforcement ratios, which would result in 
strengths proportional to the square of wall length.

As with the previous two examples, the code force-reduction factor for the structure 
will not take cognizance of the fact that the different walls must have different 
displacement ductility demands in the design earthquake.

1.3.7 Structures with Dual (Elastic and Inelastic) Load Paths.

A more serious deficiency of force-based design is apparent in structures which 
possess more than one seismic load path, one of which remains elastic while the others 
respond inelastically at the design earthquake level. A common example is the bridge of 
Fig. 1.14(a), when subjected to transverse seismic excitation, as suggested by the double
headed arrows. Primary seismic resistance is provided by bending of the piers, which are 
designed for inelastic response. However, if the abutments are restrained from lateral 
displacement transversely, superstructure bending also develops. Current seismic design 
philosophy requires the super-structure to respond elasticallylP4l. The consequence is that 
a portion of the seismic inertia forces developed in the deck is transmitted to the pier 
footings by column bending (path 1 in Fig.l.14(b)), and the remainder is transmitted as 
abutment reactions by superstructure bending (path 2). Based on an elastic analysis the 
relative elastic stiffnesses of the two load paths are indicated by the two broken lines in 
Fig. 1.14(b), implying that column flexure (path 1) carries most of the seismic force. A 
force-reduction factor is then applied, and design forces determined.

The inelastic response of the combined resistance of the columns is now shown by 
the solid line (path 3, in Fig.l.14(b)), and on the basis of the equal displacement 
approximation it is imagined that the maximum displacement is Amax, the value predicted 
by the elastic analysis. If the superstructure is designed for the force developed in path 2
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Fig.l.14 Bridge with Dual Load Paths under Transverse Excitation

at the column yield displacement, it will be seriously under-designed, since the forces in 
this path, which are required to be within the elastic range, continue to rise with 
increasing displacement. Thus the bending moment in the superstructure, and the 
abutment reactions at A and E are not reduced by column hinging, and a force-reduction 
factor should not be used in their design.

It is also probable that the maximum response displacement will differ significantly 
from the initial elastic estimate, since at maximum displacement, the effective damping of 
the system will be less than expected, as hysteretic damping is only associated with load 
path 3, which carries less than 50% of the seismic force at peak displacement response in 
this example. This may cause an increase in displacements. On the other hand, the higher 
strength associated with the increased post-yield stiffness of load path 2 may result in 
reduced displacement demand. Elastic analysis and the force-reduction factor approach 
give no guidance to these considerations.

A slightly different, but related problem occurs with dual wall/frame buildings (see Fig.

(b) Force-displacement Response(a) Structure

Fig.1.15 Dual Wall/Frame Building



26 Priestley, Calvi and Kowalsky. D isplacement-Based Seism ic Design of Structures

1.15). If the seismic force is distributed between the frame and the wall in proportion to 
their elastic stiffness, the load-carrying capacity of the frame will be unnecessarily 
discounted. The yield displacement of the frame will inevitably be several times larger 
thafi that of the wall, so the proportion of seismic force carried by the frame at maximum 
response will be larger than at first yield of the wall (Fig. 1.14(b)). In this example both 
systems eventually respond in elastically, but the frame system remains elastic to larger 
displacements.

Note that the interaction between the frame and wall due to resolving the 
incompatibilities between their natural vertical displacement profiles will also be modified 
by inelastic action, and bear little resemblance to the elastic predictions. This is discussed 
further in Chapter 7.

1.3.8 Relationship between Elastic and Inelastic Displacement Demand

Force-based design requires assumptions to be made when determining the maximum 
displacement response. The most common assumption is the equal-displacement 
approximation, which states that the displacement of the inelastic system is the same as 
that of the equivalent system with the same elastic stiffness, and unlimited strength (refer 
to Fig. 1.1). Thus, with reference to Fig. 1.2, the design displacement is estimated as

t 2
^ m a  X'ductile ^ m a  x,elastic ^  (1 .2 2 )

and hence JU — R. Equation (1.22) is based on the approximation that peak 
displacements may be related to peak accelerations assuming sinusoidal response 
equations, which is reasonable for medium period structures.

The equal displacement approximation is known to be non-conservative for short- 
period structures. As a consequence, some design codes, notably in Central and South 
American, and some Asian countries, apply the equal-energy approximation when 
determining peak displacements. The equal energy approach equates the energy absorbed 
by the inelastic system, on a monotonic displacement to peak response, to the energy 
absorbed by the equivalent elastic system with same initial stiffness. Thus the peak 
displacement of the inelastic system is

^  vc\Qx,ditct ^  ma x,elastic
//?2 + l x 

2 R a (T)S  '
/?2 + l  

2 R
(1.23)

where R  is the design force-reduction factor. Since Amax,elastic —RAy, ar>d the actual 
displacement ductility demand is JU — A m a x j u c t / the ductility demand implied by 
Eq.(1.23) is
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R 2 + 1
M = ~ ^ ~  (1.24)

Where codes employ inelastic design spectra [e.g. XI], design is based on specified 
ductility, rather than force-reduction factor, and the design spectral accelerations for 
short-period structures are adjusted to correct for displacement amplification.

In the United States, where until recently the dominant building code for seismic 
regions has been the UBC [X5], design displacements were estimated as

3 R
,,*««= A y ' Y  O'25)

where is the yield displacement corresponding to the reduced design forces, found 
from structural analysis. Since the structure is designed for a force-reduction factor of R, 
this would appear to imply that the displacement ductility is

3 R
M = ~  0-26)

O

and the displacement of the ductile system is 3/8 of the equivalent elastic system. 
However, the apparent reason behind this seemingly unconservative result is that the 
actual force-reduction factor was substantially lower than the design force-reduction 
factor, as a consequence of the design period being pegged to an unrealistic height- 
dependent equation of the form of Eq.(1.7). The consequences of this are explained with 
reference to Fig. 1.16.

Period (sec)
Fig.l.16 Influence of Under-predicted Period on Actual Force-Reduction Factor

In Fig. 1.16, T1 and T2 are the fundamental periods corresponding to the code height- 
dependent equation, and rational structural analysis respectively. The elastic response 
accelerations corresponding to these periods are ai and a2 respectively. If the design
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force-reduction factor corresponding to T1 is R, then the real force-reduction factor, 
corresponding to T2 is R  — R&i/ai. If the equal displacement approximation were valid 
at T2, and assuming a constant velocity range for the response spectrum, then Eq.(1.26) 
w($*ild be correct if T2 = 2.67 Tl. Examination of Table 1.1 indicates that this is close to 
the ratio of periods calculated by rational analysis and by the period dependant code 
equation.

Clearly there are compensatory errors involved in this approach, which should be 
removed by using more realistic periods, and force-reduction factors that have a close 
relationship to the ductility capacity, as is incorporated in other codes. Recendy, USA 
practice, incorporated in the IBC codeP^l, has changed, with the 3i?/8 factor of Eq.(1.25) 
being replaced by a coefficient dependent on structural form and material. The approach 
is, however, still illogical, with effective ratios varying between 0.5i?and 1.2R.

A comparison of the different predictions provided by Eqs (1.22), (1.24) and (1.26) is 
presented in Fig. 1.17, for a design force-reduction factor of R= 4. The range of different 
possible answers is disturbingly large.

Fig.1.17 Estimates of Design Displacement from Different Force-Based Codes
for R = 4

Force-based seismic design does not normally take account of the different hysteretic 
characteristics of different materials and structural systems. Thus the fact that seismic 
isolation systems absorb much more hysteretic energy than reinforced concrete 
structures, which in turn absorb more than prestressed concrete structures is not directly 
considered, though different force-reduction factors may be assigned to different 
materials. Figure 1.18 examines the validity of the equal displacement approximation for a 
range of different periods, and for three different hysteresis rules: elastic, bilinear elasto- 
plastic (representative of isolation systems), Takedaf01!, (representative of reinforced 
concrete structures, and flag-shaped with /3=035 (representative of hybrid unbonded 
prestressed structures - see Fig 4.33).

Analyses were first carried out for a range of periods between 0.25sec and 2.5 seconds 
using elastic time-history analyses and a suite of seven accelerograms compatible with the
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EC8 design spectrum for firm ground [X3]. The design yield strength for the three ductile 
systems was found by dividing the average maximum elastic response moment by a factor 
of R—A. All three ductile systems adopted the same force-displacement envelope, with a 
post-yield stiffness of 5% of the initial stiffness, and thus only differed in terms of 
unloading and reloading rules. Elastic damping was taken as 5% of critical, related to the 
tangent stiffness (see Section 4.9.2(g) for a discussion on modelling elastic damping).

In Fig. 1.18, results are expressed as the ratio ductile peak displacement for ductile 
response to displacement of the elastic system of equal initial period. For the equal 
displacement approximation to hold, all values should be 1.0. It is seen that significant 
differences occur, depending on the period and hysteresis rule. Differences are 
particularly marked in the period range T <0.75 seconds, as expected, but are also 
significant at other periods.

Period (seconds) Period (seconds)
(a) Absolute Peak Displacement (b) Average of Positive and Negative Peaks

Fig.1.18 Ratio of Ductile to Elastic Peak Displacement for different Hysteresis 
Rules based on EC8 Design Spectrum for Firm Ground

The differences between the hysteretic rules, and also from the elastic results are 
particularly apparent when the average of the positive and negative peaks (Fig. 1.18(b)), 
rather than the absolute maximum (Fig. 1.17(a)), are considered, as suggested in Section 
4.9.2(h), reflecting the larger residual displacements in the Bilinear elasto-plastic results, 
which affects the absolute peak displacement more than the average of positive and 
negative peaks.

The results of this brief section indicate that force-based design is not ideally suited to 
estimating the maximum displacements expected of structures in seismic response. 
Considering that it is now accepted that peak displacements are critical in determining the 
level of damage that can be expected, this is a serious criticism of the method.
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1.3.9 Summary

In this section, we have identified some of the problems associated with force-based 
design. These can be summarized as follows:

• Force-based design relies on estimates of initial sdffness to determine the period 
and the distribution of design forces between different structural elements. Since 
the sdffness is dependent on the strength of the elements, this cannot be known 
until the design process is complete.

• Allocating seismic force between elements based on initial stiffness (even if 
accurately known) is illogical for many structures, because it incorrectly assumes 
that the different elements can be forced to yield simultaneously.

• Force-based design is based on the assumption that unique force-reduction 
factors (based on ductility capacity) are appropriate for a given structural type 
and material. This is demonstrably invalid.

Despite these criticisms it should be emphasized that current force-based seismic 
design, when combined with capacity design principles and careful detailing, generally 
produces safe and satisfactory designs. However, the degree of protection provided 
against damage under a given seismic intensity is very non-uniform from structure to 
structure. Thus, the concept of “uniform risk” which is implicit in the formulation of 
current seismic design intensity, has not been continued into the structural design. We 
believe that it should be.

1.4 DEVELOPMENT OF DISPLACEMENT-BASED DESIGN METHODS

1.4.1 Force-Based/Displacement Checked

Deficiencies inherent in the force-based system of seismic design, some of which have 
been outlined in the preceding sections, have been recognized for some time, as the 
importance of deformation, rather than strength, in assessing seismic performance has 
come to be better appreciated. Consequendy a number of new design methods, or 
improvements to existing methods, have been recendy developed. Initially the 
approaches were designed to fit within, and improve, existing force-based design. These 
can be characterized as force-based/displacement checked, where enhanced emphasis is placed 
on realistic determination of displacement demand for structures designed to force-based 
procedures.

Such methods include the adoption of more realistic member stiffnesses for 
deformation (if not for required strength) determination, and possibly use of inelastic 
time-history analysis, or pushover analysis, to determine peak deformation and drift 
demand. In the event that displacements exceed the code specified limits, redesign is 
required, as suggested in F ig.l.3. Many modern codes [ e.g. XI, X2, X3, X4]require some 
version of this approach. Several recent design approaches have used this approach [e.g. 
FI, F2, X8]. In general, no attempt is made to achieve uniform risk of damage, or of 
collapse for structures designed to this approach.
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Paulay1 has suggested that the deficiencies noted in previous sections can be 
eliminated within a force-based design approach. As explained in detail in section 4.4, 
yield displacement can be determined from section and structure geometry without a 
prior knowledge of strength. Displacement demand, A ,̂ at least for frame buildings will 
normally be governed by code drift limits and the building geometry. The yield strength V 
is assumed, and hence the initial stiffness K  = V/Ay is calculated. The elastic period is 
calculated from Eq.(1.6), and the elastic displacement demand from Eq. (1.22). This is 
compared with the code drift limit, and the strength adjusted incrementally until the 
elastic displacement equals the drift limit. Strength is then distributed between the 
different lateral-force resisting elements based on experience, rather than on elastic 
stiffness. This has been termed a displacement focusedforce-based approach.

There are, however, problems associated with this approach. Although the yield 
displacements of the lateral-force resisting elements may be known at the start of the 
procedure, the equivalent system yield displacement will not be known until the 
distribution of strength between elements is decided. The approach relies on assumptions 
about the equivalence between elastic and ductile displacements (e.g. the equal 
displacement approximation), which as discussed in relation to Fig. 1.18 may be invalid, 
and considerable experience is required of the designer. The procedure is suitable for 
those well versed in seismic design, but ill-suited for codification. As will be shown in 
subsequent chapters of this text, a design approach based directly on displacements is 
simpler, better suited to codification (see Chapter 14), and does not require assumptions 
to be made about elastic/inelastic displacement equivalence.

1.4.2 Deformation-Calculation Based Design

A more refined version of the force-based/displacement-checked approach relates the 
detailing of critical sections (in particular details of transverse reinforcement for 
reinforced concrete members) to the local deformation demand, and may hence be 
termed deformation-calculation based design. Strength is related to a force-based design 
procedure, with specified force-reduction factors. Local deformation demands, typically 
in the form of member end rotations or curvatures are determined by state-of-the-art 
analytical tools, such as inelastic pushover analyses or inelastic time-history analyses. 
Transverse reinforcement details are then determined from state-or-the-art relationships 
between transverse reinforcement details and local deformation demand, such as those 
presented in Chapter 4.

Initial work on this procedure was related to bridge structuresPY'J, and followed by 
work on reinforced concrete buildingslMl). Many additional variants of the approach have 
recendy been developed [e.g. B l, K l, P7]. In the variant suggested by Panagiatokos and 
Fardis^7! the structure is initially designed for strength to requirements of direct 
combination of gravity load plus a serviceability level of seismic force, using elastic

Pers. comm. T. Paulay
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analysis methods. The designed structure is then analysed using advanced techniques such 
as inelastic time-history analysis or inelastic pushover analysis to determine the required 
transverse reinforcement details. It is not clear that this is an efficient design approach 
wfcen response to the full design-level earthquake is considered, since inelastic time- 
history analyses of frame buildings by Pinto et al I P15l have indicated that member 
inelastic rotations are rather insensitive to whether gravity loads are incorporated in the 
analysis, or ignored. An alternative procedure for combination of gravity and seismic 
loads is suggested in Section 3.7. The approaches described in this section have the 
potential of producing structures with uniform risk of collapse, but not with uniform risk 
of damage.

1.4.3 Deformation-Specification Based Design

Recently a number of design approaches have been developed where the aim is to 
design structures so that they achieve a specified deformation state under the design-level 
earthquake, rather than achieve a displacement that is less than a specified displacement 
limit. These approaches appear more philosophically satisfying than those of the 
preceding two sections. This is because damage can be directly related to deformation. 
Hence designing structures to achieve a specified displacement limit implies designing for 
a specified risk of damage, which is compatible with the concept of uniform risk applied 
to determining the design level of seismic excitation. It thus means that different 
structures designed to this approach will (ideally) have the same risk of damage, rather 
than the variable risk associated with current design approaches, as discussed in Section 
1.3. Using state-of-the-art detailing/deformation relationships, structures with uniform 
risk of collapse, as well as of damage can theoretically be achieved.

Different procedures have been developed to achieve this aim. The most basic 
division between them is on the basis of stiffness characterization for design. Some 
methods [e.g. A l, C2, SI], adopt the initial pre-yield elastic stiffness, as in conventional 
force-based design. Generally some iteration is required, modifying initial stiffness and 
strength, to achieve the desired displacement, as discussed in relation to the approach 
suggested by Paulay in Section 1.4.1. These approaches also rely on existing relationships 
between elastic and inelastic displacement, such as the equal-displacement, or equal- 
energy approximations. It is shown in Section 4.9.2(g) that these approximations have 
been based on invalid elastic damping assumptions.

The second approach utilizes the secant stiffness to maximum displacement, based on 
the Substitute Structure characterization^1 «S21, and an equivalent elastic representation of 
hysteretic damping at maximum response [e.g. P8, K2, P9]. Generally these methods 
require little or no iteration to design a structure to achieve the specified displacement, 
and are hence known as Direct Displacement-Based Design (DDBD) methods. The different 
stiffness assumptions of the two approaches are illustrated for a typical maximum 
hysteretic force-displacement response in Fig. 1.19, where A/and Ks are the initial and 
secant stiffness to maximum response respectively. It will be recalled that one of the 
principal problems with force-based seismic design is that reliance on initial stiffness
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results in illogical force distribution between different structural elements. It will be 
shown in Chapter 3 that this problem disappears when the secant stiffness is used.

Fig.l.19 Initial and Secant Stiffness Characterization of Hysteretic Response

The way in which hysteretic energy dissipation is handled also varies between the 
methods. Two main classes of procedure can be identified — those that use inelastic 
spectra, and those that use equivalent viscous damping. Inelastic spectra are generally 
related to acceleration, though there is no inherent reason why inelastic displacement 
spectra cannot be generated (see Section 3.4.3(e)). They are generated by single-degree-of- 
freedom analyses of structures of different initial elastic periods, using a specified 
hysteresis rule, and a specified maximum ductility. Since the ductility demand cannot 
generally be predicted prior to the analyses, the analyses are carried out using a range of 
specified force-reduction factors, and the spectrum for a given ductility factor is found by 
interpolation within the results of the analyses. Alternatively, simplified relationships 
between force-reduction factor and ductility that vary between equal-displacement at long 
periods, and equal energy at short periods are direcdy generated. An example based on 
this approach, using the basic ECSP^l acceleration spectrum for firm ground and peak 
ground acceleration of 0.4g is shown in Fig.l.20(a).

As will be apparent from the discussion related to Fig. 1.18, different inelastic spectra 
would need to be generated for different structural systems and materials that exhibited 
different hysteretic characteristics. Methods for generation of inelastic spectra are 
discussed in Section 3.4.3(e).

The second alternative is to represent ductility and energy dissipation capacity as 
equivalent viscous damping, using relationships based on inelastic time-history analyses. 
This procedure is only appropriate when the secant stiffness to maximum response is 
used in the design process. The procedure for design using displacement spectra requires 
little or no iteration and hence is termed Direct Displacement-based Seismic Design (DDBD).
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The method is discussed in detail in Chapter 3.
An example of a spectral displacement set for different damping levels is shown for 

the displacement spectrum of EC8 , firm ground, 0.4g PGA, in Fig.l.20(b). It will be 
evfdent that a single spectral set, covering the expected range of equivalent viscous 
damping, will apply for all hysteretic characteristics, provided the relationships between 
equivalent viscous damping, ductility, and hysteretic rule have been pre-calibrated by 
inelastic time-history analyses. It is also possible, as discussed above, to express the 
displacement spectra in terms of ductility, rather than equivalent viscous damping, in a 
form analogous to that used for the acceleration spectra of Fig. 1.20(a). It will be shown in 
Chapter 3 that inelastic displacement spectra can be generated using precisely the same 
data and analyses used to generate the rules relating ductility to damping for a given 
hysteresis rule, and that the approaches are then directly equivalent. The disadvantage of 
this approach is that inelastic spectra must be generated for each hysteresis rule, and the 
determination of equivalent system ductility requires careful consideration.

5%

bJD

jD
uu<
coct,<Z>uCrf

Period T (seconds)
(a) Inelastic Acceleration Spectra

Period T (seconds)
(b) Damped Displacement Spectra

Fig.1.20 Alternative Spectral Representations of Ductility for EC8 Firm Ground,
PGA=0.4g.

1.4.4 Choice of Design Approach

Comprehensive presentation and comparison of different displacement-based designs 
methods is available in two recent documents^ C16l. Apparent in these and other recent 
documents is a plethora of different nomenclature to describe the new design processes. 
This includes the use of “Displacement-Based Design”, “Umt-states Design”, Performance Based 
Design” and “Consequence Based Design” amongst others. In our view, all attempt generally 
the same goal: that of providing satisfactory displacement solutions to seismic design 
problems, and so the term ‘Displacement-Based Design” will be used exclusively in this book.
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It is also our view that the Direct Displacement-Based Design approach is the most 
intellectually satisfying, and best equipped to address the deficiencies of conventional 
force-based design, which were presented in some detail in Section 1.3. This approach 
has also been developed in rather more complete form than other methods, and has been 
applied to a wider category of structures. Finally, we claim that the method is simpler to 
apply, and better suited to incorporation in design codes. Because of the simplicity of 
generation, and wider applicability, representadon of hysteretic energy absorption by 
equivalent viscous damping will be preferred to the use of inelastic spectra.

As a consequence of these consideradons, the theoredcal basis of the DDBD 
approach is developed in detail in Chapter 3. This is preceded in Chapter 2 by a short 
discussion of relevant aspects relating to seismicity and intensity characterisation, while 
Chapter 4 covers analytical tools appropriate, or necessary, for Direct Displacement- 
Based Design. Chapters 5 to 1 2  describe application of the method to different types of 
structural systems, while Chapter 13 discusses application of the DDBD procedures to 
assessment of existing structures. Finally, Chapter 14 presents the design method for 
buildings in a typical “Codeplus Commentary” format, to be used as a possible format for 
future codification.



2
SEISMIC INPUT FOR DISPLACEMENT-BASED DESIGN

2.1 INTRODUCTION: CHARACTERISTICS OF ACCELEROGRAMS

Our understanding of the response of structures to earthquakes, and our design 
methodologies, either force-based or displacement-based, are critically dependent on 
recordings of strong ground motion by accelerographs. Accelerograms are recordings of 
ground acceleration made by accelerographs during earthquakes, and the earliest records 
date back to the 1930’s. Early accelerograms were recorded in analogue form on 
photographic film, and required digitization to put them in a form where their 
characteristics could be examined. Accuracy was limited, and the dynamic characteristics 
of the accelerographs themselves meant that useful data for preparing response spectra 
could be extracted only up to periods of about two to three seconds. In the past twenty 
years, digital accelerographs, with much higher resolution and longer range of period 
integrity have become increasingly common, and the quality of data from recorded 
earthquakes is steadily improving as more digital records become available.

This text will not attempt to present seismological information about source 
mechanisms, physical and temporal distributions of earthquakes, attenuation relationships 
and modern developments in source modelling. The interested reader is encouraged to 
read any of the many specialized seismological texts [e.g. S7, K8 ]. The treatment here will 
be limited to information of specific relevance for displacement-based seismic design. 
Nevertheless, a brief treatment of some of the common terms and a similarly brief 
discussion of the characteristics of accelerograms is warranted.

The vast majority of earthquakes are initiated on or adjacent to tectonic plate 
boundaries by the slow relative movement of the plates. These are termed interplate 
earthquakes. Intraplate earthquakes, occurring far away from plate boundaries are less 
common, but nevertheless can be significant for specific sites (for example the New 
Madrid region of the central USA, Charleston, South Carolina, USA and various parts of 
Australia).

The two basic terms used to provide a measure of the importance of a particular 
earthquake are the magnitude and intensity. The magnitude, normally related to the 
Richter scaled1! is a measure of the energy release at the fault zone, while the intensity is a 
measure of the local significance of ground motion at a given site, as described by locally

37
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recorded accelerograms, or by subjective scales, such as the Modified Mercalli scale. The 
magnitude depends on the length and transverse dimension of fault that fractures during 
the earthquake, and on the average stress-drop in the rock immediately adjacent to the 
fatilt, resulting from rupture. A magnitude 5.0 -5.5 earthquake may result from fauldng 
over a length of a few km, while a magnitude 8  earthquake may involve fault slip over a 
length as much as 400 km. The energy release is related to magnitude in proportion to 
1015M, implying that the energy released increases by a factor of 32 for each unit increase 
of magnitude. Earthquakes with low magnitude occur frequendy, and those of large 
magnitude occur less frequendy. Averaged globally the relationship between magnitude 
and annual probability of occurrence agrees well with a Gumbel extreme type 1 
distribution^1]. However, this relationship becomes less reliable as the area sampled 
reduces in size. The concept of a stationary value for the annual probability of occurrence 
of small to moderate earthquakes near a given site is generally reasonable, but for larger 
earthquakes, particularly where a site is affected predominantiy by earthquakes on a single 
fault, this assumption may be less valid. Immediately after a major earthquake and its 
related aftershocks have ended, the probability of major fault movement of the same 
section of fault is significandy reduced, potentially reducing the major contribution to 
local seismic hazard. An example is the stretch of plate boundary along the coast of Chile, 
where major earthquakes tend to occur on specific segments of the fault at rather regular 
time intervals, and with comparatively uniform magnitudes. This of course will not be the 
case with smaller earthquakes, and even for large earthquakes where fracture of one 
segment of a fault may create additional stress on the adjacent section, increasing the 
probability of fracture of this section in the near future. An example is the Anatolian fault 
in Turkey, and the subduction boundary between the Nazca and South American tectonic 
plates where fault rupture tends to occur on successive adjacent segments of the fault in a 
comparatively regular sequence. Nevertheless, it is common in seismic hazard analysis to 
assume that the local risk is time-invariant.

Intensity is dependent on magnitude of the causative earthquake, distance from the 
fault zone, mechanism and direction of rupture propagation, and ground conditions at 
the site at which intensity is observed, and between the fault zone and the site. There is 
no exact means of measuring intensity, since it is generally assessed through the effect 
that the earthquake has at a given site on the built environment. This has typically been 
defined in the past through descriptive scales such as the modified Mercalli scaled . 
Attempts to relate such scales that are dependent on observations of damage to different 
structural types and materials, to such measurable quantities as peak ground acceleration 
or velocity have not been particularly successful, as different ground motion quantities 
have different significance to different structural types. Thus peak ground acceleration 
may be important to structures that have brittle failure modes, but may be of little 
importance to a flexible well-confined structure. Duration of shaking may be a key 
parameter for a flexible structure without adequate confinement.

No two accelerograms are identical, even when the earthquakes originate in the same 
part of a fault, with similar magnitudes, and the site where the accelerograms are recorded 
is the same. Some of the differences and similarities between accelerograms are illustrated
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by the three examples of Fig.2.1. The first of these is from the moderate Whittier 
earthquake of 1987 (Mw = 6 .0 ), recorded in analogue form at a distance of 15km from 
the rupture. The second is from the Mw — 6.7 Northridge earthquake of 1994, recorded 
at the Sylmar site, at a distance of 6 km from the fault rupture, and the final record is 
from the Mw — 6.9 1995 Kobe earthquake, recorded immediately adjacent to the fault. 
None of the records shows the complete duration of recorded motion, but all include the 
section of greatest interest, including before, during and immediately after the strong 
ground motion. All three records are plotted to the same time and acceleration scales.

The record from the smaller Whittier earthquake has a comparatively short period of 
strong ground motion compared with the other two records, the peak ground 
acceleration (PGA) is lower, and it appears that high frequency components are more 
dominant. On the other hand, all records show an initial period of comparatively high 
frequency/low amplitude acceleration before the onset of the strong-motion period of 
response, corresponding to the time period between arrival of the P and S waves. Both 
the Sylmar and Kobe records show high amplitude/low frequency pulses in the initial 
stages of the strong ground motion, corresponding to a focusing effect related to the 
mechanism of energy release and the local geolog}7, known as a velocity pulse. In the case 
of the Kobe record, this is primarily a result of forward directivity where the fault 
fractures over a short period of time from one end to another, focusing the energy in the 
downstream direction. In the Sylmar record, the reasons are apparently more complex, 
involving basin edge effectslS5l.

It is also of some interest to examine the time sequence of ground displacement, 
found by double integration of the acceleration records. These are shown for the same 
three records in Fig.2.2, and are plotted to the same time scales, but with a factor of 30 
difference between the displacement scales of the Whittier and the other two records. It 
should be noted that integration of the acceleration records to obtain displacement 
records is inevitably subject to some error. Small systematic errors in the acceleration 
record can lead to large errors in the displacement record, causing the apparent 
displacement to drift in one direction. Base-line corrections are typically carried out to 
remove this drift, but the accuracy of such corrections is uncertain.

It will be apparent from comparison of Figs.2.1 and 2.2 that the differences between 
the displacement records are more pronounced than between the acceleration records. 
Although the PGAs for the three records only vary by a factor of about 2.5, the peak 
ground displacements (PGD) vary by a factor of about 25. All three records exhibit much 
less high frequency content in displacement terms than in acceleration terms, but the 
Whittier record is significantly richer in high frequency components than the other two 
records. The two more intense records appear to show dominant long-period ground 
displacement response. In the case of the Sylmar record, this appears to correspond to a 
period of about 3 to 4 seconds.

Intensity, for a given earthquake, decreases with distance from the fault. Attenuation 
relationships are used to describe this reduction in intensity. However, there is a large 
spatial variation in recorded ground motions between different sites at equal distances 
from the epicentre of an earthquake. Attenuation relationships are averages found from
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Fig.2.1 Selected Time-Windows of Different Accelerograms
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T im e  (sec)

Time (sec)

Fig.2.2 Selected Time-Windows of Ground Displacement from the 
Accelerograms of Fig.2.1
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recorded accelerograms, and typically do not account for many of the factors known to 
influence intensity. Somerville et aKS5̂ have noted that the variations in ground motion, 
which are particularly apparent at periods greater than one second (and hence are of 
particular importance to structural design -  whether force-based or displacement-based) 
“ban usually be attributed to features of the earthquake source such as the orientation of 
the fault plane, the style of faulting (strike-slip or dip-slip), and the evolution and 
distribution of slip on the fault plane”lS5i. Thus it is reasonable to assume that the current 
uncertainty associated with site intensity predicted by probabilistic seismic hazard analyses 
(PSHA) will be reduced as site and source modelling improves.

A number of the factors affecting spatial variation of ground motion from a given 
earthquake are discussed in [S5] in relation to the Los Angeles Basin. The following notes 
provide a summary of the discussion in [S5]:

Near fault rupture directivity pulse: Near fault recordings from recent earthquakes 
indicate that ground motion is dominated by a large long-period narrow-band pulse in the 
fault-normal motion, whose period increases with magnitude^6!  This pulse may have a 
dominant period of about 1 sec. for earthquakes of magnitude Mw = 6.7 - 7.0, and as high 
as 4 sec. for earthquakes of magnitude Mw — 7.2 - 7.6.

Reverse faulting earthquakes: Ground motions from reverse faulting earthquakes 
are systematically stronger than ground motions from strike-slip earthquakes. The 
influence may be as much as 20-40%.

Buried faulting earthquakes: Ground motions from shallow earthquakes that do 
not break the ground surface are systematically stronger than from earthquakes that result 
in surface faulting. Again the influence may be in the order of 20 40%. The 1989 Loma 
Prieta, and the 1994 Northridge earthquakes are examples of shallow earthquakes without 
surface faulting.

Ground motion from large surface faulting earthquakes: Ground motions from 
earthquakes that produce large surface faulting (e.g. the Chi-Chi earthquake in Taiwan) 
tend to be significantly lower than predicted by current ground motion models, and 
substantially lower than ground motions from buried faulting earthquakes.

Basin effects: Current codes modify design ground motions on the basis of the 
shear-wave velocity in the upper 30m of soil. This is only appropriate for rather short- 
period motion, as at periods greater than one second, seismic wave lengths are much 
longer than 30m, and response is likely to be influenced by soil properties at depths of 
hundreds, and perhaps thousands of metres. Basin edge effects can also be significant, 
with constructive interference between waves entering from the edge and from the basin 
below, particularly when the basin has steep fault-controlled margins.

Recently developed hybrid simulation procedures^4! are capable of incorporating all 
of the above features in calculating broadband ground motion time-histories for 
prescribed earthquake scenarios. PSHAs based on these techniques are already more 
reliable than those based on attenuation relationships, and it can confidently be expected 
that improved characterization of seismicity of specific sites will continue. It is likely that 
future developments will be less towards improved accuracy of code spectra, than
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towards improved mapping of local characterisdcs defining seismicity, with spectral shape 
as well as spectral ordinates being a mapped variable.

2.2 RESPONSE SPECTRA

2.2.1 Response Spectra from Accelerograms

The fundamental information extracted from accelerograms or PSHA’s for use in 
design is typically expressed in the form of response spectra, which represent the peak 
response of single-degree-of-freedom oscillators of different periods of vibration to the 
accelerogram. The quantities most commonly represented in response spectra are 
absolute acceleration (with respect to “at rest” conditions), and relative displacement 
(with respect to instantaneous ground displacement), though relative velocity response 
spectra are also sometimes computed. The procedure is represented in Fig.2.3 where five 
different SDOF oscillators are depicted in Fig.2.3(a) subjected to the earthquake ground 
motion ag. The peak absolute acceleration and relative displacements recorded during 
response to the accelerograms are plotted against the period of the structure in Fig.2.3(b).

Normally response spectra provide information on the peak elastic response for a 
specified elastic damping ratio (typically 5%), and are plotted against the elastic period. It 
is, however, also possible to plot inelastic spectra related to specified displacement 
ductility levels. In this case the period may represent the initial elastic period, or the 
effective period at peak displacement demand, related to the effective stiffness.

(a) SDOF Oscillators (b) E lastic Response Spectra

Fig.2.3 Formation of Response Spectra

Examples of elastic acceleration and displacement spectra for the three accelerograms 
represented in Figs.2.1 and 2.2 are shown in Fig.2.4. The spectra are shown for four levels 
of elastic damping, expressed as ratios to the critical damping. Some interesting 
conclusions can be drawn from examination of these figures. The Whittier accelerogram 
has a PGA of about 0.4g (see Fig.2.1(a)), and a peak response acceleration of more than
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Period (seconds) Period (seconds)
(a) Whittier (Mw=6.0)

Period (seconds) Period (seconds)
(b) Sylmar (Northridge,1994; Mw=6.7)

Period (seconds) Period (seconds)
(c) Kobe (Mw=6.9)

Fig.2.4 Acceleration and Displacement Elastic Response Spectra for 
Accelerograms of Figs.2.1 and 2.2
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0.8g at a period of about 0.25 sec. This might be considered to represent reasonably 
strong ground motion, since design PGA’s and peak response accelerations for high- 
seismicity regions are often in the range 0.4g and l.Og respectively. However, when we 
examine the displacement spectra from the same accelerogram, we find that the peak 
response displacement is less than 20mm (0.79in), for a damping level of 5% of critical 
damping. Thus, if a given structure is capable of sustaining this very minor peak response 
displacement within the elastic range of response, no damage would be expected, despite 
the high peak response acceleration. To put this in perspective, information provided in 
Section 4.4.6 indicates that for reinforced concrete frame buildings of typical proportions, 
effective yield displacements for two- and four-storey buildings might be approximately 
45mm (1.8 in) and 90mm (3.6in) respectively -  significantly larger than the peak 
displacement response for this accelerogram. It is apparent that only very stiff and brittle 
structures would be expected to be at risk from an accelerograms similar to the Whittier 
record. This is in agreement with the recorded damage in the Whittier earthquake.

Another point of interest is apparent from Fig. 2.4(a). Information from the 
acceleration response spectra cannot be extracted for periods of T > 1.5 sec since the 
response accelerations are so low. The displacement spectra provide much more readily 
accessible information for the medium to long period range, but indicate surprisingly 
regular displacements at periods greater than about 2 seconds. In fact this is false data, 
since the accelerogram was recorded by an analogue, rather than digital accelerograph, 
and a filter at 3 seconds was used to determine the displacement response. Bommer et 
alfA8) have shown that the roll-off associated with filtering makes the response spectra 
unreliable for periods greater than about 2/3rds of the filter period. Thus the data in the 
displacement spectra of Fig.2.4(a) are meaningless for periods greater than about 2  sec.

The Northridge Sylmar acceleration spectra of Fig.2.4(b) show peak acceleration 
response for 5% damping of about 2.7g — about three times the response for the Whittier 
earthquake. The displacement spectra, which result from a digital accelerograph, and are 
reliable up to significandy longer periods, indicate peak displacement response of about 
800mm (31.5in) -  more than 40 times that of the Whittier record. Clearly this record 
would be expected to have much greater potential for damage than the Whittier record. 
Note that after reaching a peak response at about 3 sec., displacement response decreases 
at higher periods.

The Kobe record of Fig.2.4(c) also has high peak displacement response, and 
somewhat similar characteristics to the Sylmar record, though the peak displacement 
response appears to occur at a reduced period.

2.2.2 Design Elastic Spectra

(a) Elastic Acceleration Spectra: Until recendy, design spectra for seismic design of 
structures were typically specified in design codes as a spectral shape related to soil 
conditions, modified by a design PGA, reflecting the assessed seismicity of the region 
where the structure was to be built. Typically only acceleration spectra were provided, and
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mapping of the variation of PGA with location was coarse. This is still the case with 
many seismic design codes.

Recentiy, more detailed information has been provided in different design codes, such 
as%the IBOX4l of the USA, and the new Italian seismic design codeP14], where spectral 
acceleradon ordinates at two or three key periods are provided for a given site for 
different return periods. Typically this is provided through a computerized data base, 
enabling design data to be extracted based on site longitude and ladtude. However, this is 
typically provided only for acceleradon response spectra; peak displacement response is 
not yet available in many design codes.

The typical form of elasdc acceleradon response spectra is illustrated in Fig.2.5(a). The 
shape is smoothed, reflecting the average of many accelerograms, and is based on 
probabilistic estimates of the contribution to seismic risk of a larger number of smaller 
earthquakes, and a reduced number of larger earthquakes. The result is a spectrum where 
the acceleration ordinates have uniform probability of occurrence for a given return 
period (see Section 2.2.2(c) below).

The spectrum rises from the PGA at T — 0 to a maximum value at a period TA 
(typically about 0.15 seconds). For soft soils, codes typically amplify the PGA above the 
value applicable for firm ground, or rock. The plateau typically has a response 
acceleration of about 2.5 to 2.75 times the PGA. The acceleration plateau continues to a 
period of 7g, the value of which depends on the ground conditions in the near-surface 
layers, with larger values applying to soft soils, as indicated in Fig.2.5(a). The value of Xg 
also typically depends on the magnitude of the earthquake, as is apparent from Fig.2.4, 
with smaller values being appropriate for earthquakes of lower magnitude. For periods 
greater than Tg the response acceleration reduces, typically in proportion to T, implying a 
constant-velocity response. In many codes this constant-velocity part of the spectrum 
continues indefinitely. More advanced codes specify an upper limit of T — Tc for the 
constant-velocity range, above which the acceleration decreases in proportion to T2. A 
completely opposite trend is apparent in some less advanced codes, where a constant 
plateau corresponding to a minimum specified response acceleration is sometimes 
defined. This is shown by the dash-dot line in Fig.2.5(a). The intent of such a provision is 
to ensure that the lateral strength of a structure is not less than a code-specified minimum 
value. However, this is better controlled by limits on P-A moments (see Section 3.8). As 
discussed below, when the logic of the minimum acceleration plateau of the acceleration 
spectrum is translated to equivalent displacements, impossible trends result.

The general form of the elastic acceleration spectrum can be defined by the following 
equations:

0 < r< Ta: SAiT) = PGA (2 .1 a)

Ta < T< TB: SA{T) = CA ■ PGA (2.1b)
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T ^TB<T<Tc. SA(T) = CA ■ PGA • <, (2 .1 c)

T > T C. S a(T)= C a - P G A - 7̂  ^  (2.1d)

In Eqs.(2.1) SA is the spectral acceleration, and CA is the multiplier (e.g. 2.5) applied to 
the PGA to obtain the peak response acceleration. Figure 2.5(a) has been developed from 
these equations with the following parameters:

firm soil: PGA — 0.4g, TA — 0.15 sec, TB -  0.5 sec, Tc -  4.0 sec, CA ~ 2.5. 
soft soil: PGA -  0.48g, TA -  0.15 sec, Tg -  0.8 sec, Tc -  4.0 sec, CA -  2.5

(b) Elastic Displacement Spectra: Although many codes stall do not define design 
displacement spectra, they are becoming more common [see, e.g. X2, X3, X4, X8 ]. 
Ideally these should be developed separately, though using the same data, from 
acceleration spectra. However, most code-based design displacement spectra are 
generated from the acceleration spectra assuming that the peak response is governed by 
the equations of steady-state sinusoidal response. Thus the relationship between 
displacement and acceleration can be expressed as

T2
A(T)~ ^ ^ 2 ^ a(T)S  (2-2)

where g  is the acceleration due to gravity, and Sa(T) is expressed as a multiply of g  as in 
Fig.2.5(a). Equation (2.2) has been used to generate the elasdc displacement spectra of

(a) Acceleration Spectra (b) Displacem ent Spectra
Fig.2.5 Design Elastic Acceleration and Displacement Spectra
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Fig.2.5(b) from the acceleration spectra of Fig.2.5(a). Some characteristics are immediately 
obvious:

• The displacement spectra are essentially linear with period up to the period 7c-
^ For obvious reasons this is termed the cornet period\ The non-linearity at low

periods, corresponding to T < Tg, will be found to have little relevance to most 
displacement-based designs, as will become apparent in later chapters of this text.

• The general shape agrees reasonably well with the response spectra generated 
from specific accelerograms in Fig.2.4. The peak displacements are also 
compatible with the more intense accelerograms of Fig.2.4(b) and (c) considering 
differences in PGA.

• The displacement spectrum corresponding to a minimum design acceleration as 
shown in Fig.2.5(a) has completely unrealistic displacement demands for long 
period structures. This curve, again shown by the dash-dot line in Fig.2.5(b) has 
only been shown up to a period of 5 seconds. At 10 seconds the response 
displacement would be 6.2 m (20ft). This illustrates the illogical nature of some 
design codes that specify minimum design acceleration levels, and require 
displacement demand to be determined from Eq.(2.2).

A more general form of the elastic displacement response spectrum is defined by 
Eurocode EC8LX91 and is shown in Fig.2.6. This shows the linear displacement increase up 
to the corner period 7c, with a subsequent plateau of displacement up to a period TD, 
followed by a decrease in displacement up to a period TE, at which stage the response 
displacement has decreased to the peak-ground displacement (PGD). Information on the 
period at which the response displacement starts to decrease is less reliable than data on 
other key periods in Figs 2.5 and 2.6, and is of little interest to the designer of other than 
extremely long-period structures such as suspension bridges and large-diameter fluid 
storage tanks, where convective modes of vibration may be very long. It will be

Fig.2.6 General Characteristics of Elastic Displacement Response Spectral*9!
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conservative to assume that the plateau displacement remains constant with period above 
Tc. However, it is worth noting that all three of the displacement spectra shown in 
Fig.2.4 conform to the general shape defined by Fig.2.6.

Recent work by Faccioli et allF6l analyzing a large number of recent high-quality digital 
records, has provided new information on the factors influencing the shape of 
displacement spectra. The records investigated included the very large data set from the 
large 1999 Chi-chi (Taiwan) earthquake, (magnitude Mw— 7.6), and a number of moderate 
European and Japanese earthquakes in the magnitude range 5.4 < Mw <6.9.

Their findings include the following points:
• The 5% damped displacement spectra tend to increase essentially linearly with 

period up to a “corner period”. Beyond this, the response displacement either 
stays essentially constant (for large earthquakes), or tends to decrease (for 
moderate earthquakes). It is thus conservative to assume a constant spectral 
displacement for periods higher than the corner period.

• The 10-second spectral displacement for 5% damping can be considered to be a 
measure of the peak ground displacement.

• Soil amplification of displacement occurs throughout the period range, up to 10 
seconds. There is a slight tendency for the corner period to increase for soft soils 
with large earthquakes, but this is less obvious for moderate earthquakes.

• Soft soil amplification is more pronounced at longer distances (30-50 km) for 
both moderate and large earthquakes.

• The corner period appears to increase almost linearly with magnitude. For 
earthquakes with moment magnitude greater than Mw — 5.7, the following 
relationship seems conservative:

Tc = 1.0 + 2 .5{M W —5.7) seconds (2.3)

• Peak response displacement, depends on the magnitude, the epicentral
distance rkm  (or nearest distance to the fault plane for a large earthquake), and 
the stress drop during rupture (generally in the range 1 -10 MPa). Based on 
analytical considerations, Faccioli et al derive the following relationship for peak 
response displacement, Smax, in cm, for firm ground conditions:

loSio m̂ax = ~4-46 + 0.33 logI0 A <J + Mw-  logl0 r (cm) (2.4)

where A<Tis the stress drop, in MPa, Mw is the moment magnitude, and r is  the 
epicentral (or fault plane) distance in km. Substituting an average value of A(J~ 
6  MPa, and reformatting as a power expression, with Smax in mm:

! q ( A ^ - 3.2)

  ------ (mm) _ T y ^  <2'5>
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where —1.0 for firm ground. The response displacements resulting from Eq.(2.5) 
should be modified for other than firm ground. Tentative suggestions are as follows:

Rock: C$ -  0 . ”7

*  Firm Ground: C s -  1.0
Intermediate Soil: C$ — 1.4
Very soft Soil: Cs — 1.8

These tentative coefficients for Cs have been interpreted from typical acceleration 
modifiers for PGA and period Tb (see Fig.2.5(a)). More refined estimates can be expected 
as further analyses of digital records become available.

Equation (2.5), with Cs — 1.0 is plotted in Fig.2.7 together with Eq.(2.3) for moment 
magnitudes of 6.0, 6.5, 7.0 and 7.5. The very strong influence of magnitude and epicentral 
distance on spectral shape and maximum displacement is clearly evident in Fig.2.7. It 
should be noted, however, that it is probable that the peak displacements for high seismic 
intensity and low (r=  10 km) epicentral distance are overestimated by Eq.(2.5). Within 10 
km of the fault rupture, spectral parameters tend to saturate, and the values for 1 0  km 
can be assumed to apply for distances less than 10 km. Note also that the peak 
displacements predicted for earthquakes on the low end of the moderate range (i.e. 5.5 
<Afvv <6.0) are rather small, even at epicentral distances of 10km. In these cases, most 
frame buildings of three or more storeys in height, in either reinforced concrete or steel 
construction, would have effective yield displacements exceeding the 5% damped peak 
displacement Smax and hence these buildings would be expected to respond elastically to 
the design-level earthquake. At this early stage in the development of spectral 
displacement characteristics, the above recommendations should be viewed as 
preliminary. The consequences in terms of the shape of uniform-risk spectral 
displacement spectra are also less obvious than for specific earthquake intensities.

The current Eurocode EC8 tX9l regulations specify that the comer period Tc (Fig.2.6 ) 
is taken as 1 . 2  sec. for causative earthquakes with Mw< 5.5, and 2 . 0  sec. for A/j*/> 5.5. 
This would imply elastic response for most buildings with more than about 8  storeys. It 
has been suggested by Boore and BommerP7' that this low corner period is a result of 
interpretation of data from analogue records which have been processed with low-order 
filters set at periods that make the interpretation unreliable at periods above 2  seconds.

NEHRP recommendations^8!, based primarily on seismology theory include the 
following relationship between corner period and moment magnitude:

logl0 Tc = - 1 .2 5  + 0.3M w (2.6)

As a consequence of the current interest in displacement-based design, new data are 
continually being developed by seismologists, related to displacement spectra. A current 
study of Italian seismicity with the aim of developing design information for displacement



Chapter 2. Seism ic Input for D isplacement-Based Design 51

Period (seconds) 
(a) r = 10 km

Period (seconds) 
(b) r = 20 km

Period (seconds)
(c) r = 40 km

Fig.2.7 Influence of Magnitude and Distance on 5% Damped Displacement 
Spectra for Firm Ground Using Eqs.(2.3) and (2.5) [after F6]



52 Priestley, Calvi and Kowalsky. D isplacem ent-Based Seism ic Design of Structures

based design in a form similar to the maps of spectral accelerations at key defined periods 
seems likely to end up with mapped corner periods and peak response displacements in a 
data base related to GPS coordinates. Preliminary results from this study indicate that 
bo& the corner period and the peak elastic response period given by Eqs.(2.3) and (2.5) 
respectively may be revised upwards by approximately 2 0 %.

Figure 2.8 compares the different equations for corner period as a function of 
magnitude. It is clear that the current EC8  equation is severely non-conservative, and 
there are significant differences between the NEHRP equation, and the 
equation determined from the work by Faccioli et allF6l. It appears that the work in 
progress in Italy, using a world-wide data-base of some 1700 digital records, and shown 
tentatively in Fig.2.8 by three dots interpreted from data supplied by Faccioli2 may lie 
somewhere between Eq.(2.3) and (2.6).

Figure 2.9 shows average displacement spectra interpreted by Faccioli et al from the 
world-wide data base of 1^00 digital records for earthquakes of magnitude 6A<Myy<G.G 
at different distances from the fault plane. The records have been grouped in distance 
bands (10-30 km; 30-50km etc), so the averages can be interpreted as appropriate for the 
average distance (20km, 40km etc). Also shown are bi-linear displacement spectra fitted 
to the average spectra to obtain the best fit in the plateau range, while still satisfying 
normal acceleration/displacement relationships in the shorter period range. It will be 
noted that the corner period shows only slight increase with distance, and that the plateau 
displacements decrease with distance at a rate that is very close to, but slightly more rapid 
than that predicted by Eq.(2.5).

Moment Magnitude Mw

Fig.2.8 Relationship between Comer Period, Tc of Displacement Spectrum and
Moment Magnitude Mw

2 Pers. Comm. Prof. E. Faccioli
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6.4 < M < 6.6

T|s]
Fig.2.9 Comparison of Average Displacement Spectra from World-Wide Data 

Base of Digital Accelerograms with Bi-linear Approximations3

The consequences of the differences in corner period estimation are potentially 
serious for long-period structures. Consider a frame building 60m tall (i.e. about 20 
storeys). The structure is founded on firm soil, and the design PGA is 0.4g, with the 
majority of seismic risk resulting from an Mw — 7 earthquake on a nearby fault. As noted 
in Section 1.3.2 (Eq.(1.12)) a reasonable approximation of the structural period is 0.1x60 
= 6.0 sec. Combining Eqs.(2.1c) and (2 .2 ), the displacement at the corner period (and 
hence the peak elastic response displacement) can be expressed as

Ac = C/i'PGA-TB-TC ■ g /(4/r2) (2.-)

Talcing Tb -  0.5 sec, and g ~ 9.805m/s2, Eq(2.^) results in corner-period displacement 
estimates of 250mm (9.8in), 530mm (20.9in) and 880mm (34.6in) from the current EC8  

value of Tc — 2 sec, the value from Eq.(2.3) (Tc = 4.25 sec), and the NEHRP value from 
Eq.(2.6) (Tc — n A sec) respectively. For both the EC8  and the Faccioli approach the 
structural period would exceed the corner period, and hence the response displacement 
equals the peak response displacement (assuming validity for the “equal-displacement” 
approximation). Since the NEHRP equation for corner period (Eq.(2.6)) exceeds the 
estimated elastic period, the response displacement is estimated from Eq.(2.7) using the 
elastic period of 6  seconds, instead of Tr, resulting in a displacement of '~740mm (29.1 in). 
The Italian work in progress would appear to suggest a value of about 640mm (25 in) 
corresponding to a period of Tc — 5.1 sec. It is felt that the correct answer may lie 
somewhere between Eqs.(2.3) and (2.6). The yield displacement of the frame building can

3 Pers.Comm. Prof. E. Faccioli
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be estimated at approximately 400mm (15.Tin) using procedures developed in Section 4.4. 
Thus the EC8  approach would predict that the response would be elastic, with a 
maximum displacement of about 60% of yield, while the other two approaches would 
pr«dict inelastic response with displacement ductility demands of about 1.3 and 1.8 
respectively.

In this text we shall in some cases use code-specified displacement spectra, and in 
others, generate displacement spectra based on Eqs.(2.3) and (2.5) to illustrate the general 
procedure, while recognizing that the corner period may well be revised upwards in the 
future. We will discount the current EC8  value of 2 seconds for the corner period as 
being unrealistically low and unsafe.

It should be noted that the difference between current procedures affects the design 
and response only of long-period structures, and also does not affect the validity of the 
displacement-based seismic design approach developed in the subsequent chapters of this 
text. It should also be noted that criticism of displacement-based design approaches on 
the basis that they use the lengthened effective period corresponding to peak 
displacement response, where greater uncertainty on spectral ordinates exists as noted 
above, rather than the initial period, where spectral ordinates may be better defined, is 
invalid. Force-based seismic design relies on displacement-equivalence rules relating the 
elastic displacement to the displacement of the effective ductile structure (see Section 
1.3.8). Since the effective degraded period of the ductile structure is greater than the 
elastic period, the displacement-equivalence rules are subject to exactly the same 
uncertainty as is present in designs based on the effective stiffness.

(c) Design Return Periods: It is customary to assign different return periods, or more 
correctly annual probabilities of exceedence, for design to different limit states. For 
example, Eurocode EC8 ^  defines three levels of design earthquake corresponding to 
different limit states:

(i) 'Level 1 Seismicity - Serviceability limit state: The level 1 design-level seismicity has a 
probability of exceedence of 50% in 50years, approximately corresponding to an average 
return period of 72 years. Under an earthquake with this probability of exceedence, there 
should be no damage requiring repair, and normal operations of the structure should not 
be significantly affected.

(ii) Level 2 Seismicity - Damage control limit state: The level 2 design-level seismicity has a 
probability of exceedence of 10% in 50 years, approximately corresponding to an average 
return period of 475 years. Repairable damage is permitted under an earthquake with this 
probability of exceedence, and normal operations may be suspended while repairs are 
carried out.

(Hi) Level 3 Seismicity - Life-safety Limit State: The level 3 design-level seismicity has a 
probability of exceedence of 2% in 50 years, approximately corresponding to an average 
return period of 2500 years. The structure should not collapse under ground shaking with 
this probability of occurrence, but it may not be possible to economically repair the 
structure following the earthquake.

It is common for only the first two limit states to be considered for structures of other



Chapter 2. Seism ic Input for D isplacem ent-Based Design 55

than special importance. In Europe the life-safety limit state is not used for new designs, 
but is considered in assessment of existing structures.

There are some problems with a probabilistic approach such as that defined in EC8  

and other similar definitions of seismicity, particularly when only the first two limit states 
are used for design. In regions of high seismicity, such an approach tends to produce 
rational increments of seismic intensity for the different limit states. However in regions 
of lower seismicity the seismic intensity corresponding to the first two limit states may be 
very low, as the seismicity is defined by very rare, but very intense ground shaking. Thus 
the intensity corresponding to the life-safety earthquake may be much greater than that 
corresponding to the damage control earthquake.

Consider a rather artificial case where seismic hazard is dominated by a fault which 
fractures every 1000 years, on average inducing PG A s at the site being considered of 
0.8g. The remainder of seismic risk is attributed to background seismicity capable of 
inducing PGAs of only 0.2g. A probabilistic analysis might then determine the 475 year 
risk as being characterized by a PGA of 0.4g, since the probability of occurrence of the 
design earthquake occurring within the 475 year period is approximately 50%. However, 
the earthquake either occurs during that period, or it doesn’t. If the structure is designed 
for 0.4g and the earthquake occurs, the structure fails, since the intensity is much greater 
than the design strength. If the earthquake doesn’t occur, the structure is over-designed.

In the USA a slightly different approach has been used in recent timesLX4> X81. A 
“maximum considered earthquake” (MCE) is defined with a return period of 2500 years 
-  essentially the same as the Level 3 seismicity defined above. The structure is then 
designed for an intensity of 0.67XMCE to the performance criteria applicable to the 
damage-control limit state. For regions of high seismicity there is little difference from 
the 10% in 50 years seismicity defined above for the Level 2 seismicity, but for other 
regions, particularly those with infrequent large earthquakes, the difference is large. The 
justification for the 2/3rds factor is that structures are expected to have a 50% excess 
displacement capacity above that corresponding to design to the damage-control limit 
state performance criteria.

In many existing codes the design acceleration spectra for Level 1 or Level 3 seismicity 
are found by multiplying the spectrum for the Level 2 seismicity by specified multipliers. 
These can differ quite markedly between different codes. For example, in Europe and 
New Zealand the multipliers for the serviceability-level seismicity are 0.4 and 0.167 
respectively. This approach does not seem reasonable, as high annual probabilities of 
exceedence (Level 1 seismicity) are dominated by earthquakes of smaller magnitude, while 
low annual probabilities of exceedence (Level 3 seismicity) are generally dominated by 
larger earthquakes with significantly different spectra shapes. The consequences of this 
difference are examined in Example 2.1 below.

(d) Example 2.1 Design Spectra for a Site Adjacent to an Active Fault: We consider 
a rather idealized situation where the seismicity of a site is governed by proximity to an 
active fault. The three design levels defined in the previous section are to be considered. 
A probabilistic seismic hazard analysis indicates that for a probability of exceedence of
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50% in 50 years (serviceability level design), seismic hazard is dominated by an earthquake 
of magnitude 6.15 at a distance of 10 km. For Level 2 seismicity (10% probability in 50 
years), seismic hazard is dominated by a M7.0 earthquake at 10 km, and for the life-safety 
considerations (Level 3 seismicity; 2% probability in 50 years), the seismic hazard is 
dominated by an M~.5 earthquake which is the maximum considered feasible for the fault 
segment adjacent to the site, at a distance of 10km. The ratio of the magnitudes for the 
earthquakes with probability of 10% in 50 years and 50% in 50 years corresponds roughly 
to the average applicable to the entire circum-paciflc belt. Although very large variations 
from this ratio could occur at different sites we consider the average to be appropriate for 
this site, for the purpose of example.

With the information above, the design displacement spectra can be generated for the 
three limit states, using Eqs.(2.3 and 2.5). The results for corner period and peak response 
displacement are summarized in Table 2.1, and the spectra are plotted in Fig.2.10(a), 
based on firm ground conditions.

Table 2.1 Design Parameters for Elastic Spectra for Example 2.1

Level 1 EQ Level 2 EQ Level 3 EQ
Prob. of exceedence 50% in 50 yrs 10% in 50 yrs 2% in 50 yrs

Magnitude, Mw 6.15 ^ . 0 7.5
Comer Period, Tc (sec) 2.13 4.25 5.5
Corner Disp. S,,™*, (mm) 89 631 1995
Period Tb (Fig.2.5) (sec) 0.3 0.5 0.7
Peak Ground Acc. (xg) 0 . 2 2 0.47 0.83
Peak Spectral Acc. (xg) 0.55 1.18 2.08

Acceleration spectra can be generated from the displacement spectra inverting Eqs. 
(2 .2 ) and (2 .^), provided an assumption is made about the period Tg at the end of the 
response acceleration plateau (see Fig.2.5(a)). Values assumed for Tg increase with 
earthquake magnitude, and are listed in Table 2.1. A further necessary assumption is that 
the response acceleration plateau commences at a period of TA — 0.15 sec., and that the 
ratio of peak spectral acceleration to PGA is CA ~ 2.5. On the basis of these assumptions 
the peak ground accelerations are found to be 0.22g, 0.47g, and 0.83g respectively, with 
peak response accelerations 2.5 times these values, as listed in Table 2.1. The resulting 
acceleration spectra are plotted in Fig.2.10(b). Values for the PGA and peak response 
acceleration do not seem unreasonable. Note that the ratio between PGA for the 
serviceability and damage-control limit states (0.47) is higher than would apply to 
Eurocode EC8 lX3l or the NZ loadings codeP^1!.

The very significant differences in the displacement spectra for the three limit states 
are immediately apparent, and appear more significant than the differences in the 
acceleration spectra. This is a consequence of the influence of variations in the corner
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(a) Displacement Spectra (b) Acceleration Spectra

Fig.2.10 Design Spectra for Example 2.1

period. With a peak elastic response displacement of only 89mm (3.5in) most frame 
buildings of four or more storeys would respond elastically, regardless of elastic period, as 
discussed in more detail in Chapter 5.

The spectra developed by the approach outlined in this example are rather different 
from spectra resulting from simple scaling of a standard spectral shape.

2.2.3 Influence of Damping and Ductility on Spectral Displacement Response

Displacement-based seismic design using a secant stiffness representation of structural 
response requires a modification to the elastic displacement response spectrum to 
account for ductile response. The influence of ductility can be represented either by 
equivalent viscous damping or direcdy by inelastic displacement spectra for different 
ductility levels. Figure 2.11 shows both options for a firm-soil site, with PGA = 0.4g, and 
corner period of Tc — 4 sec. The use of spectra modified by different levels of damping 
requires relationships between ductility and damping to be developed for different 
structural hysteretic characteristics as discussed in detail in Section 3.4.3, but enables a 
single design spectrum to be used for all structures (e.g. Fig.2.11(a)). The use of spectra 
modified by different levels of ductility (e.g. Fig.2.11(b)) is perhaps more direct, but 
requires the ductility modifiers to be determined for each hysteretic rule considered.

If a relationship between initial-period elastic displacement and inelastic displacement 
such as the equal-displacement approximation is assumed, the inelastic spectra of 
Fig.2.11(b) can be direcdy computed. The procedure is considered in detail in Section 
3.4.3(e). Using this procedure, and assuming validity of the equal displacement 
approximation the data in Fig.2.11(b) have been calculated for an elasto-plastic response. 
Different relationships apply for different post-yield stiffnesses, but not to different 
hysteretic energy absorption within the loop, provided that the equal-displacement
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Period (seconds)
(a) Modified by Equivalent Viscous Damping

Period (seconds)
(b) Modified by Displacement Ductility

Fig. 2.11 Representation of Inelastic Response by Displacement Response
Spectra

approximation is assumed to be valid. However, recent research presented in Secdon 
4.9.2(g) indicates that the equal-displacement approximation is in fact non-conservative. 
The consequence is that inelastic spectra based on displacement ductility (e.g. Fig.2.11(b)) 
must be calibrated for each different hysteretic rule.

Because of these reasons, the equivalent viscous damping approach, presented in 
Fig.2.11(a) is preferred, since codified specification is simpler. However, there appears to 
be still some uncertainty amongst seismologists as to the appropriate form of the 
damping modifier R% to be applied to the elastic displacement spectrum for different 
levels of damping £ A commonly used expression was presented in the 1998 edition of 
Eurocode ECS^J, and is shown below in Eq.(2.8):

R*
0.07 

0 .02+
(2 .8)

where CC — 0.5. In the 2003 revision to EC8 , Eq.(2.8) was replaced by

x \ o s
R ^ i  ° ' 1Q

* t0 .0 5  + £
(2.9)

In both Eq.(2.8) and (2.9), £ is expressed as a damping ratio related to the critical 
damping. An alternative expression proposed by Newmark and Hall^’2) in 1987 is defined 
by Eq.(2.10):
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R, = (l .31 -  0.19 ln(l 00^)) (2 .10)

The three expressions are compared in Fig.2.12 for different levels of damping. It will 
be seen that the expression given by Eq.(2.10) appears very conservative compared with 
the other two expressions. Our analyses using both spectral compatible earthquake 
records and actual accelerograms supports the 1998 EC8  expression for accelerograms 
without near-field forward directivity velocity pulse characteristics. A comparison is 
shown in Fig.2.13 for the average response of a suite of seven spectrum-compatible 
records used for design in the Port of Los Angeles^1!, California. The design elastic 
displacement spectrum was determined from a site-specific probabilistic seismic hazard 
analysis, and seven two-component accelerograms from earthquake records appropriate 
to the site, distance from fault and expected magnitude were manipulated to match the 
spectrum for a damping ratio of £ = 0.05. The fourteen individual modified 
accelerograms were then subjected to spectral analysis to determine the effect of different 
levels of damping. The averages for the records are shown in Fig.2.11 by the solid lines. 
The dashed lines represent the spectra resulting from modifying the design spectrum for 
the damping ratio of % = 0.05 in accordance with Eq.(2.8), with CC — 0.5. It will be seen 
that the agreement with the curves from spectral analysis is very good, on average. Similar 
agreement has been obtained from analyses of real recordslK8J.

It would also be desirable to have an equivalent expression for sites where forward 
directivity velocity pulse characteristics might be expected. It has been suggested^ based 
on limited data, that a modification to the 1998 EC8  expression given by

Ri =
0.07 

0.02 + £

,0 .25

(2 .11)

Damping Ratio

Fig.2.12 Damping Modifiers to Elastic Spectral Displacements
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Period (seconds)

Fig. 2.13 Comparison of Spectral Analysis Results and Eq.(2.8) for a Suite of 14 
Spectrum-Compatible Accelerograms

might be appropriate. It will be seen that Eq.(2.11) is the same as Eq.(2.8) but with OC — 
0.25 instead of 0.50. The effect of this modification is to increase the value of 
compared with the value applying for “normal” accelerograms. The reduction factor 
resulting from Eq.(2.11) is included in Fig.2.12 for comparison with the other 
expressions, and Fig.2.14 compares the dimensionless displacement modifiers for the 
1998 EC8  expression (Eq.2.8) and the expression suggested for near-field forward 
directivity conditions (Eq.(2.11)). The data in Fig.2.14 are based on the shape of the 
displacement spectrum for firm ground plotted in Fig. 2.5(a). Some qualified support for 
Eq.(2.11) is available in work by Bommer and MendisP8l who provide additional 
discussion of this topic. Their work indicates that the scaling factors may be period- 
dependent, which is not currently considered in design.

It will be shown in Section 3.4.6 that use of displacement spectra for near-field 
forward-directivity effects results in a requirement for higher base-shear strength when 
compared to requirements for “normal” conditions. This requirement has been 
recognized for a number of years, in particular since the 1994 Northridge earthquake, and 
is incorporated empirically in recent force based codes [e.g. X4, X8 ]. This is an example 
of conditions where it has been recognized that existing displacement-equivalence rules 
are inadequate in force-based design. With displacement-based design, the influence of 
near-field effects are direcdy incorporated in the design, provided the reduced influence 
of damping (and ductility) in modifying displacement response is recognized by graphs 
such as Fig.2.14(b).
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Fig.2.14 EC8 (1998) Damping Reduction Factor, and Tentative Factor for 
Forward Directivity Effects

As discussed earlier in this chapter, displacement spectra for design are in a 
developmental stage, with rather rapid progress being made by seismologists. The same 
statement can be applied to developments in definition of acceleration spectra. It is 
probable that displacement spectra, and modifiers for damping, period and ductility will 
change from the tentative values suggested in this Chapter. However, this should not be 
taken to reduce the utility of the work presented in subsequent chapters. The approaches 
developed are independent of the displacement spectra, and several different shapes will 
be used in different examples, to illustrate the flexibility of the direct displacement-based 
design method.

It should also be noted that the material presented in this chapter is at least as valid as 
acceleration spectra currently used for force-based design (see p53). Taken together with 
the extensive research described in Chapters 3 and 4 on relationships between ductility 
and damping, the procedures developed are significantly less susceptible to errors than 
resulting from current force-based design, and much better adapted to achieving specified 
limit states.

23  CHOICE OF ACCELEROGRAMS FOR TIME-HISTORY ANALYSIS

The most reliable method at present for determining, or verifying the response of a 
designed structure to the design level of intensity is by use of non-linear time-history 
analysis. The selection and characteristics of accelerograms to be used for this requires 
careful consideration. The reader is referred to Section 4.9.2(h) where this is discussed in 
some detail.



3
DIRECT DISPLACEMENT-BASED DESIGN: 
FUNDAMENTAL CONSIDERATIONS

3.1 INTRODUCTION

The design procedure known as Direct Displacement-Based Design (DDBD) has
been developed over the past ten years^8’139̂ 10’131̂  with the aim of mitigating the 
deficiencies in current force-based design, discussed in some detail in Chapter 1 . The 
fundamental difference from force-based design is that DDBD characterizes the 
structure to be designed by a single-degree-of-freedom (SDOF) representation of 
performance at peak displacement response, rather than by its initial elastic 
characteristics. This is based on the Substitute Structure approach pioneered by othersfG7>S2L 

The fundamental philosophy behind the design approach is to design a structure 
which would achieve, rather than be bounded by, a given performance limit state under a 
given seismic intensity. This would result in essentially uniform-risk structures, which is 
philosophically compatible with the uniform-risk seismic spectra incorporated in design 
codes. The design procedure determines the strength required at designated plastic hinge 
locations to achieve the design aims in terms of defined displacement objectives. It must 
then be combined with capacity design procedures to ensure that plastic hinges occur 
only where intended, and that non-ductile modes of inelastic deformation do not 
develops. These capacity design procedures must be calibrated to the displacement- 
based design approach. This is discussed further in general terms in Sections 3.9 and 4.5, 
and in specific structure-related terms in the appropriate structural chapters. It will be 
shown that capacity design requirements are generally less onerous than those for force- 
based designs, resulting in more economical structures.

This chapter deals with fundamental aspects of the approach that are common to all 
materials and structural systems. Subsequent chapters deal with detailed application to 
different structural systems, including verification by design/analysis examples.

3.2 BASIC FORMULATION OF THE METHOD

The design method is illustrated with reference to Fig.3.1, which considers a SDOF 
representation of a frame building (Fig.3.1 (a)), though the basic fundamentals apply to all 
structural types. The bi-linear envelope of the lateral force-displacement response of the 
SDOF representation is shown in Fig.3.1 (b). An initial elastic stiffness Kj is followed by a

63
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post yield stiffness of rK j.
While force-based seismic design characterizes a structure in terms of elastic, pre-yield, 

properties (initial stiffness elastic damping), DDBD characterizes the structure by 
secant stiffness IQ at maximum displacement Ad (Fig.3.1(b)), and a level of equivalent 
viscous damping £ representative of the combined elastic damping and the hysteretic 
energy absorbed during inelastic response. Thus, as shown in Fig. 3.1(c), for a given level 
of ductility demand, a structural steel frame building with compact members will be 
assigned a higher level of equivalent viscous damping than a reinforced concrete bridge 
designed for the same level of ductility demand, as a consequence of “fatter” hysteresis 
loops (see Fig.3.2).

me

(a) SD O F Sim ulation

He

Displacement Ductility 

(c) Equivalent damping vs. ductility

(b) Effective Stiffness Ke

Period (seconds)

(d) Design Displacement Spectra

Fig. 3.1 Fundamentals of Direct Displacement-Based Design
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(a) Idealized Steel 
Frame Response

(b) Reinforced Concrete 
Frame Response

(c) Friction Slider 
Response

(d) Bridge Column with 
High Axial Load

(e) Non-linear Elastic 
with P-A

(f) Unsymmetrical 
Strength

Fig.3.2 Common Structural Force-Displacement Hysteresis Response Shapes

With the design displacement at maximum response determined, as discussed in 
Section 3.4.1, and the corresponding damping estimated from the expected ductility 
demand (Section 3.4.3), the effective period Te at maximum displacement response, 
measured at the effective height He (Fig.3.1(a)) can be read from a set of displacement 
spectra for different levels of damping, as shown in the example of Fig.3.1(d). The 
effective stiffness Ke of the equivalent SDOF system at maximum displacement can be 
found by inverting the normal equation for the period of a SDOF oscillator, given by Eq.
(1 .6 ), to provide

K„ = An m„ / T: (3.1)

where me is the effective mass of the structure participating in the fundamental mode of 
vibration (see Section 3.5.3). From Fig.3.1(b), the design lateral force, which is also the 
design base shear force is thus

F (3.2)
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The design concept is thus very simple. Such complexity that exists relates to 
determination of the “substitute structure” characteristics, the determination of the 
design displacement, and development of design displacement spectra. Careful 
consideration is however also necessary for the distribution of the design base shear force 
Vgase to the different discretized mass locadons, and for the analysis of the structure 
under the distributed seismic force. These will be discussed later.

The formulation of DDBD described above with reference to Figs 3.1(c) and (d) has 
the merit of characterizing the effects of ductility on seismic demand in a way that is 
independent of the hysteretic characteristics, since the damping/ductility relationships are 
separately generated for different hysteretic rules. It is comparatively straightforward to 
generate the influence of different levels of damping on the displacement response 
spectra, (see Section 2.2.3) and hence figures similar to Fig. 3.1(d) can be generated for 
new seismic intensities, or new site-specific seismicity using standard techniques^6].

It is also possible, however, to combine the damping/ductility relationship for a 
specific hysteresis rule with the seismic displacement spectral demand in a single inelastic 
displacement spectra set, where the different curves directly relate to displacement 
ductility demand, as illustrated in the example of Fig.3.3.

Period (seconds)
Fig.3.3 Example of an Inelastic Displacement Spectra Set Related to Effective 

Period for a Specific Hysteresis Rule

With the seismic demand characterized in this fashion, the design procedure is slightly 
simplified, as one step in the process is removed. The inelastic displacement spectra set is 
entered with the design displacement (to be discussed subsequently) and the design 
effective period is read off for the level of the design displacement ductility. Although 
this is a slightly simplified procedure, it requires that inelastic displacement spectra be 
generated for different hysteresis rules for each new seismic intensity considered. Since 
this is a rather lengthy process, we will use the formulation of Fig.3.1 in the examples of
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this text. However, we show in Section 3.4.3(e) how the inelastic displacement spectra 
can be generated from the damping/ductility relationship, the displacement reduction 
factor for levels of damping above the basic 5% level, and the elastic displacement 
spectrum.

3.2.1 Example 3.1 Basic DDBD

A five-story reinforced concrete frame building is to be designed to achieve a design 
displacement of 0.185 m (7.28 in), corresponding to a displacement ductility demand of |ul 
= 3.25. (Procedures to determine design displacement and ductility are discussed in 
Section 3.4.1). The seismic weight contributing to first mode response (also discussed 
subsequently, in Section 3.5.3) is 4500 kN (1012 kips). Using the design information of 
Fig.3.1(c) and (d) determine the required base shear strength.

Equivalent Viscous Damping: Entering Fig.3.1(c) at a ductility of 3.25, and moving 
up to the curve for concrete frames (follow the dashed lines and arrows), the damping
ratio is found to be £= 0.175 (17.5%). _____

Effective Period: Entering Fig.3.1(d) with a design displacement of|A = 0.185m and 
moving horizontally to the line corresponding to a damping ratio of £ — 0.175, the 
effective period is found to be T — 2.5 sec.

Effective Sdffness: The effective mass is me =4500/g where g=9.805m/s2. Hence 
from Eq.(3.1) the effective stiffness is

K e = 4 n 2m J T t  = 4 /r2 x 4500/(9.805 x2.52) = 2900Jfc/V/ m

Base Shear Force: Hence from Eq.(3.2), the required base shear force is

V Bose =  K e A d  =2900x0.185 = 5 3 6 ^  (120.5 kips)

3.3 DESIGN LIMIT STATES AND PERFORMANCE LEVELS

In recent years there has been increased interest in defining seismic performance 
objectives for structures. This has been defined as the “coupling of expected performance 
levels with expected levels of seismic ground motions” in the “Vision 2000” 
document^37!, which has had a significant influence in recent seismic design philosophy. 
In the Vision 2000 document, four performance levels, and four levels of seismic 
excitation are considered. The performance levels are designated as:

• Level 1: Fully operational. Facility continues in operation with negligible 
damage.

• Level 2: Operational. Facility continues in operation with minor damage and 
minor disruption in non-essential services.
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• Level 3: Life safe. Life safety is essentially protected, damage is moderate to 
extensive

• Level 4: Near collapse. Life safety is at risk, damage is severe, structural 
collapse is prevented.

The relationship between the four levels of seismic excitation, and the annual 
probabilities of exceedence of each level will differ according to local seismicity and 
structural importance, as discussed in Section 2.2.2(c). In California, the following levels 
are defined^sll:

• EQ-I: 87% probability in 50 years: 33% of EQ-III
• EQ-II: 50% probability in 50years: 50% of EQ-III
• EQ-III: approximately 10% probability in 50 years.
• EQ-IV: approximately 2% probability in 50 years: 150% of EQ-III.

The relationship between these performance levels and earthquake design levels is 
summarized in Fig.3.4. In Fig.3.4 the line “Basic Objective” identifies a series of 
performance levels for normal structures. The lines “Essential Objective” and “Safety 
Critical Objective” relate performance level to seismic intensity for two structural classes 
of increased importance, such as lifeline structures, and hospitals. As is seen in Fig.3.4, 
with “Safety Critical Objective”, operation performance must be maintained even under 
the EQ-IV level of seismicity.

Although the Vision 2000 approach is useful conceptually, it can be argued that it 
requires some modification, and that it provides an incomplete description of 
performance. The performance levels do not include a “damage control” performance 
level, which is clearly of economic importance. For example, it has been noted that 
although the performance in the 1995 Kobe earthquake of reinforced concrete frame

System Performance Level
Fully

Operational
Operational Life Safe Near

Collapse

Frequent 
(43 year)

Occasional 
(72 year)

Rare 
(475 year)

Very Rare 
(970 year)

Fig. 3.4 Relationship between Earthquake Design Level and Performance Level
(after Vision 2000 f°2l)
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buildings designed in accordance with the weak-beam/strong-column philosophy 
satisfied the “Life safe” performance level, the cost of repairing the many locations of 
inelastic action, and hence of localized damage, was often excessive, and uneconomic^3!. 
The performance level implicit in most current seismic design codes is, in fact, a damage - 
control performance level. Further, it has been argued that residual drift, which is not 
considered in the Vision 2000 classification, should be considered an important measure 
of performance!1̂ 4].

In order to better understand the relationship between structural response levels and 
performance levels, it is instructive to consider the relationship between member and 
structure limit statesP'4!.

3.3.1 Section Limit States

(a) Cracking lim it state: For concrete and masonry members the onset of cracking 
generally marks the point for a significant change in stiffness, as shown in the typical 
moment-curvature relationship of Fig.3.5(a). For critical members expected to respond in 
the inelastic range to the design-level earthquake, this limit state has little significance, as 
it is likely to be exceeded in minor seismic excitation, even lower than that corresponding 
to the EQ-I level of Vision 2000. The limit state may, however, be important for 
members that are expected to respond essentially elastically to the design-level 
earthquake. For example, the appropriate stiffness to be used for a prestressed bridge 
superstructure will depend on whether or not the cracking limit state is exceeded.

(b) First-yield lim it state: A second significant change in stiffness of concrete and 
masonry members occurs at the onset of yield in the extreme tension reinforcement. 
This is also the case in structural steel members. This limit state is useful for defining the 
appropriate elastic stiffness to be used in analyses of ductile systems using simplified 
hysteresis rules, such as bi-linear response, shown in Fig.3.5(a) by the dashed line.

(c) Spalling lim it state: With concrete or masonry sections, the onset of spalling of the 
cover concrete or masonry may be a significant limit state, particularly for unconfined 
sections, or sections subjected to high levels of axial compression, where spalling is 
typically associated with onset of negative incremental stiffness and possibly sudden 
strength loss. Exceedence of this limit state represents a local condition that can be 
expected to require remedial action. For well-confined sections, this is likely to be the 
only significance of onset of spalling, since the member can be expected to support much 
larger deformations without excessive distress. Strength may in fact continue to increase 
beyond this limit state. Conservatively, a compression strain of £c = 0.004 may be 
assumed for concrete structures, and a rather lower value for masonry structures.

(d) Buckling lim it state: With reinforced concrete or masonry members, initiation of 
buckling of longitudinal reinforcement is a significant limit state. Beyond this limit state, 
remedial action will often require removal and replacement of the member. With
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structural steel members, particularly flanged beams and columns, onset of buckling also 
represents a significant limit state for the same reasons as for concrete members.

(a) Section Limit States

Fig.3.5 Member and Structure Design Limit States

(e) Ultimate lim it state: Definition of the ultimate limit state for members is
somewhat subjective. It is sometimes taken to correspond to a critical physical event, 
such as fracture of confinement reinforcement in a potendal plasdc hinge zone of a 
concrete member, or weld fracture of a structural steel connection. Another common 
definition relates to a specified strength drop (2 0 % is often used) from the maximum 
attained (or sometimes from the design) strength. Neither definition truly corresponds to 
an ultimate limit state, since at least some residual strength is maintained for further 
increase of displacement. A true ultimate limit state would refer to inability to carry 
imposed loads, such as gravity loads on a beam, or axial forces in a column. However, the 
occurrence of negative incremental stiffness of the moment-curvature characteristic, 
which is associated with strength drop, is cause for concern under dynamic response, 
since it implies redistribution of strain energy from elastically responding portions of the 
structure into the member with negative stiffness. This has potentially explosive 
consequences.

3.3.2 Structure Limit States.

(a) Serviceability Limit State: This corresponds to the “fully functional” seismic 
performance level of Vision 2000. No significant remedial action should be needed for a 
structure that responds at this limit state. With concrete and masonry structures, no 
spalling of cover concrete should occur, and though yield of reinforcement should be 
acceptable at this limit state, residual crack widths should be sufficiently small so that 
injection grouting is not needed. As suggested by Fig.3.5(b), structural displacements at 
the serviceability limit state will generally exceed the nominal yield displacement.

For masonry and concrete structures this limit state can be directly related to strain 
limits in the extreme compression fibres of the concrete or masonry, and in the extreme
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tension reinforcement. With structural steel buildings, the limit state is more likely to be 
related to non-structural elements, as discussed in the following.

Potential for non-structural damage must also be considered when determining 
whether or not the serviceability limit state has been exceeded. Ideally, non-structural 
elements, such as partition walls, and glazing, should be designed so that no damage will 
occur to them before the structure achieves the strain limits corresponding to the 
serviceability limit state. Even with brittle partitions this can be achieved, by suitable 
detailing of the contact between them and the structure, normally involving the use of 
flexible jointing compounds. However, when the typical construction involves brittle 
lightweight masonry partitions built hard-up against the structure, significant damage to 
the partitions is likely at much lower displacement levels than would apply to the 
structure. For example, reinforced concrete or structural steel building frames are likely to 
be able to sustain drifts (lateral displacements divided by height) of more than 0 . 0 1 2  

before sustaining damage requiring repair. In such cases, the serviceability limit state is 
unlikely to govern design. A very different conclusion will result if low-strength 
lightweight masonry infill is placed in the frames, without flexible connection. The infill is 
likely to reach its limit state at drift levels less than 0.005, and design to avoid non- 
structural damage in the infill may well govern the structural design. This is considered in 
more detail in Chapter 5.,

(b) Damage-Control Limit State: As noted above, this is not directly addressed in the 
Vision 2000 document, but is the basis for most current seismic design strategies. At this 
limit state, a certain amount of repairable damage is acceptable, but the cost should be 
significantly less than the cost of replacement. Damage to concrete buildings and bridges 
may include spalling of cover concrete requiring cover replacement, and the formation of 
wide residual flexural cracks requiring injection grouting to avoid later corrosion. 
Fracture of transverse or longitudinal reinforcement, or buckling of longitudinal 
reinforcement should not occur, and the core concrete in plastic hinge regions should not 
need replacement. With structural steel buildings, flange or shear panel buckling should 
not occur, and residual drifts, which tend to be larger for structural steel than concrete 
buildings should not be excessive. With well designed structures, this limit state normally 
corresponds to displacement ductility factors in the range 3 < //a <6 .

Again, non-structural limits must be considered to keep damage to an acceptable level. 
This is particularly important for buildings, where the contents and services are typically 
worth three to five times the cost of the structure. It is difficult to avoid excessive damage 
when the drift levels exceed about 0.025, and hence it is common for building design 
codes to specify drift limits of 0.02 to 0.025. At these levels, most buildings - particularly 
frame buildings - will not have reached the structural damage-control limit state. It will be 
noted that this limitation will not normally apply to non-building structures such as 
bridges and wharves, and consequently structural limits will govern design to the damage- 
control limit state for these structures. Effective drift limits for these structures are often 
in the range 0.03 to 0.045. This limit state is represented in Fig.3.5(b) by the displacement
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(c) Survival Limit State: It is important that a reserve of capacity exists above that 
corresponding to the damage-control limit state, to ensure that during the strongest 
ground shaking considered feasible for the site, collapse of the structure should not take 
place. Protection against loss of life is the prime concern here, and must be accorded high 
priority in the overall seismic design philosophy. Extensive damage may have to be 
accepted, to the extent that it may not be economically or technically feasible to repair the 
structure after the earthquake. In Fig.3.5(b) this limit state is represented by the uldmate 
displacement, Aw.

Although the survival limit state is of critical importance, its determination has received 
comparatively little attention. Clearly this limit state is exceeded when the structure is no 
longer able to support its gravity loads, and collapses. This occurs when the gravity-load 
capacity is reduced below the level of existing gravity loads as a result of (say) total shear 
failure of a critical column, resulting in progressive collapse. Alternatively, collapse results 
from a stability failure, when the P-A moments exceed the residual capacity of the 
structure, as illustrated in Fig.3.6 for a bridge column. If the ultimate displacement 
capacity assessed from the intersection of the resistance and P-A curves exceeds the 
maximum expected in the survival-level earthquake, collapse should not occur.

Fig.3.6 P-A Collapse of a Bridge under Transverse ResponseIP4l 

3.3.3 Selection of Design Limit State

The discussion in the previous sections indicates that a number of different limit states 
or performance levels could be considered in design. Generally only one — the damage- 
control limit state, or at most two (with the serviceability limit state as the second) will be 
considered, except for exceptional circumstances. Where more than one limit state is 
considered, the required strength to satisfy each limit will be determined, and the highest 
chosen for the final design. More information on strain and drift limits corresponding to
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different performance levels are included in Section 4.2.5, and in the relevant chapters on 
different structural systems.

3.4 SINGLE-DEGREE-OF-FREEDOM STRUCTURES

3.4.1 Design Displacement for a SDOF structure

The design displacement will depend on the limit state being considered, and whether 
structural or non-structural consideradons are more cridcal. For any given limit state (see 
previous section) structural performance will be governed by limiting material strains, 
since damage is strain-related for structural elements. Damage to non-structural elements 
can be generally considered drift-related.

It is comparatively straightforward to compute the design displacement from strain 
limits. Consider the vertical cantilever structure of Fig.3.7(a). The most realistic structure 
conforming to the assumptions of a SDOF approximation is a regular bridge under 
transverse excitation. Two possible reinforced concrete sections, one circular and one 
rectangular are shown in Fig.3.7(b). The strain profile at maximum displacement response 
is shown together with the sections. Maximum concrete compression strain £c and 
reinforcement tensile strain £s are developed. The limit-state strains are £cjs and £sjs for 
concrete compression and steel tension respectively. These will not generally occur 
simultaneously in the same section, since the neutral axis depth c is fixed by the 
reinforcement ratio, and the axial load on the section. Consequently there are two 
possible limit state curvatures, based on the concrete compression and the reinforcement 
tension respectively:

(Pis c ~ is /c (concrete compression) (3.3a)

(f*)]s s — £s ls !{d  — C) (reinforcement tension) (3.3b)

The lesser of (f>iS}C and (f\s>s will govern the structural design. The design displacement can 
now be estimated from the approach in Section 1.3.4(a) as

= A , + A , = *p,{H + I s, ) ! /3 + (A  - <Py )Lt H  (3.4)

where (pis is the lesser of and (f>iSyS , Ayis the yield displacement ( see Section 3.4.2), H  
is the column height (see Fig.3.7), Lsp is the effective additional height representing strain 
penetration effects (see Section 4.2.7) and Lp is the plastic hinge length.

If the limit state has a code-specified non-structural drift limit 6C the displacement 
given by Eq.(3.4) must be checked against

^dd ~ (3.5)
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(b) Column Sections and Limit State Strains 
Fig.3.7 Curvatures Corresponding to Limit Strains for a Bridge Pier

The lesser of the displacements given by Eqs. (3.4) and (3.5) is the design displacement.
Note that in many cases the design approach will be to design the structure for a 

specified drift, and then determine the details to ensure the strain limits are achieved.
For example, as is shown in Section 4.2.4(a), the limiting concrete strain for the 

damage-control limit state is determined from the transverse reinforcement details. Thus 
the concrete strain corresponding to the drift limit can be determined by inverting 
Eqs.(3.4) and (3.3a), and the required amount of transverse reinforcement calculated. 
This simplifies the design process.
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3.4.2 Yield Displacement

For a SDOF vertical cantilever, the yield displacement is required for two reasons. 
First, if structural considerations define the limit displacement (Eq.3.4), the yield 
displacement and yield curvature must be known. Second, in order to calculate the 
equivalent viscous damping, the displacement ductility //A=Aj/Ay, which depends on the 
yield displacement, must be known.

Analytical results presented in Section 4.4 indicate that for reinforced concrete (and 
masonry) members, the yield curvature is essentially independent of reinforcement 
content and axial load level, and is a function of yield strain and section depth alone. 
This was discussed in relation to Fig. 1.4. The form of the equation governing yield 
curvature was given in Eq.(1.21). Based on the more extensive results presented in 
Section 4.4, the following equations for yield curvature of some different section shapes 
provide adequate approximations:

where £y is the yield strain of the flexural reinforcement (=fy!E5), and D, ha hs and hb 
are the section depths of the circular column, rectangular column, rectangular wall, steel 
section and flanged concrete beam sections respectively. Note that Eq.(3.6) gives the 
curvature at the yield of the equivalent bi-linear approximation to the moment-curvature 
curve, corresponding to point 3 on the force-displacement response in Fig. 1.6. As such it 
is a useful reference value when using bi-linear force-displacement modelling.

For a SDOF vertical cantilever, such as a bridge pier, or a low rise cantilever wall, the 
yield displacement can be satisfactorily approximated for design purposes by

For reinforced concrete and structural steel frames, as established in Section 4.4.6, the 
yield drift can be developed from the yield curvature expressions of Eqs.(3.6) as

Circular concrete column: (py = 2 .2 5 ^  / D

Rectangular concrete column: (f)y = 2 .I0£y /hc

Rectangular concrete wall: (f)y = 2.008y / lw

Symmetrical steel section: 0y = 2 .1 0 ^  / hs

Flanged concrete beam: (/> = 1.10£y / hb

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.7)

Structural steel frame:

Reinforced concrete frame: 0y =O.5eyLb/hb 

6y = 0.65eyLb/hb

(3.8a)

(3.8b)

where Lt, is the beam span, and hf, is the concrete or steel beam depth. It will be noted 
that the yield drifts, and hence the yield displacements of reinforced concrete and
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structural steel frames with similar geometries differ only by 30%, and that concrete 
frames are typically stiffer.

3.4.3 Equivalent Viscous Damping

The design procedure requires relationships between displacement ductility and 
equivalent viscous damping, as shown in Fig. 3.1(c). The damping is the sum of elastic 
and hysteretic damping:

£ e q  ~  £ e l  £ h y s f P*9)

where the hysteretic damping £hys/ depends on the hysteresis rule appropriate for the 
structure being designed. Normally, for concrete structures, the elastic damping ratio is 
taken as 0.05, related to cridcal damping. A lower value (typically 0.02) is often used for 
steel structures.

Some discussion of both components of Eq.(3.9) is required.

(a) Hysteretic Damping: Initial work on subsdtute-structure analysis (i.e. analyses 
using secant, rather than initial stiffness, and equivalent viscous damping to represent 
hysteretic damping) by JacobsenU1!, was based on equating the energy absorbed by 
hysteretic steady-state cyclic response to a given displacement level to the equivalent 
viscous damping of the substitute structure. This resulted in the following expression for 
the equivalent viscous damping coefficient, %hyst\

(3J0)m m

In Eq. (3.10),^/, is the area within one complete cycle of stabilized force-displacement 
response, and Fm and Am are the maximum force and displacement achieved in the 
stabilized loops. Note that the damping given by Eqs.(3.9) and (3.10) is expressed as the 
fraction of critical damping, and is related to the secant stiffness Ke to maximum 
response (see Fig.3.8). It is thus compatible with the assumptions of structural 
characterization by stiffness and damping at peak response.

Although this level of damping produced displacement predictions under seismic 
excitation that were found to be in good agreement^11! with time-history results for 
systems with comparatively low energy absorption in the hysteretic response, such as the 
modified Takeda rule, it was found to seriously overestimate the effective equivalent 
viscous damping for systems with high energy absorption, such as elasto-plastic, or 
bilinear rulestC2l. A reason for this can be found when considering the response of two 
different systems with the same initial backbone curve (e.g. lines 1 and 2 in Fig.3.8) to an 
earthquake record with a single strong velocity pulse, which might be considered an 
extreme example of near-fault ground motion. Assume that one system has a bilinear
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elasto-plastic hysteresis response, while the other, with the same initial and post-yield 
stiffness, is bi-linear elastic. That is, it loads up and unloads down the same backbone 
curve, without dissipating any hysteretic energy. If the inelastic response results from a 
single pulse, or fling, the peak response of the two systems should be identical, since no 
hysteretic energy will be dissipated on the run up lines 1 and 2 to the peak response. After 
the peak response, the behaviour of the two systems will differ. The bi-linear elastic 
system will continue to respond on lines 1 and 2, while the bilinear elasto-plastic system 
will unload down a different curve, and will dissipate hysteretic energy. Although real 
accelerograms do not consist of a pure velocity pulse, the behaviour described above is 
likely to form a component of the response, to a greater or lesser degree, depending on 
the accelerogram characteristics.

Later attempts^11’ J2J to determine the appropriate level of equivalent viscous damping 
were based on equating the total energy absorbed by the hysteretic and substitute - 
structure during response to specific accelerograms, rather than equating steady-state 
response to sinusoidal excitation. It is not obvious, however, that such an approach has 
relevance to the prediction of peak displacement response, which is the essential measure 
of success, or otherwise, of the substitute structure method. See \D\] for a full discussion 
of the development of methods relating equivalent viscous damping to ductility.

The approach adopted in this book is to use values of equivalent viscous damping that 
have been calibrated for different hysteresis rules to give the same peak displacements as 
the hysteretic response, using inelastic time history analysis. Two independent studies, 
based on different methodologies were used to derive the levels of equivalent viscous 
damping. The first involved the use of a large number of real earthquake 
accelerogramsi01  ̂ where the equivalent viscous damping was calculated for each record, 
ductility level, effective period and hysteresis rule separately, and then averaged over the 
records to provide a relationship for a given rule, ductility, and period. The second 
study[G2J, using a wider range of hysteresis rules was based on a smaller number of 
spectrum-compatible artificial accelerograms where the results of the elastic and inelastic
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analyses were separately averaged, and compared. In each case the equivalent viscous 
damping was varied until the elastic results of the equivalent substitute structure matched 
that of the real hysteretic model.

(a) Elasto-plastic (EPP)

(d) Takeda “Fat” (TF)

(e) Ramberg-Osgood (RO)

Fig.3.9 Hysteresis Rules Considered in Inelastic Time History AnalysisIG2l

The hysteresis rules considered in the second study are described in Fig.3.9. The 
elastic-perfectly plastic rule (Fig 3.9(a)) is characterisdc of some isolation systems, 
incorporating friction sliders. The bi-linear elasto-plastic rule of Fig.3.9(b) had a second 
slope stiffness ratio of r  — 0 .2 , and is also appropriate for structures incorporating various 
types of isolation systems, though the value of r c an vary considerably. The two Takeda
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rules: Takeda Thin (Fig 3.9(c)) and Takeda fat (Fig. 3.9(d)), represent the response of 
ductile reinforced concrete wall or column structures, and ductile reinforced concrete 
frame structures respectively. Figure 3.9(e) shows a bounded Ramberg Osgood rule 
calibrated to represent ductile steel structures, and the flag-shaped rule of Fig.3.9(f) 
represents unbonded post-tensioned structures with a small amount of additional 
damping. Further information on these rules is provided in Section 4.9.2(g).

The two studies identified above I™*02] initially were carried out without additional 
elastic damping, for reasons that will become apparent in the following section. Figure 
3.10 compares the resulting average relationships for an effective period of Te — 2.0 
seconds for the four hysteresis rules common to both studies. It was found that the 
approaches resulted in remarkably similar relationships for equivalent viscous damping 
for all hysteresis rules except elastic-perfectly plastic (EPP), where the discrepancy was 
about 20%. It is felt that the difference for the EPP rule is a consequence of the use of 
real records, with comparatively short durations of strong ground motion in [DI], and 
artificial records, with longer strong ground motion durations in [G2]. It is known that 
the EPP rule is sensitive to record duration, as the displacements tend to “crawl” in one 
direction, particularly when P-A effects are included^. Both studies showed the scatter 
between results from different accelerograms to be greater for the EPP rule than for 
other rules investigated. It is likely that the results from the [G2] study will be somewhat 
conservative for shorter duration (i.e. lower magnitude earthquakes), but more realistic 
for longer duration (higher magnitude) earthquakes. In the following discussion, the 
average of the two studies has been used.

The Dwairi and KowalskylDP study represented the hysteretic component of response 
in the form:

^ > s,= c- (3.11)

where the coefficient C depended on the hysteresis rule. This has an obvious relationship 
to the theoretical area-based approach of Eq.(3.10) for the EPP rule, for which C ~ 2. 
Some period-dependency was found for effective periods Te < 1.0 seconds.

The study by Grant et aFG2', which considered a wider range of hysteretic rules, used a 
more complex formulation of the relationship between ductility and equivalent viscous 
damping, the hysteretic component of which is given by:

=  a
\ ' ~ 7

1 +
1

(Te+c)a
(3.12)

Equation (3.12) includes the period-dependency of the response, in the coefficients c 
and d. Table 3.1 lists the coefficients for the various hysteresis rules investigated.
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D isplacem ent Ductility 
(a) E lasto-Plastic

D isplacem ent Ductility 
(c) Fat Takeda

Displacem ent Ductility 
(b) Thin  Takeda

D isplacem ent Ductility 
(d) Flag, p=0.35

Fig 3.10 Hysteretic Component of Equivalent Viscous Damping from Two 
Independent Studies (D.K=Dwairi and KowalskyID1l, GBP=Grant et allG2l)

Table 3.1 Equivalent Viscous Damping Coefficients for Hysteretic Damping 
Component using Eq.(3.12)tG2J

Model a b c d
EPP 0.224 0.336 -0 . 0 0 2 0.250

Bilinear, r=0.2 (BI) 0.262 0.655 0.813 4.890
Takeda Thin (TT) 0.215 0.642 0.824 6.444
Takeda Fat (TF) 0.305 0.492 0.790 4.463
Flag, (3=0.35 (FS) 0.251 0.148 3.015 0.511

Ramberg-Osgood (RO) 0.289 0.622 0.856 6.460
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The period-dependency part of Eq.(3.12) is plotted for the various hysteretic rules of 
Fig.3.9 in Fig.3.11, where the hysteretic damping is related to the stable value found for 
long periods, estimated at T— 4 sec. As with the other studyf01! the period dependency 
was generally insignificant for periods greater than 1.0 seconds, with the EPP rule again 
being the only exception. Since it is conservative to use low estimates of damping, and 
since it will be unusual for regular structures such as frame and wall buildings, and bridges 
to have effective periods less than 1 . 0  seconds, it will generally be adequate, and 
conservative to ignore the period-dependency in design.

Effective Period (seconds)
Fig.3.11 Period Dependency of Hysteretic Component of Equivalent Viscous

Dampingt02!

(b) Elastic Damping: Equation (3.9) includes an elastic component of equivalent 
viscous damping. Elastic damping is used in inelastic time-history analysis (see Section 
4.9.2(g)) to represent damping not captured by the hysteretic model adopted for the 
analysis. This may be from the combination of a number of factors, of which the most 
important is the typical simplifying assumption in the hysteretic model of perfectly linear 
response in the elastic range (which therefore does not model damping associated with 
the actual elastic non-linearity and hysteresis). Additional damping also results from 
foundation compliance, foundation non-linearity and radiation damping, and additional 
damping from interaction between structural and non-structural elements.

For single-degree-of-freedom (SDOF) systems, elastic damping is used in the dynamic 
equation of equilibrium:

mx + cx + kx = —mx, (3.13)
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where a : is the response relative displacement, 3^ is the ground acceleration, m and k are 
the mass and stiffness, and the damping coefficient, c is  given by

c = 2ma>£ = 2 ^ 4  mk (3.14)

where COt = k / m is the circular frequency, and ^is the fraction of critical damping.
The damping coefficient, and hence the damping force depends on what value of 

stiffness is adopted in Eq.(3.14). In most inelastic analyses, this has been taken as the 
initial stiffness. This, however, results in large and spurious damping forces when the 
response is inelastic, which, it is argued in Section 4.9.2(g) is inappropriate, and that 
tangent stiffness should be used as the basis for elastic damping calculations. With 
tangent stiffness, the damping coefficient is proportionately changed every time the 
stiffness changes, associated with yield, unloading or reloading, etc. This results in a 
reduction in damping force as the structural stiffness softens following yield, and a 
reduction in the energy absorbed by the elastic damping. Since the hysteretic rules are 
invariably calibrated to model the full structural energy dissipation subsequent to onset of 
yielding, this approach to characterization of the elastic damping is clearly more 
appropriate than is initial-stiffness elastic damping. The significance to structural response 
of using tangent-stiffness rather than initial-stiffness damping is discussed in detail in 
Section 4.9.2(g).

However, in DDBD, the initial elastic damping adopted in Eq.(3.14) is related to the 
secant stiffness to maximum displacement, whereas it is normal in inelastic time-history 
analysis to relate the elastic damping to the initial (elastic) stiffness, or more correctly, as 
noted above, to a stiffness that varies as the structural stiffness degrades with inelastic 
action (tangent stiffness). Since the response velocities of the “real” and “substitute” 
structures are expected to be similar under seismic response, the damping forces of the 
“real” and “substitute” structures, which are proportional to the product of the stiffness 
and the velocity (Eq.(3.13)), will differ significantly, since the effective stiffness keff of the 
substitute structure is approximately equal to keff=kj /fl (for low post-yield stiffness). 
Grant et aUG2l has determined the adjustment that would be needed to the value of the 
elastic damping assumed in DDBD (based on either initial-stiffness or tangent-stiffness 
proportional damping) to ensure compatibility between the “real” and “substitute” 
structures. Without such an adjustment, the verification of DDBD by inelastic time- 
history analysis would be based on incompatible assumptions of elastic damping.

The adjustments depend on whether initial-stiffness damping (conventional practice), 
or tangent-stiffness damping (correct procedure, we believe) is adopted for time-history 
analysis. If initial-stiffness damping is chosen, the elastic damping coefficient used in 
DDBD must be larger than the specified initial-stiffness damping coefficient; if tangent- 
stiffness is chosen, it must be less than the specified tangent-stiffness coefficient.

This is explained further in Fig.3.12, which examines the stabilized response (i.e., 
ignoring the initial transient response) of a bilinear hysteretic model to steady-state
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harmonic excitation. The c — constant line in Fig.3.12(b) represents the imtial-stiffness 
damping assumption, and the dashed line the damping associated with the substitute 
structure, if both are assigned the same numeric value for damping. The energy dissipated 
by elastic damping in the substitute structure is less than in the “real” structure (if we 
accept initial-stiffness damping as correct), because keff <kj. Consequendy, to model the 
initial-stiffness damping in displacement-based design, the value of £ei in Eq.(3.9) should 
exceed the initial-stiffness damping coefficient.

(a) Bi-linear Hysteresis (b) Damping force vs Displacement

Fig.3.12 Steady-State Harmonic Response of Different Elastic Damping
Models lG2l

Figure 3.12(b) also includes the damping force/displacement characteristic for the 
assumpdon of tangent-stiffness propordonal damping. At points marked Y, the damping 
force reduces because of the change in slope of the hysteredc envelope. It is seen that the 
total energy dissipated in an stabilized cycle by the tangent stiffness assumption is now 
less than the substitute structure damping (dashed line) for the same numeric value of 
damping in Eq.(3.10). Thus, to model the tangent-stiffness damping in displacement- 
based design, the value of £ei in Eq.(3.9) should be less than the tangent-stiffness 
damping coefficient.

A further line with c=(Xm+pkt represents tangent-stiffness Rayleigh damping, where 
the elastic damping is a combination of mass-proportional and stiffness proportional 
terms. This is often used in multi-degree of freedom time-history analyses. It is shown in 
Section 4.9.2(g) that even if tangent-stiffness elastic damping is specified within a 
Rayleigh damping environment, the damping force in the first, and critical mode is largely 
the same as initial-stiffness damping. This is not relevant to the current discussion.

It is possible to generate analytical relationships between the substitute-structure and 
“real” structure elastic damping coefficients that are correct for steady-state harmonic 
response^2]. However, as with the hysteretic component, these are not appropriate for 
transient response to earthquake accelerograms, though the trends from time-history 
response follow the form of the theoretical predictions. Hence, to obtain the appropriate
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correction factors, it is again necessary to rely on the results of inelastic time-history 
analyses. Grant et aUG2J compared results of elastic substitute-structure analyses with 
inelastic time history results to determine the correction factor to be applied to the elastic 
damping coefficient for the assumptions of either initial-stiffness or tangent-stiffness 
elastic damping. The form of Eq.(3.9) is thus slighdy changed to:

£ , = * & / + 4 *  (3 . 15)

where, based on the time-history analyses, stakes the form:

K =  j l X (3.16)

where // is the displacement ductility factory, and X depends on the hysteresis rule, and 
elastic damping assumption. Values for X from [G2] are listed in Table 3.2, and the 
correction factor // is plotted for the different hysteresis rules and damping model 
assumptions in Fig.3.13.

Displacement Ductility Factor (^) Displacement Ductility Factor (ji)
(a) Tangent Stiffness Dam ping (b) Initial Stiffness Dam ping

Fig.3.13 Secant Stiffness Equivalent Elastic Viscous Damping Related to Initial 
Elastic Stiffness and Elastic Damping Model (fl )

As noted above, although data are provided for both tangent-stiffness and initial-stiffness 
damping models, we strongly believe that tangent-stiffness damping is the more correct, 
though this has not been the basis for most inelastic time-history analyses in the past. 
Recent shaking-table testsl^4̂ 43] 0f structures support this view.



Chapter 3. Direct D isplacement-Based D esign: Fundam ental Considerations 85

Table 3.2 Secant Stiffness Correction Factors X (Eq.(3.16)) For Elastic Damping

Model*

EPP
Bilinear (BI)

Takeda Thin (TT)
Takeda Fat (TF)
Flag,ft =0.35 (FS)

Ramberg-Osgood (RO)

Initial
Stiffness

0.127
0.193
0.340
0.312
0.387
-0.060

Tangent
Stiffness

-0.341
-0.808
0.378

-0.313
-0.430
-0.61'

*see Fig.3.9

(c) Design Recommendations: The data provided in the previous section are
sufficient to provide a basis for the equivalent viscous damping (Eq.(3.9)) for most 
designs to the DDBD procedure. Thus, for example, if a reinforced concrete wall was to 
be designed for a displacement ductility of//= 5, an effective period of Te = 2.0 sec., and 
an elastic damping ratio of 0.05 (5%), related to tangent-stiffness elastic damping, the 
appropriate equivalent viscous damping would be found as follows:

From Table 3.1, for TT, a = 0.215. b = 0.642, c  =0.824, d =  6.444. Hence, from 
Eq.(3.12):

c = ° - 2 1 5 -b>-
1

r 0.642 1 +  -
(2.0 + 0.824) 6.444 =  0.139

From EQ.(3.16), with X= -0.378 from Table 3.2:

K- =  jUx = 5 '0378 = 0.544

Hence, from Eq.(3.15):

^  = 0.544x0.05 + 0.139 = 0.166

For most designs, it is, however, possible to simplify the process, by noting that (a) the 
period-dependency is insignificant for most rules for T >1 sec (which will encompass 
most designs, see Fig.3.11), and (b) an elastic damping ratio of 0.05 may be assumed. The 
consequent ductility/damping relationships for the hysteretic rules considered are plotted 
in Fig.3.14, for both tangent-stiffness and initial-stiffness elastic damping.

If we also acknowledge that the simplified Eq.(3.11) provides almost identical results 
to the more complete expression of Eq.(3.12), if the period-dependency of Eq.(3.12) is 
ignored, it is possible to include the ductility dependency of the elastic damping inside the 
basic form of the equivalent viscous damping equations. The coefficients C in Eq.(3.11) 
are adjusted so that final value is correct with taken as 0.05.
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Displacement Ductility Factor (u) Displacement Ductility Factor (|l)

(a) Tangent Stiffness Elastic Damping (b) Initial Stiffness Elastic Damping

Fig.3.14 Design Equivalent Viscous Damping Ratios for 5% Elastic Damping

We list these equations below for tangent-stiffness elastic damping only, since this is 
felt to be the correct structural simulation. Further, these equations cannot be altered to 
apply for different levels of elastic damping by replacing the coefficient 0.05 by (say) 0.02, 
since the coefficient C is valid only for = 0.05. If different levels of are to be used, 
the more complete formulation of Eq.(3.12) and Table 3.1 should be adopted. Where 
appropriate, the corresponding structural type and material is identified in the following 
equations:

Concrete Wall Building, Bridges (TT): ^  = 0.05 + 0.444

Concrete Frame Building (TF):

Steel Frame Building (RO):

£ = 0 . 0 5  + 0.565

£ = 0 . 0 5  + 0.577

Hybrid Prestressed Frame (FS, =0.35): £  = 0.05 + 0.186

Friction Slider (EPP): f  =0.05 + 0.670

Bilinear Isolation System (BI, r  =0.2): £  = 0.05 + 0.519

/ '- I
/in

M -l
fin

H z l

M -l
UK

1 - 1

jX7t

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e)

(3.17Q

Note that the equations for the hybrid prestressed frame, and the bilinear isolation 
system apply only for the parameters y0=O.35 and r — 0 . 2  respectively used in the analyses, 
and will differ for other systems. Equations (3.17 d) and (3.1’’ f) should not be used
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without checking that the values of J3 or r  are appropriate. This is addressed in more 
detail in the relevant structural systems chapters.

Ideally, when hysteredc rules whose characteristics differ from those considered in the 
above sections are used, an appropriate ductility/damping equation should be developed 
based on inelastic time-history analyses (ITHA), in similar fashion to that described 
above. It is recognized, however, that this will seldom be practical in a design 
environment, though new equations are expected to be developed with on-going 
research. Some reasonable estimates of the relationship can, however, be obtained by 
comparing the relationships between the area-based viscous damping, given by Eq.(3.10) 
which can readily be computed for any new system, provided the hysteretic response is 
known, with the hysteretic component of the calculated viscous damping (Fig. 3.9, or 
Table 3.1) for specific levels of the displacement ductility. This relationship is plotted in 
Fig. 3.15 for the six hysteresis rules considered above.

Area-Based Equivalent Viscous Damping(%)

Fig.3.15: Correction Factors to be Applied to Area-Based Equivalent Viscous
Damping Ratio (Eq.(3.10))

The vertical axis in Fig.3.15 is the ratio of the hysteretic component of the equivalent 
viscous damping (EVD) found from time-history analysis, as reported above, to the area- 
based EVD from Eq.(3.10). This can thus be considered as a correction factor to be 
applied to the area-based EVD. The three data points for each hysteresis rule correspond 
to displacement ductilities of 2, 4, and 6 . It will be noted that the trends are well 
represented by the dashed lines for the three ductility levels, with no more scatter than 
might be expected from the inherent scatter of the time-history results. Fig.3.15 can thus
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be used to “correct” the EVD calculated from the area-based Eq.(3.10), for a known 
displacement ductility level. Note that the elastic damping, in accordance with Fig.3.13 or 
Table 3.2 then needs to be added to the hysteretic damping. This approach is suggested 
as a suitable alternative to extensive time-history analyses for hysteretic rules that are not 
represented by one of the equations (3.17).

(d) Example 3.2:

Fig.3.16 Steady-State Harmonic Response of Hybrid Prestressed Structure with
r= 0, and J3=0.75 (Example 3.2)

As an example of this approach, consider the flag-shaped hysteresis loop of Fig.3.16, for 
which r  — 0, and /?=0.75. The area Ah of a complete cycle can be written as

^ = 2 x 0 . 7 5 7 ^ - 1 ^ ,

and hence, from Eq.3.10, the area-based EVD is

2x0.75F ,(g-l)A , 0.75(1-1)
hcirea r\ 7—• \ '2nFy./jAy Kju

For displacement ductilities of // = 2, 4 and 6 , Eq.(3.18) yields £area = 0.119, 0.179 and 
0.199 respectively. From Fig.3.15, the corresponding correction factors are 0.65, 0.76 and
0.88 respectively. Hence the hysteretic components of the EVD to be used in design are 
(0.65x0.119=0.0774), (0.76x0.179=0.136), and (0.88x0.199=0.175) respectively. The 
appropriate elastic damping from Fig.3.13 or Table 3.2 must then be added to these 
values to obtain the total EVD to be used in design.
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(e) Generation o f Inelastic Displacement Spectra

In Section 3.2 it was mentioned that inelastic displacement spectra sets could be 
developed for different levels of displacement ductility as shown in the example of 
Fig.3.3. If a relationship between initial-period elastic displacement and inelastic 
displacement such as the equal-displacement approximation is assumed, the inelastic 
spectra can be directly computed. Assuming that the skeleton force-displacement 
response can be represented by a bi-linear approximation with a ratio of post-yield to 
elastic stiffness equal to r, the secant period Te to maximum displacement response is 
related to the elastic period 7/ by the relationship

,0.5

1 + r(ju — l)
(3.19)

Since the inelastic displacement at Te must equal the elastic displacement at 7/ for the 
equal displacement approximation to hold, and noting that elastic displacement response 
is directly proportional to period, the modification factor to be applied to the elastic 
spectrum is

1 + r{ju — l)
x0 .5

(3.20)
J

Different relationships thus apply for different post-yield stiffnesses, but not to 
different hysteretic energy absorption within the loop, provided that the equal- 
displacement approximation is assumed to be valid. However, as is established in Section 
4.9.2(g), the equal displacement approximation relies on the assumption that elastic 
damping can be characterized by initial-stiffness proportional damping, which we have 
demonstrated to be invalid.

It is, however, possible to generate inelastic spectra sets directly from the data used to 
generate the damping-ductility relationships of Eqs.(3.17). Substituting the reduction 
factor for elastic damping values greater than 0.05 from Eq.(2.8) into the damping 
ductility equations (Eqs.(3.17), spectral displacement reduction factors in the form

Rm =

V

0.07

0 .07+ C
f  1 \ j U - \

jlK

(3.21)

J  J
can be derived. Note that different relationships apply for different values of CC (the 
coefficient dependent on whether “normal” or “velocity-pulse” conditions apply), for 
different values of C and also, for different values of the elastic damping displacement 
reduction relationship. As we have discussed in Section 2.2.3 there is still some
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uncertainty about the optimum form of this relationship. Consequently we believe it is 
better to use, at this time, the more fundamental elastic displacement spectra set with 
calibrated equations representing the damping/ductility relationship, than to combine 
these in the form of Eq.(3.21).

For comparison, Fig.3.17 plots the inelastic displacement spectra resulting from 
Eqs.(3.20) and (3.21) for the elastic-perfectly plastic (EPP) hysteretic rule (i.e. r  = 0 in 
Eq.(3.20); C — 0.67  in Eq.(3.21). The differences between the two approaches are quite 
considerable. It will be noted that for displacement ductilities of jl  > 3 it would be 
reasonable to use a constant reduction factor, simplifying design. We arrive at similar 
conclusions for inelastic displacement spectra derived for other hysteretic rules.

(a) EPP (Equal Displacement) (b) EPP (Time-history Analysis)
Fig.3.17 Inelastic Displacement Spectra for Elastic-Perfectly Plastic Hysteresis 

3.4.4 Design Base Shear Equation

It will be clear that the approach described above can be simplified to a single design 
equation, once the design displacement and damping have been determined. As noted 
earlier, the displacement spectra are in many cases linear with effective period. The small 
non-linearity at low periods is unlikely to be significant for displacement-based designs, 
since it is the effective period at peak displacement response, approximately / / 5 times the 
elastic period, that is of relevance. In Figs 3.1(d) and 2.5(b) the displacements are capped 
at a period of 4 seconds, which in accordance with Eq.(2.3) might be considered 
appropriate for an Mw -  6.9 earthquake. Let AC}5 be the displacement at the corner period 
Tc (e.g. Tc =4 seconds in Fig. 3.1(d)) for the displacement spectrum corresponding to 5% 
damping. For a design displacement of Â  and design damping the effective period is, 
from Fig. 3.1(d) and Eq.(2.8):
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where OC — 0.5 and 0.25 for normal and velocity pulse conditions respectively. From Eq. 
(3.1) the effective stiffness at peak response is thus

a: =
A'e,5 0.07

0.02 + £

Finally from Eqs (3.2) and (3.23)

(3.23)

VBase =  K A d  =
47T2m A2 , 0.07

{0.02 + Z

\ 2a
(3.24)

3.4.5 Design Example 3.3: Design of a Simple Bridge Pier.

The simple bridge column of Fig.3.7 (a) is to be designed for a region of high seismicity 
(PGA = 0.7 g) using DDBD principles. The bridge is founded on firm ground and the 
spectral shape for the 5% damping displacement spectrum can be scaled from Fig.3.1 (d). 
On the basis of preliminary design, a circular column of 2.0m (^8.7 4in) has been selected, 
and the reinforcement yield strength is f y — 470 MPa (68.3 ksi). Two conditions are 
considered: normal ground motion, and ground motion with velocity fling effects. The 
design limit state is represented by the more critical of a displacement ductility of fi =4, 
or a drift of Q& -  0.035. The effective column height is 10m (32.8ft) to the centre of 
superstructure mass, and the tributary weight contributing to seismic inertia of the 
column is 5000 kN (1124 kips). In this example, for simplicity, we ignore strain 
penetration into the foundation (see Section 4.2.7). Es ~ 200GPa.

Design Displacement: From Eq.(3.6a) the yield curvature is

<py =2.25x(470/200,000)/2.0 = 0.00264/m where Es = 200 GPa.
Thus from Eq. 3.^ the yield displacement is 

A, = 0.00264x102/3  =0.0881 m (3.47 in.)

Based on the design ductility limit of j l  — 4, and the drift limit of 6d — 0.035, the design 
displacement is the lesser of

Ad = 4x0.0881 = 0.353m and Ad = 0.035x10 = 0.350m (13.8 in.)
In this case the two limits produce almost identical results. Since the drift limit 

governs, the ductility at design displacement is

J U =  0.35/0.0881 = 3.97

Equivalent viscous damping: From Eq.(3.17a), the equivalent viscous damping at
peak response is:
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£  = 0.05+0.444(3.97-l)/3.97Tt = 0.155 (15.5%)

Maximum spectral displacement for 5% damping: The comer period for peak
displacement response is Tc ~ 4.0sec. Scaling to a PGA of 0.7 sec. from Fig. 3.1(d), which 
applies for a PGA of 0.4g, the corresponding displacement is

Ac , 5 = 0.5x0 7/0.4 = 0.875m (34.4 in.)

Design Strength for Normal Ground Modon: Equation (3.24) could be used directly. 
However, for clarity, the steps leading to Eq. (3.24) are taken sequentially. Applying the 
damping correcdon factor of Eq.(2.8) the corner-period response displacement for 
15.5% damping is

( 0.07 Y '5Ar „ s = 0.875x ----------------  = 0.553w055 L 0.02 + 0.155J
Thus, by proportion, the effective response period of the bridge is

Te =4x0.35/0.553 = 2.53sec.
Note that Eq.(3.22) could have been used directly for the previous two steps.
From Eq.(3.1), with the mass of (5000/g) tonnes, effective stiffness at peak response is

K e = A7C2me IT] -  4 ;r25000/(9.805x2.532) = 3145 kN/m

Finally, from Eq. 3.2, the design base shear force is

VBose =KeAd =3\45x0.35= 1100 kN (247 kips)

Design Strength for Velocity Pulse Ground Motion: For this case, Eq. (3.24) 
is used directly, with OC = 0.25:

= 4 ^ 5 0 0 0  . 0 8 7 5 1 / _  0 .0 7 _  ^  = m i  ^  
ase 9 .805x42 0.35 ^0.02 + 0.155 J

This is 58% higher than for the normal ground condition case.

3.4.6 Design When the Displacement Capacity Exceeds the Spectral Demand

There will be occasions, with very tall or flexible structures, when the design 
displacement capacity, calculated from Eqs.(3.4) or (3.5) exceeds the maximum possible 
spectral displacement demand for the damping level calculated from Eq.(3.17). For 
example, with reference to the response spectra set of Fig.3.1(d), it will be seen that if the 
design displacement A  ̂is calculated to be 0.35m, and the corresponding damping is 20%, 
there is no possible intersection between the design displacement and the 2 0 % damping 
curve. At the corner period of 4 sec. the peak displacement in Fig.3.1(d) for 20% 
damping is 0.282m. In such cases there are two possible conditions to be considered:



Chapter 3. Direct D isplacem ent-Based Design: Fundam ental Considerations 93

(a) Yield Displacement Exceeds 5% Damping Value at the Corner Period: With 
extremely flexible structures, or when the design seismic intensity is low, it is possible that 
the yield displacement exceeds the 5% damping elastic response displacement (Ac>5) at the 
corner period Tc (in Fig.3.1(d) this is AC}s — 0.5 m). In this case the calculated elastic 
response period will be larger than Tc, the response displacement will be equal to Ae>5 , 
and the design base shear force is given by

r Base= K elAc,5 (3.25)

where KeJ is the elastic stiffness. Note, however, that a unique design solution cannot be 
found, since the stiffness, Kej depends on the elastic period, which depends, in turn, on 
the strength. This is clarified in Example 3.4 below.

(b) Yield Displacement is Less than the 5% Damping Value at the Corner Period
This case will be more common. Inelastic response will occur, but not at the level of 
ductility corresponding to the displacement or drift capacity of the structure. Note that if 
the yield displacement is less than A^5 , this means that the elastic period is less than Tc. 
As the structure softens, a final effective period of T>TC will be achieved, with a 
displacement response level that is compatible with the damping implied by that 
displacement. The following trial and error solution method is recommended:

1. Calculate the displacement capacity A^, and the corresponding damping, £c. 
Confirm that the two are incompatible with the displacement spectra set, as 
above.

2. Estimate the final displacement response Ajf. This will be somewhere between
and

3. Calculate the displacement ductility demand corresponding to Aj/. (JI — Ajf/Ay).
4. Calculate the damping £ corresponding to the ductility demand JU.

5. Calculate the displacement response A at Tc corresponding to £
6 . Use this value A as the new estimate for the final displacement Adf-
7. Cycle steps 3 to 6  until a stable solution is found. Typically this requires only one 

or two iterations.
Again there is no unique solution, as the effective stiffness could correspond to any 

period T > Tc. Any value of design base shear less than VBase — 47C2meA Tc2 will satisfy 
the design assumptions. A higher value will imply a response at an effective period less 
than Tc, and hence the response displacement will be incompatible with the effective 
damping. In both cases discussed above the provided strength will not affect the 
displacement response. Minimum strength requirements for P-A effects (Section 3.6) or 
gravity loads will govern the required strength.

3.4.7 Example 3.4: Base Shear for a Flexible Bridge Pier

Example 3.3 is redesigned for somewhat different conditions. First, (case (a)), the 10m 
(32.8ft) high bridge pier is designed for normal ground motion with a reduced peak
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ground acceleration of 0.35g, and a spectral displacement spectra set proportional to

maintained, but the effective height is increased to 25m (82ft).

Case (a): Design Displacement: Limit state conditions have not changed from 
Example 3.3, so the design displacement capacity is still 0.35m (13.8 in.), and the 
corresponding displacement ductility capacity is jl  =3.97. The corresponding equivalent 
viscous damping at the design displacement capacity is again 15.5%.

Maximum spectral displacement for 5% damping: W ith a corner period of 4.0
sec., and 0.35g PGA, the corner-period elastic displacement is scaled from Fig.3.1(d) 
which applies for a PGA of 0.4g to give Ac>s = 0.5x0.35/0.4 = 0.438 m (17.2 in.). This 
exceeds the yield displacement of 0.0881m, so the pier will respond inelastically.

Maximum spectral displacement for 15.5% damping: By proportion from 
Example 3.3, the corner displacement for 15.5% damping is:

This is less than the displacement capacity of 0.35m, and hence the response 
displacement will be less than the displacement capacity. We use the iterative approach 
outlined in Section 3.4.7(b):
2. The final displacement will be somewhere between the corner displacement, 0.277 m 
and the displacement capacity, 0.35 m. We make an initial estimate of A  ̂= 0.30 m.
3. With the yield displacement at Ay — 0.0881 m (see Example 3.3) the displacement 
ductility is fJL — 0.30/0.0881 = 3.41.
4. From Eq.(3.17a) the corresponding equivalent viscous damping ratio is

5. The corresponding displacement at the corner period Tc is again found from Eq.(2.8):

Use this as the new estimate of Ad.
6 . Cycling once more through the sequence yields: [1 -  3.19, % — 0.147, and A ^  = 0.284 
m (11.2 in.). The result has stabilized.
The reference effective stiffness is thus found, using T — Tc — 4.0 sec. in Eq.(3.1) as:

Gravity load or P-A requirements will govern the choice of the actual design strength.

Fig.3.1(d). Second, (case (b)), the physical dimensions of the column cross section are

A415 5 = 0.533x0.35/0.7 = 0211m

% = 0.05 + 0.444—'——— =0.150 (15%) 
3.41;r

Ke = 4n 2 (5000/9.805)/4 2 = 1258 kN/m , 

and the maximum design base shear force, from Eq.(3.2) as 

VBaSc = 1258x0.284 = 357.3kN. (80.3 kips)
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Case (b): Design Displacement: The yield curvature is unchanged, and the yield 
displacement is calculated, from Eq.(3.7), as

A, = (pyH2/ 3 = 0.00264x252/3 = 0.55 m (21.7 in.).
Note that this is independent of the final strength. This displacement exceeds the elastic 
displacement at the corner period, A4 5  = 0.438 m. Hence there is no point in further 
calculating the displacement capacity, as the pier will respond elastically to the design level 
of intensity, with a response displacement of 0.438 m.

Now, since the structure responds elastically, with a known displacement, the allocated 
strength is in fact arbitrary, as noted above. For example, if we allocated a yield strength 
of 500 kN, the stiffness would be K ei — 500/0.55 =909 kN/m. The calculated elastic 
period would be:

Td = 2^7(5000/(9.805x909)) = 4.71 seconds.

The response displacement would be 0.438 m, and the maximum response force would 
be

VBose = 909x0.438 = 398 kN (89.5 kips).
However, if we arbitrarily allocated a yield strength of 350kN, the stiffness would be 

Kei =350/0.55 = 636 kN/m, and the elastic period would be 5.63 seconds. The response 
displacement, (see Fig.3.1 (d)), would still be 0.438 m, and the maximum response force 
would be 278 kN (62.5 kips). P-A moments for this case would be 36% of the base 
moment from the horizontal inertia force, and, in accordance with Section 3.6, would 
need to be carefully considered.

Note that if the strength was arbitrarily set higher than 692 kN, (say 800 kN), then the 
elastic period would be found to be less than 4 sec. (in this case, Kei =1455 kN/m, and 
Tei ~ 3 .72 sec, and the structure would respond with a displacement less than 0.438 m, (in 
this case 0.407 m (16.0 in)), in accordance with the elastic 5% displacement spectrum for 
the calculated period.

In fact, the example is probably artificial. The base moment would be very high, in 
either case, and redesign with a larger column diameter (and hence smaller yield 
displacement) would be advisable. The pier would also be excessively flexible for gravity 
loads.

3.5 MULTI-DEGREE-OF-FREEDOM STRUCTURES
For multi-degree-of-freedom (MDOF) structures the initial part of the design process 

requires the determination of the characteristics of the equivalent SDOF substitute 
structure^. The required characteristics are the equivalentjnass, the design displacement, 
and the effective damping. When these have been determined, the design base shear for 
the substitute structure can be determined. The base shear is then distributed between the 
mass elements of the real structure as inertia forces, and the structure analyzed under 
these forces to determine the design moments at locations of potential plastic hinges.



96 Priestley, Calvi and Kowalsky. D isplacement-Based Seism ic Design of Structures

3.5.1 Design Displacement

The characteristic design displacement of the substitute structure depends on the limit 
state displacement or drift of the most critical member of the real structure, and an 
assumed displacement shape for the structure. This displacement shape is that which 
corresponds to the inelastic first-mode at the design level of seismic excitation. Thus the 
changes to the elastic first-mode shape resulting from local changes to member stiffness 
caused by inelastic action in plastic hinges are taken into account at the beginning of the 
design. Representing the displacement by the inelastic rather than the elastic first-mode 
shape is consistent with characterizing the structure by its secant stiffness to maximum 
response. In fact, the inelastic and elastic first-mode shapes are often very similar.

The design displacement (generalized displacement coordinate) is thus given by

(3-26)
i= l  i=1

where m; and A,- are the masses and displacements of the n significant mass locations 
respectively. For multi-storey buildings, these will normally be at the n floors of the 
building. For bridges, the mass locations will normally be at the centre of the mass of the 
superstructure above each column, but the superstructure mass may be discretized to 
more than one mass per span to improve validity of simulation (see Section 4.9.2(e)(iii)).

""~~~With tall columns, such as may occur in deep valley crossings, the column may also be 
discretized into multiple elements and masses.

Where strain limits govern, the design displacement of the critical member can be 
determined using the approach outlined in Section 3.4.1. Similar conclusions apply when 
code drift limits apply. For example, the design displacement for frame buildings will 
normally be governed by drift limits in the lower storeys of the building. For a bridge, the 
design displacement will normally be governed by the plastic rotation capacity of the 
shortest column. With a knowledge of the displacement of the critical element and the 
design displacement shape (discussed further in the following section), the displacements 
of the individual masses are given by

A, = 8, ■V
\ $ c  J

(3.27)

where $  is the inelastic mode shape, and Ac is the design displacement at the critical 
mass, cy and 8C is the value of the mode shape at mass c.

Note that the influence of higher modes on the displacement and drift envelopes is 
generally small, and is not considered at this stage in the design. However, for buildings 
higher than (say) ten storeys, dynamic amplification of drift may be important, and the
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design drift limit may need to be reduced to account for this. This factor is considered in 
detail in the relevant structural design chapters.

3.5.2 Displacement Shapes

(a) Frame Budldings: For regular frame buildings, the following equations, though 
approximate, have been shownl^17! to be adequate for design purposes:

Building frames: for n < 4: Sj = H[ / Hn
cK‘

for n > 4: 8, — 1L 1 -
H :

4 H

(3.28a)

(3.28b)
n J

In Eq.(3.28) and H„ are the heights of level i} and the roof (level n) respectively. 
Displacement shapes resulting from Eq.(3.28b) provide improved agreement between 
predicted displacements and those resulting from inelastic time-history analysis for taller 
buildings, compared with the linear profile appropriate for shorter buildings

(b) Cantilever Wall Buildings: For^cantilever wall buildings the maximum drifts will 
occur in the top storey. The value of this drift may be limited by the code maximum drift 
limit, or by the plastic rotation capacity of the base plastic hinge. Assuming a simple 
triangular distribution of first-mode curvature with height at yield, as shown in Fig. 3.18, 
to compensate for tension-shift and shear deformation, (see Section 6.2.1 for justification 
of this) the yield drift 6yn at the top of the wall will be

Qy„=<l>yHJ2

where (j)y — 2£y/lw from Eq.(3.6c), and lw is the wall length . Hence,

0yn=£yH J l w (3.29)

As a reasonable approximation (see Section 6.2.1(b)), the plastic rotation may be 
concentrated at the wall base. The critical drift at the top of the wall will thus be

= = i .0 f ,/ / y / „ + ( ^ . - 2 . t e ,//.)£ , < e c (3 .3 0 )

where 6pn is the plasdc rotation at the top of the wall corresponding to the design limit 
state, <pm is the corresponding base curvature, and Lp is the plastic hinge length (see 
Section 4.2.7). The yield displacement at height Hj is given by:
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G'dn

(b) Displacement Ratio
Fig.3.18 Yield and Design Displacements for Cantilever Walls

If the roof drift from Eq (3.30) is less than the code drift limit 0C, then the design 
displacement profile is given by

A.. = A ... + A ... -  II?y P‘ /.
1 -

H,
3 H 4>m-

2e„

ii /
LPHS (3.32a)

vt’ J

If the code drift limit governs the roof drift, the design displacement profile is given by

/ „  W
J L
3 H.

+
/

H; (3.32b)
J

Although Eq. (3.32) can be manipulated to provide a generalized displacement shape 5j 
to be compatible with Eq. (3.2T7), there is little value in so doing, since the full 
displacement profile must first be found. Further information on displacement profiles 
for cantilever walls is provided in Chapter 6 .

(c) Multi-Span Bridges: With bridges it is less easy to initially determine a design
displacement profile, particularly for transverse seismic response. Figure 3.19 illustrates 
two possible bridge configurations out of a limitless potential range. The example of Fig. 
3.19(a) has piers of uniform height, while those in Fig. 3.19(b) vary in height. The 
transverse displacement profiles will depend strongly on the relative column stiffnesses, 
and more significantly, on the degree of lateral displacement restraint provided at the 
abutment, and the superstructure lateral stiffness. For each bridge type, three possible 
transverse displacement profiles are shown, corresponding to an abutment fully 
restrained against transverse displacement, a completely unrestrained abutment, and one 
where the abutment is restrained, but has significant transverse flexibility.
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Structure Structure

Free

0 0.2 0.4 0.6 0.8Dimensionless Distance
(a) Uniform Height Piers

0.2 0.4 0.6 0.8Dimensionless Distance
(b) Irregular Height Piers

Fig.3.19 Design Transverse Displacement Profiles for Bridges

For the case of Fig. 3.19(a), the critical pier will be the central one, and with the 
appropriate displacement profile chosen, Eq. (3.27  and 3.26) can be applied directly. For 
the irregular bridge of Fig. 3.19(b) the critical pier may not be immediately apparent, and 
some iteration may be required. Iteration may also be required for the case of finite 
Translational flexibility of the abutments for both the regular and irregular bridges to 
determine the relative displacements of abutment and the critical pier. Generally a 
parabolic displacement shape between abutments and piers can be assumed for initial 
design. Further information on displacement profiles for bridges is given in Chapter 10.

3.5.3 Effective Mass

From consideration of the mass participating in the first inelastic mode of vibration, 
the effective system mass for the substitute structure is

me= 'Z i {mA i ) /Ad (333)
/'=!

where is the design displacement given by Eq.(3.26). Typically, the effective mass will 
range from about of the total mass for multi-storey cantilever walls to more than 
85% for frame buildings of more than 20 storeys. For simple multi-span bridges the 
effective mass will often exceed 95% of the total mass. The remainder of the mass 
participates in the higher modes of vibration. Although modal combination rules, such as
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the square-root-sum-of-squ ares (SRSS) or complete quadratic combination (CQC)rulesl°J may 
indicate a significant increase in the elastic base shear force over that from the first 
inelastic mode, there is much less influence on the design base overturning moment. The 
effects of higher modes are inadequately represented by elastic analyses, as will be shown 
in the chapters devoted to specific structural forms, and are better accommodated in the 
capacity design phase, rather than the preliminary phase of design.

3.5.4 Equivalent Viscous Damping

(a) System Damping: The effective damping depends on the structural system and 
displacement ductility demand, as illustrated in Fig.3.1(c) and Eqs.3.17. This requires 
determination of the displacement ductility demand of the substitute structure. This poses 
few problems, since the design displacement Â  has already been determined, from 
Eq.(3.26). The effective yield displacement Ay needs to be interpolated from the profile 
of displacements at yield (e.g. Eq.(3.31) for cantilever walls, or Eq.(3.8) for frames). For 
frames it Is adequate to assume that the yield drift is constant with height (i.e. the yield 
displacement profile is linear with height), and hence the yield displacement is

A y= 0 y .H e (3.34)

where 6y is given by Eq.(3.8). For walls, the yield displacement is found from Eq.(3.31) 
with Hi — He. In both cases this requires knowledge of the effective height of the 
substitute structure, which may be taken as:

H. = E M ' Z M  (3-35)
/-I /=1

The design ductility factor, for use in Eq.(3.17) is then

// = Ad /Ay (3.36)

in the usual fashion.
Note that provided reasonable ductility is implied by the design displacement A</, 

Fig.3.1(c) and Eq.(3.17) indicate that the damping is not strongly dependent on the 
ductility, and average values may be adopted. This is also implied in Fig.3.17(b). Note 
also, that concrete and masonry structures are much more flexible than normally assumed 
by designers, and hence code drift limits, rather than displacement ductility capacity tends 
to govern design (see Section 5.3.1, e.g.). As a consequence, the design ductility, and the 
effective damping are known at the start of the design process, and no iteration is needed 
in determining the design base shear force.

When the lateral resistance of a building in a given direction is provided by a number 
of walls of different length, the ductility demand of each wall will differ, since the yield 
displacements of the walls will be inversely proportional to the wall lengths (see 
Eq.(3.6c)), while the maximum displacements at design-level response will be essentially
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equal, subject only to small variations resulting from torsional response and floor 
diaphragm flexibility. This was discussed in Section 1.3.6, with reference to Fig. 1.13. 
Hence the system damping will need to consider the different effective damping in each 
wall.

In the general case, where different structural elements with different strengths and 
damping factors contribute to the seismic resistance, the global damping may be found by 
rhe weighted average based on the energy dissipated by the different structural elements. 
That is,

m m
£ = K fA £ ) /I ,/A  p -37>

7=1 j =1

where Vj, Aj and ^  are the design strength at the design displacement, displacement at 
height of centre of seismic force, and damping, respectively, of the /h structural element. 
Alternatively, the energy dissipated may be related to the moment and rotation of 
different plastic hinges (VjA\ —MjOj). This form may be more appropriate for frame 
structures.

With multiple in-plane walls, the displacements of the different walls will all be the 
same, and hence Eq.(3.37) can be simplified to

m m
z. = u v,z , ) , 1l vj <3'38>

J= 1 7=1

where Vj and are the base shear force and damping of the m walls in a given direction. 
Some modification of Eq.(3.38) may be required when torsional response of a building 
containing more than one plane of walls in a given direction is considered. In this case, 
Eq.(3.37) applies. However, the error involved in using Eq.(3.38) is small, even when 
torsional response is expected.

A rational decision will be to apportion the total base shear force requirement 
between the walls in proportion to the square of the length. This will result in essentially 
constant reinforcement ratios between the walls. With wall strength proportional to 
length squared, Eq.(3.38) may be rewritten as:

m m

(3-39)
7=1 7=1

(b) Influence o f Foundation Flexibility on Effective Damping: Although the
influence of foundation flexibility on seismic design can be incorporated into force-based 
design, albeit with some difficulty, it is rarely considered. Foundation flexibility will 
increase the initial elastic period, and reduce the ductility capacity corresponding to the 
strain or drift limit statesiP4l  It is comparatively straightforward, however, to incorporate 
the influence of elastic foundation compliance into Direct Displacement-Based Design. If 
the limit state being considered is strain-limited, then the design displacement will be 
increased by the elastic displacement corresponding to foundation compliance (this
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requires a knowledge of the design base moment and shear force, and hence some 
iteration may be required). If, however, the limit state is defined by code drift limits, there 
will be no change in the design displacement, thus implying reduced permissible 
structural deformation.

Fig.3.20 Damping Contributions of Foundation and Structure

The second influence relates to the effective damping. Both foundation and structure 
will contribute to the damping. Consider the force-displacement hysteresis loops of 
Fig.3.20, where foundation (A/) and structure (As) components of the peak response 
displacement Â  = As + Af have been separated for a cantilever wall building. Assuming 
sinusoidal displacement response, the area-based equivalent viscous damping for the 
foundation and for the structure can be separately expressed as

AiFoundation: £/>«,=-7 -=----—  (3-40a)

t  AStructure: £  = ——---—  (3.40b)

where Af and As are hysteretic areas within the loops (i.e. energy absorbed per cycle) for 
foundadon and structure respectively. As shown in Fig.3.20, the hysteretic area of the 
combined structure/foundation system will be the sum of the two components, and 
hence the system equivalent viscous damping will be

System: q —------------  r = —----------------  (3.40c)
2 ^ b J a / + a J  A/ + A,
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Equation (3.40) is based on the assumption that the ratios of the effective damping of 
the structure and foundation is equal to the ratios of the hysteretic areas. However, it will 
be seen that the identical final result would be obtained from the more general form of 
Eq.(3.37).

3.5.5 Example 3.5: Effective Damping for a Cantilever Wall Building

A B C
"iForce

H„

—►) 2.0 [*— [*— 4.0m—►) —►) 2.0 [*— AyB (Disp.) AuB

Fig.3.21 Structural Wall Building for Examples 3.5, 3.6, and 3.7

The four-storey building of Fig.3.21 is used as an example. Storey heights are uniform 
at 3.2m (10.5 ft), and floor masses are constant at 100 tonnes (220.5 kips) per floor. 
Lateral resistance in the direction considered consists of three walls, one long and two 
short as shown in Fig.3.21, on each opposite side of the building. Wall lengths are lwg — 
4m (13.1 ft) and lwA — lwc =2m (6.56 ft). A code drift limit of 6C =0.02 governs the design 
displacements. Rebar for the walls has a yield strength of 400 MPa (58 ksi). It is assumed 
that distances between the walls are such that slab-coupling of the walls is negligible (see 
Section 6 .8 ). Hence the walls may be considered as cantilevers linked by flexible struts 
with zero moment capacity. Strain penetration effects are neglected in this and the 
following two related examples (but see Section 4.2.7)

Design displacements: [Since the code drift limit governs,/ floor-level displacements 
are given by Eq.(3.32b). Because of its higher stiffness and strength, the longer 4m wall 
will dominate the displaced shape. Substituting in Eq.(3.32b), with Hn =4x3.2 = 12.8m,

1 1and^r=~400/200,000 =0002^ 

0 . 0 0 2  //.
r V  O r

A,. =- '-H 1 -
3x12.8

+ 0 .0 2 -
0.002x12.5

Displacements resulting from the above expression, and other parameters needed in 
the assessment of the equivalent viscous damping, are listed in Table 3.3.
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Table 3.3 Calculations for Example 3.5

Height Hi (m) Ai A 2 HiA;
3.2 0.0482 0.00232 0.1542
6.4 0.1041 0.01084 0.6662
9.6 0.1651 0.02726 1.5850

12.8 0.2287 0.05230 2.9270
Sum = 0.5461 0.09272 5.332

From Eq.(3.26), noting that the masses are all equal, the design displacement of the 
SDOF substitute structure is

n n
A d = Yj\mA ) / X ( w A  ) = 0-09272/0.5461 = 0.1698m (6 . 6 8  in.)

M /=1

Yield displacements: The effective height of the SDOF substitute structure is given 
by Eq.(3.35):

n n

H e = X ( w /A////)/S ( w iA / ) = 5 -3 3 2 / 0 -5 4 6 1  =9-765m (=0.763i/„)
M /=1

Yield displacements of the 4 m and 2 m walls are given by Eq.(3.31). For the 4 m wall:

1 - H.
3 H

0.002 X9.765
n J

1 -
9.765

3x12.8
= 0.0355m (1.40 in.)

The yield displacement of the 2m wall will be twice this, i.e. 0.0710m (2.80in).
Wall displacement ductility factors: From Eq.(3.36), the displacement ductility 

factors for the walls are:
4 m wall: = 0.1698/0.0355 = 4.78
2 m wall: jl  = 0.1698/0.0710 = 2.39

Wall damping factors: From Eq.(3.17a), the individual wall damping factors are:

4 m wail: £  = 0.05+0.444(4.78 - l)/(4.787l) = 0.162 
2 m wall: £  = 0.05+0.444(2.39 - 1)/(2.39tc) = 0.132

Structure equivalent viscous damping: Finally, assuming a distribution of base 
shear force in proportion to (wall length)2, as discussed in section 3.5.4, then, from 
Eq.(3.39), the effecdve damping, to be used in design is:

£  = ((2x22)x0.132 +42x0.162)/(2x22 + 42) = 0.152 (15.2%)

3.5.6 Distribution of Design Base Shear Force

The principles outlined in the previous sections enable the design base shear to be 
established for a MDOF system. This base shear force must be distributed as design
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forces to the various discretized masses of the structure, in order that the design 
moments for potential plastic hinges can be established. Assuming essentially sinusoidal 
response at peak response, the base shear should be distributed in proportion to mass 
and displacement at the discretized mass locations. Thus the design force at mass /is:

F i = V Base imA i  ) (3-41)
/ = ]

Similarity with force-based design for multi-storey buildings will immediately be 
apparent. The difference is that the design inelastic displacement profile, rather than a 
height-proportional displacement is used, and the form of Eq.(3.41) is generalized to all 
structures (including, e.g. bridges and wharves), not just buildings. It will be shown in 
Chapter 5 that minor modification of Eq.(3.41) is advisable for taller frame buildings to 
avoid excessive drift in upper storeys.

The distribution of the design base shear force between different parallel lateral force- 
resisting elements (walls, and frames) is, to some extent, a design choice, as will be 
discussed in more detail in individual chapters relating to different structural systems.

3.5.7 Analysis of Structure under Design Forces

Analysis of the structure under the lateral force vector represented by Eq.(3.41) to 
determine the design moments at potential plastic hinge locations is analytically 
straightforward, but nevertheless needs some conceptual consideration. In order to be 
compatible with the substitute stincture concept that forms the basis of DDBD, member 
snffness should be representative of effective secant stiffnesses at design displacement 
response.

For cantilever wall buildings, this can be simplified to a distribution of the vertical 
force vector between walls in proportion to i j , as suggested above, with the walls then 
analysed separately. The designer should not, however, feel unduly constrained by this 
suggested strength distribution, as there will be cases where the adoption of other 
distributions is more rational. This is discussed further in Chapter 6 .

For reinforced concrete frame and dual (wall/frame) system buildings, more care is 
needed. With weak-beam/strong-column frame designs, beam members will be subjected 
ro inelastic actions, and the appropriate beam stiffness will be:

(E l)beam= E cl cr/jUb (3.42)

where EcIcr is the cracked-section stiffness, found in accordance with the methods 
developed in Chapter 4, and / 4  is the expected beam displacement ductility demand. 
Analyses have shown that the member forces are not particularly sensitive to the level of 
snffness assumed, and thus it is acceptable to assume that /4 =//5, the frame design 
ductility.

Since the columns will be protected against inelastic action by capacity design 
procedures, their stiffness should be taken as EcIcr with no reduction for ductility. Note
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that in the initial stages of the design, the beam and column flexural strengths will not be 
known, and the arguments presented in Chapter 4 indicate that it will thus not be possible 
to accurately define the cracked section stiffnesses of the beams or columns. However, as 
noted above the member forces are not strongly dependent on the stiffness, and it is the 
relative effective stiffness of beams and columns that is of importance, rather than the 
absolute values. Thus average values of cracked-secdon stiffness may be taken from the 
material presented in Chapter 4, with adequate accuracy. Displacements predicted from 
the analyses may have significant errors, but since the displacement is in fact the design 
input, and has already been fully considered in the design process, this is of little 
consequence.

Analysis of frames and dual wall/frame systems under the design forces is considered 
in detail in the relevant chapters, where it is shown that simplified hand methods of 
analysis may often be used instead of computer analyses, even for multi-storey buildings, 
without loss of accuracy.

3.5.8 Design Example 3.6: Design moments for a Cantilever Wall Building

We continue with the cantilever wall building started in design example 3.5. Design is 
based on a site-specific seismic survey which establishes that essentially all of the risk is 
associated with a fault 10 km from the site, capable of a earthquake of magnitude Mw = 
6 .8 . Because of the proximity to the fault, velocity pulse conditions are considered a real 
possibility. This information is used to generate the design displacement spectrum, using 
the approach suggested in Section 2.2.2.

Design displacement spectrum: From Eq.(2.3), the corner period of the
displacement spectrum is:

Tc = 1 . 0  + 2 .5(6. 8 -  5.7) = 3.75 sec.
The corresponding displacement for 5% damping is given by Eq.(2.5), at a distance of 

r  — 1 0  km:

s,nax = 1 0(6-8-3.2)/io = 398 mm (15.7 in)

This is the value Ac,s used in Eq.(3.22). With velocity pulse conditions, and the 
effective damping of 0.152 calculated in Example 3.5, the displacement for 15.2% 
damping at the corner period is given by Eq.(2.11) as

0 07 Y '25A/>1„  =398-| . , = 318 mm (12.5 in)c'15'2 1 0.02 + 0.152
For completeness, the full displacement response spectra, for damping ratios between 

0.05 and 0.30, and for periods up to 5 seconds, are plotted in Fig.3.22.
By proportion, the effective period, for the design displacement of A</ = 169.8 mm 

found in Example 3.5 is X

Te = 3.75x169.8/318 = 2.0 sec. (see Fig.3.12)

^ 7
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The effective mass is found from Eq.(3.33) and Table 3.3 as:

m = 100 — 100 0-5461 = 321.6 tonnes.
Ad 0.1698

From Eq.(3.1) the effective stiffness is = 4n2me/Te2 ~ 47t2X(321.6/2.02) = 
3174kN/m
The total base shear design force is thus, from Eq.(3.2):

We now distribute this base shear force between the walls in proportion to length 
squared. Recalling that there are two 4 m wails and four 2 m walls:

VBase,4 (4 m wall) = 539X42/(2x42 + 4x22) = 180 kN (40.4 kips)
VBasea (2 m wall) = 0.25X180 = 45 kN (10.1 kips)

The base shear forces for the individual walls are now distributed up the height of the 
building in accordance with Eq.(3.41), enabling the distributing of shear force and 
bending moment up the wall to be calculated. Considering only a 4 m wall, and noting 
that the floor masses are all equal:

n
F, = ^ M , ) / Z ( WA  )= lSOAi/0.5461 = 329.6A,

/-I

where ^  = 0.5461 m from Table 3.3. The calculations are listed in Table 3.4.

Period (seconds)
Fig.3.22 Displacement Response Spectra for Example 3.6
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Table 3.4 Design Forces for 4m Wall of Example 3.6

Height 
Hi (m)

Displacement 
Ai (mm)

Floor Force 
Fi (kN)

Shear Force 
Vi (kN)

Moment
(kNm)

12.8 0.2287 75.4 0/75.4 0

9.6 0.1651 54.4 75.4/129.8 241.3
6.4 0.1041 34.3 129.8/164.1 656.6
3.2 0.0482 15.9 164.1/180.0 1182
0.0 0 . 0 0 . 0 180.0 1758

Thus the critical design moment for the plastic hinge at the wall base is 1758 kNm (395 
kips). The design moment for the base of the 2 m wall will be 25% of this.

3.5.9 Design Example 3.7: Serviceability Design for a Cantilever Wall Building

We now check the performance of the cantilever wall building designed in Design 
Examples 3.6 and 3.7 at the serviceability limit state. This could be done as an assessment 
exercise, using the procedures developed in Chapter 13, where we determine the seismic 
intensity corresponding to the serviceability limit state, and compare it with the 
serviceability seismic intensity. In effect this would be a classic capacity/demand 
comparison, based on seismic intensity. The alternative, which we follow in this example, 
is to redesign the structure and determine the required base-shear strength to satisfy the 
serviceability limit state criteria.

In Design Example 3.6 the seismic risk for the damage-control return period was 
dominated by an earthquake of Mw =6 . 8  within 10km of the site. For the serviceability 
limit state, the risk is dominated by a Mw = 6 . 2  earthquake, also within 1 0 km. This rather 
high seismic intensity indicates the site to be located in a region of intense seismic 
activity. However, forward directivity effects are not expected, and CC— 0.5 applies.

We first consider limit state criteria appropriate to a construction environment where 
internal partitions are light and flexible, and capable of withstanding drifts ofj&Ol withoul/ 
significant damage. Serviceability limit-state strains must also be considered. In a second 
case we relocate the building in a location where unreinforced masonry partitions are 
used. For these, a drift limit of 0.005J as specified in several European design codes, is 
defined.

Design Displacement Spectrum: Applying the same equations as in Example 3.6 to 
an Mw = 6.2 earthquake at 10km, we calculate a corner period of 2.25 sec., and a 
corresponding displacement of 100mm (3.94 in).

Case 1: Flexible Partitions: The lesser of displacements corresponding to the limit 
state curvature or the limit-state drift of 0 . 0 1  at roof level will define the serviceability 
limit-state displacement. We investigate the strain limits first.
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Serviceability Lim it State: In Section 6.2.1(c) it is established tjhr̂ t the serviceability 
limit-state curvature for cantilever walls can be expressed as j(j)s = 0 . 0 1 7 5 / ]  The stiffer
4m wall will govern: (ps = 0 . 0 1 7 5 / = 0.0175/4 = 0.004375/m.

4m Wall: Plastic hinge length: Based on Eq.(6.7) the plasdc hinge length for the 4m 
wall is found to be 1.089m. The yield curvature is found fromjEq.(3.6 c) as J(/>y — 0.001/my 
The plastic curvature is thus <pp — (f>s - (fa — 0.003375/mSw^xheclrThe roof drift 
corresponding to these curvatures from Eq.(3.30), which simplifies to:

ddn = e vH„/lw +<PpLp =0.002xl2.8/4-l|0.003375V(1.089\=0.010

This is also the drift limit, so both strain and drift limits apply simultaneously. The 
displacement profile can now be found. Equation(3.32a) applies, and simplifies to:

A, =0.5 (pH] 1 - H,
3 H T p p i

The displacements corresponding to this equation are listed in Table 3.5, together with 
rhe necessary data to calculate the design displacement and the effective height, in 
columns (1) to (3). From these data (follow steps in Example 3.5) the design displacement 
and effective height are found to be

Ad = 0.075 m (2.95 in), and //, = 9.99 m (32.8 ft).

Note the effective height has incxe^s^^mm^tlre^v^lTO appl}dng_jt^the^damage-control 
limit state.j" - - • ■...

Table 3.5 Calculations for Example 3.7

Height Hi 
(m)

(1) 
Case 1
Ai (m)

(2) 
Case 1

Aj2
(3)

Case 1 
HiAi

(4)
Case 2
Ai (m)

(5)
Case 2

A{2

(6) 
Case 2
HiAi

12.8 0.1017 0.01033 1.301 0.04265 0.001819 0.5460
9.6 0.0698 0.00488 0.670 0.02699 0.000729 0.2591
6.4 0.0406 0.00165 0.260 0.01333 0.000178 0.0853
3.2 0.0165 0.00027 0.053 0.00367 0.000013 0.0117

Sum = 0.2285 0.01713 2.284 0.08664 0.002739 0.9021

Yield displacement: From Eq. (3.31): 4""
A^=(0.002/4)x9.992( l -9.99/(3x12.8))= 0.0369/m

Displacement ductility: fl — 0.075/0.0369 = 2.03 
Equivalent viscous damping: From Eq.(3.17a): = 0.121
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/I
2m Walls: The design displacement is still 0.075m, but the yield displacement 

increases to Ay 2 =( 2x0.036$) = 0.0738. The displacement ductility is 1.015, and the 
damping is thus assurrTed-KTte £ 2  = 0.05.

System Damping: From Eq.(3.39) -  (16x0.121+8x0.05)/24 = 0.097

Effective mass: It would be conservative to assume the same effective mass as for
Example 3.6, but we re-calculate, for completeness. From Eq.(3.33) and Table 3.5:

me = 100x0.2286/0.075 = 304.8 tonnes (672kips/g)

Damping Reduction Factor: From Eq.(2.8): R^— (0.07/(0.02+0.097))a5 = 0.774
The corner-period displacement corresponding to Tc =2.25 sec and 9.7% damping is 

thus Ac,0 .097 — 100x0.774 = 77.4 mm. (3.05 in)

Effective Period: By proportion: Te — 2.25(0.075/0.0774) = 2.18 sec.
Effective Stiffness: From Eq.(3.1) Ke = 4ft 2x304.8/2.182 = 2533kN/m
Base Shear: From Eq.(3.2): Vsase -  2533x0.075 = 190kN (42.7 kips).
This is substantially lower than the base shear needed for the damage-control limit 

state of 539 kN from design example 3.6. The damage-control limit state thus governs.

Case 2: Masonry partitions: The drift limit for this case is 0.005. Since a drift limit of 
0.01 corresponded to a displacement ductility of 2.03 on the 4m walls, it is clear that the 
response for a maximum drift of 0.005 will be at close to the yield displacement for the 
4m walls, and less than yield for the 2m wails. We check the yield drift at roof level, from 
Eq.(3.29): 6y — 0.002x12.8/4 = 0.0064. This exceeds the design drift limit of 0.005 and 
hence all walls respond elastically. The displacement profile is found by reducing the yield 
displacement profile in the proportion 0.005/0.0064 = 0.781. From Eq.(3.31) the 
displacement profile is thus:

r

The displacements and other data needed to calculate the design displacement and 
effective height are listed in columns (4) -  (6 ) of Table 3.5. From these, using the same 
procedures as for Case 1 , we calculate the design displacement to be = 0.0316m, and 
the effective height to be He — 10.4m. The effective damping is ê— 0.05 since both walls 
remain elastic. The remaining steps are summarized below:

Effecdve Mass: me — 274.2 tonnes
Damping Reduction Factor: R% -  1.00 (damping = 0.05)
Effective Period: Te — 0.711 sec
Effective Sdffness: Ke — 21,400 kN/m
Base Shear: VBase -  677 kN (152.2 kips)
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Note that this is 36% higher than required for the damage-control limit state of

effectively 0.01. This illustrates the very non-linear nature of the strength/displacement 
requirement noted subsequently in Secdon 3.10.1. Since the 2 m walls will only develop

total nominal base shear capacity will need to be larger than 677kN (in fact, about 
810kN). It should also be noted, however, that the low drift limit of 0.005 has been 
imposed because of the requirement to limit damage to masonry infill panels. In the 
initial stages of response, the infill will provide substantial additional lateral resistance to

control limit state, their contribution to lateral resistance at this level of response would

strength for this rather stringent serviceability limit state if designed to the damage- 
control limit state. Design considering masonry infill is discussed in Secdon 5.12.

3.6 P-A EFFECTS

3.6.1 Current Design Approaches

As structures displace laterally, as suggested, for example, in the single-degree-of- 
freedom approximation of Fig.3.23(a), gravity loads induce overturning moments in 
addition to those resulting from lateral inertia forces. Using the nomenclature of Fig.3.23, 
the base moment .Mis

Design Example 3.6, and 256% higher than required for Case 1, when the drift limit was

about 50% of their nominal flexural strength at the serviceability design drift limit, the

the building, which should be considered when determining the required strength of the 
cantilever walls. Since the infill walls are expected to be severely damaged at the damage

be discounted. It is thus quite possible that the structure would also satisfy the required

M = FH + PA (3.43)

>
Ay Displacement Au 

(c) Force-Displacement Response(a) Structure (b) Moments

Fig.3.23 P-A Effects on Design Moments and Response
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If the base moment capacity Mjy is developed in inelastic response, then the lateral 
inertia force that can be resisted reduces as the displacement increases, according to the 
relationship

^ Md -  PAF = — £--------  (3.44)
H

This effect is illustrated in Fig.3.23(c), where it is apparent that the P-A effect not only 
reduces the lateral force, but also modifies the entire lateral force-displacement 
characterisdc. The effecdve initial stiffness is reduced, and the post-yield stiffness may 
become negative.

The significance of P-A effects is recognized in most seismic design codes, and is 
typically quantified by some form of “stability index”, 6a which compares the magnitude 
of the P-A effect at either nominal yield, or at expected maximum displacement, to the 
design base moment capacity of the structure. Since the P-A effect is of maximum 
significance at the design level of seismic response, we relate the stability index to 
conditions at maximum response, as recommended in [PI]:

eA = ^ f ^  (3.45)
m d

In conventional force-based design, one of two different approaches is typically 
adopted to account for P-A effects. One approach is to increase the expected design 
displacement to A*max:

A* = (3.46)
max \ - 0 A l - 0 A

The alternate approach is to increase the strength in an attempt to avoid an increase in 
the expected design displacement. Paulay and Priestley^, discussing the design of 
reinforced concrete frame buildings, recommend that when the stability index is less than 
ftj—0.085, P-A effects may be ignored. For higher values of the stability index, an equal - 
energy approach is adopted to determine the required strength increase, as suggested in 
Fig. 3.23(c). This implies that the required nominal strength increase, ignoring P-A effects 
is somewhat greater than 50% of the calculated P-A effect.

3.6.2 Theoretical Considerations

Inelastic time-history analysesP2’M2’M3l indicate that the significance of P-A effects 
depends on the shape of the hysteretic response. With the adoption of an elasto-plastic 
characteristic it can be shownM that if the earthquake record is long enough, instability
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'i.e. an increase in displacements until PA~Mo) will eventually occur, when P-A effects 
are included in the dynamic analysis. This can be explained with reference to Fig. 3.24(a). 
After an initial inelastic pulse resulting in a maximum displacement corresponding to 
point A, the structure unloads down a line of stiffness equal to the initial elastic stiffness 
ro point B. In further response cycles it is more probable that the strength envelope will 
be reached at point A rather than point C on the opposite yield boundary, since a higher 
level of elastic response is needed to attain point C. Consequently, once the first inelastic 
pulse occurs, it creates a tendency for continued displacement in the same sense, and 
response continues incrementally to D and E, and if the earthquake record is long 
enough, failure eventually occurs.

Although elasto-plastic hysteretic characteristics may be a reasonable approximation to 
steel structure response, concrete structures are better represented by the modified 
Takeda hysteretic rulel01', illustrated in Fig. 3.24(b), which has a positive post-yield 
snffness, an unloading stiffness that is significantly less than the initial loading stiffness, 
and subsequent re-loading stiffness greatly reduced from the initial stiffness. The positive 
Dost-yield stiffness compensates, to some extent for the strength loss associated with P-A 
moments. Furthermore, unloading from the same displacement (point A) as for the 
elasto-plastic case results in much lower residual displacement at point B, because of the 
reduced unloading stiffness. Subsequent elastic cycles result in gradual reduction of the 
residual displacement (shake-down, lines B-F-G in Fig. 3.24(b)) due to the reduced 
snffness in the reverse direction, and no preferential direction for cumulative 
displacement develops.

(a) Elasto-plastic Hysteresis (b) Takeda Degrading Stiffness Hysteresis

Fig 3.24 Influence of Hysteresis Rule on P-A Response
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Analyses have shown f̂ 13! that provided the second slope stiffness K s of the stabilized 
loop shape, including P-A effects is positive, as in Fig. 3.24(b), structural response is 
stable, with only minor increase in displacement compared with response where P-A 
effects are ignored. It has been shown^f3’P4l that for Takeda response, a positive 
stabilized second slope stiffness of at least 5% of the initial elastic stiffness is assured 
provided the stability index satisfies:

0A < 0.3 (3.47)

where the stability index is defined by Eq.(3.45).

3.6.3 Design Recommendations for Direct Displacement-Based Design

It will be recognized that there are significant difficulties in rationally considering P-A 
effects in force based design. As was noted in Section 1.3.7, estimation of maximum 
expected displacement from different codified force-based designs is subject to wide 
variability. Hence large errors in calculated P-A moments can be expected, depending on 
which design code is used. Further, most force-based codes seriously underestimate the 
elastic and inelastic displacements, and hence underestimate the severity of P-A effects.

The treatment of P-A effects in DDBD is comparatively straightforward, and is 
illustrated in Fig. 3.23(c). Unlike conditions for force-based design, the design 
displacement is known at the start of the design process, and hence the P-A moment is 
also known before the required strength is determined. DDBD is based on the effective 
stiffness at maximum design displacement. When P-A moments are significant, it is the 
stiffness corresponding to the degraded strength and the design displacement (see Ke in 
Fig.3.23(c)) that must match the required stiffness. Hence, Eq.(3.2) defines the required 
residual strength. The initial strength, corresponding to zero displacement, is thus given 
by

PAF = KeAd + C ■ —- j-  (3.48)
r i

and hence the required base-moment capacity is

MB=KeAdH + CPAd (3.49)

Note that it is more consistent to define the P-A effect in terms of the base moment, 
than the equivalent lateral force. In Eq.(3.49), for consistency with the design philosophy 
of DDBD, we should take C= 1. However, examination of the hysteretic loops indicates 
that more energy will be absorbed, for a given final design displacement and degraded 
strength, than for a design when P-A design is not required, particularly for concrete-like 
response. It is also apparent from time-history analyses that for small values of the 
stability index, displacements are only slighdy increased when P-A moments are ignored,



Chapter 3. Direct D isplacement-Based Design: Fundamental Considerations 115

as noted above. It is also clear that steel structures are likely to be more critically affected 
than will concrete structures. Consideration of these points leads to the following design 
recommendations, which have recently been confirmed by time-history analysesPM4L

(a) Steel structures: When the structural stability index defined by Eq. 3.45 exceeds
0.05, the design base moment capacity should be amplified for P-A considerations as 
indicated in Eq.(3.49), taking 6=1. This is represented by line 1 in Fig 3.25. Note that 
this implies greater strength enhancement than indicated by the upper line in Fig.3.23(c). 
For lesser values of the stability index, P-A effects may be ignored.

(b) Concrete structures: When the structural stability index defined by Eq.(3.45) 
exceeds 0.10, the design base moment capacity should be amplified for P-A effects as 
indicated in Eq.(3.49), taking C=0.5. This is represented by line 2 in Fig.3.25. This 
corresponds to the upper line, marked “strength enhancement for P-A” in Fig.3.23(c). 
For lesser values of the stability index, P-A effects may be ignored.

For both steel and concrete structures, it is recommended that the Stability Index, 
given by Eq.(3.45) should not exceed 0.33^4l

Fig. 3.25 Required P-A Strength enhancement in Displacement-Based Design

3.7 COMBINATION OF SEISMIC AND GRAVITY ACTIONS

3.7.1 A Discussion of Current Force-Based Design Approaches

Force-based seismic design codes normally require that actions (moments and shears) 
resulting from seismic design forces (reduced from the elastic level by specified force-



116 Priestley, Calvi and Kowalsky. D isplacement-Based Seism ic Design of Structures

reduction factors) be directly added to gravity moments and shears to determine the 
required design strength. Since this can result in very unbalanced moment demands at 
different critical locations of a structure, limited moment redistribution is advocated in 
some design texts (e.g. [PI]), and permitted in some design codes to improve structural 
efficiency. There are a number of illogical aspects related to the current philosophy for 
combination of gravity and seismic actions, and these will be examined before making 
design recommendadons.

Consider the bridge bent subjected to gravity loads (G) from two bridge girders, and 
seismic lateral forces (jE), illustrated in Fig. 3.26. The columns are circular, and under 
seismic response, the normal design philosophy is adopted, that plastic hinges should 
form only in the columns and not in the cap beam. Gravity load moments will often be 
determined from an analysis assuming gross (un-cracked) section stiffness. The results 
from such an analysis are shown by the solid line in Fig. 3.26(b), with key relative 
magnitudes included in parentheses.

Seismic moments may well be calculated using different stiffness assumptions — 
typically the column stiffnesses will be reduced to take some allowance for the effects of 
cracking, at moments corresponding to the yield moment (see Section 4.4). It should be 
noted, however, that combining results from different analyses using different stiffness 
values violates compatibility requirements. The results of such an analysis, shown in Fig. 
3.26(c), corresponding to the elastic moments (M e ) from a response-spectrum analysis, 
reduced by the design force-reduction factor, /?, (i.e., Afe,reduced —M^/R) are significantly 
larger than the gravity moments, as would be expected from a region of moderate 
seismicity. Relative moment magnitudes are again shown in parentheses in Fig.3.26(c).

In the following discussion, it is assumed that the “equal displacements” 
approximation is reasonably valid (but see Section 4.9.2(g) for a discussion of this 
assumption), and hence the displacement ductility factor fl& ~ R-

The gravity and reduced seismic moments are combined in Fig. 3.26(d). It is seen that 
very different moment demands are created in the two columns, and that the critical 
locations are the top (A) and bottom (B) of the right column, with moments of 15 and 13 
units respectively.

In the following, the influence of seismic axial load, which will affect the moment 
capacity of the two columns by different amounts will be ignored. The first consideration 
to be made is that designing for these combined magnitudes will result in an inefficient 
structure. Under reversal of the direction of the seismic force E, the left hand column will 
become critical, and hence both columns will have to be designed for the same flexural 
strength. We assume that the columns are circular, and that the moment capacities of the 
potential plastic hinges are equal in both directions of loading. Under seismic response, 
the pattern of moments shown in Fig. 3.26(d) by the solid line may be a reasonable 
approximation at first yield of the bent, but as the structure continues to deform to 
maximum displacement response, the left hand column will quickly develop plastic hinges 
at top and bottom, at the design strength of 15 units, assuming the reinforcement is the 
same at top and bottom of the columns. The pattern of moments throughout the
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(e) Moment-Curvature Response 
Fig. 3.26 Addition of Seismic and Gravity Moments for a Bridge Bent
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structure when a full plastic hinge mechanism has formed is shown in Fig. 3.26(d) by the 
dashed line.

At first yield, for the direction of seismic force indicated in Fig.3.26(d), the right-hand 
column carries a shear force of (15+13)///, where //is the column height, while the left- 
hand column carries a shear of only (3+7)/// The total seismic force is thus 38/// Note 
that this is also the value obtained direcdy from the design seismic moments of 
Fig.3.26(c), without consideration of the gravity loads. However, when the full 
mechanism forms, each column carries (15+15)///, for a total of 60/// The actual 
lateral strength developed will thus be 60/38 = 1.58 umes the design lateral force used to 
determine the design seismic moments. If secdon strength reduction factors are adopted 
and conservative estimates are made of material strengths, then the probable lateral 
strength may well exceed two times the design lateral force. Strain hardening will increase 
the overstrength even further.

Moments induced in the cap-beam are also greatly influenced by the difference 
between the moment patterns at first yield and full mechanism (solid and dashed lines in 
Fig.3.25(d)), with the peak design moment increasing from 7.5 units to 16.5 units. Since 
the cap-beam is designed to remain elastic, it is essential that this moment increase be 
accounted for in design.

The second consideration relates to the column stiffness assumed for the gravity load 
analysis, which as noted above will probably be the gross-section stiffness. During design- 
level seismic response, the effective stiffness of the columns will reduce to about 30-50% 
of the gross stiffness (see Section 4.4) when the column reaches first yield, and to perhaps 
10% or less of the gross-section stiffness at maximum displacement response. As a 
consequence of the reduced column stiffness, the gravity load moments in the columns 
will almost entirely dissipate during the seismic response, as suggested by the dashed line 
in Fig. 3.26(b). The question should be asked as to whether the values of gravity moments 
are more relevant at the start of the seismic response than at the maximum response 
displacement. Certainly the increase in positive gravity load bending moment in the cap 
beam from 3 to 9, which can be expected to remain after seismic response must be 
considered in design.

The enhanced lateral strength of the structure indicates that the overall displacement 
ductility demand will be proportionately less than intended. Although it may be argued 
that this is necessary to avoid excessive curvature ductility demand, at the critical section 
A at the top of the column, it is in fact easy to show that this is a fallacy. As noted above, 
we assume that the “equal displacement” approximation holds, and hence the expected 
displacement ductility is //a = i?. The curvature ductility demand at A corresponding to 
//a is The combination of moments and of curvatures is shown in Fig.3.26(e), which 
relates to the moment-curvature response of section A, with a maximum design curvature 
of (frmax — The moment corresponding to the reduced seismic force is less than the
nominal moment capacity (60% of capacity, in the above example), and hence, assuming 
a bi-linear moment-curvature response, as shown in Fig.3.26(e), the seismic curvature is 
less than the yield curvature by an equal amount. This is indicated in Fig.3.26(e) as 
(f>Ereduced* The curvature demand will thus not be (pmax> since only the seismic component
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of the yield curvature will be increased by the expected curvature ductility factor to give 
/J'Q.fe.reduced, not as shown in Fig.3.26(e). The curvature corresponding to the
gravity moment will be added to this, giving the final curvature as (j)’max, as shown in 
Fig.3.26(e). Thus the full expected design curvature at A has not been used.

It is best to illustrate this numerically. We assume that the design force reduction 
factor and displacement ductility are R — jU& -  5, and the corresponding design curvature 
ductility demand is jl^ — 10. Using the numerical values for gravity and seismic moment 
m Fig. 3.26, the seismic curvature corresponding to the reduced seismic force is (j>Eyreduced 
-  0.G(fa. The plastic seismic curvature will be (Jî  - V)(/>e,reduced =9x0.6$ = 5.4$.

The total curvature will thus be (fa + 5 A (fa ~ 6.4$,, and the curvature ductility demand, 
at 6.4, is 64% of the design value. Thus even the most critical of the sections is subjected 
ro a much lower ductility demand than intended in the design.

On the basis of the above arguments, it is clear that direct addition of gravity and 
reduced seismic moments is illogical, and unnecessarily conservative. A logical 
improvement for force-based design would be to recognize that it is the sum of the 
gravity and unreduced seismic curvatures which should equate to the design curvature 
limit. It follows from this that the gravity and seismic moments should be combined 
according to:

(.M g + M e) / R < M n (3.50)

where is the nominal moment capacity of the section. The gravity moments should 
be calculated using stiffness values that are compatible with those used for the seismic 
analyses. This approach greatly reduces the influence of gravity moments in seismic 
design, and in many cases gravity moments will become insignificant.

3.7.2 Combination of Gravity and Seismic Moments in Displacement-Based 
Design

The arguments developed above become more critical when related to direct 
displacement-based design. Because of the great differences in effective stiffness used to 
determine gravity moments (gross section stiffness) and seismic moments (cracked- 
section stiffness reduced by ductility factor -  see Section 4.4) resulting moment 
combinations would be meaningless. The appropriate combination must be consistent 
with the design philosophy that we are concerned with conditions at maximum 
displacement response, not in the elastic state. Therefore, the gravity moments should be 
determined using the same effective stiffness as appropriate for the seismic design. In the 
example above, this would mean using greatly reduced elastic stiffness for the columns, 
with the end results that gravity moments would become almost insignificant.

It should be noted, however, that the reason that the above approach is valid, is that 
the gravity moments in the columns are based on compatibility, rather than equilibrium 
requirements. Care is needed to ensure that structures, or parts of structures where 
gravity moments are based on equilibrium considerations, do not have their moments
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reduced. Provided the suggested approach of analyzing the structure using reduced 
stiffness in ductile members is adhered to, equilibrium will automatically be satisfied. In 
the bridge bent example discussed above, the automatic result will be gready reduced 
gravity moments in the columns, and increased mid-span gravity moments in the cap- 
beam.

T  In many structures, the result of such an analysis will be that the effects of gravity 
moments are very small in comparison with the seismic moments. This leads to an 
alternate, and simpler approach: The critical (ductile) elements are designed for the higher 
of factored gravity moments (to ensure satisfactory serviceability), and seismic moments 
ignoring gravity moments. Non-ductile members are designed for capacity design forces 
corresponding to plastic hinge formation at material overstrength, together with gravity 
moments and shears. Inelastic time-history analyses of frame structures designed without 
consideration of gravity moments by Pinto et alipi5l have shown that the response is 
virtually identical whether the gravity moments were considered or ignored in the time- 
history analysis. Combination of seismic and gravity moments is discussed in more detail 
for frames in Section 5.6.1, and general equilibrium requirements are discussed in some 
detail in Section 4.6.

y 3.8 CONSIDERATION OF TORSIONAL RESPONSE IN DIRECT 
DISPLACEMENT-BASED DESIGN

3.8.1 Introduction

Structures with asymmetry in plan are subjected to torsional rotations as well as direct 
translation under seismic response. Examples of asymmetric plan layouts are shown in 
Fig.3.27. In each case three important locations are identified: centre of mass (C m) , centre 
of stiffness, or rigidity (C r) and centre of shear strength (C v). In traditional elastic analysis 
of torsional effects in buildings only the first two are considered, and a structure is 
considered to have plan eccentricity when C m and C r do not coincide, but it has recently 
become apparent that for structures responding inelastically to seismic excitation, the 
centre of strength is at least as important as the centre of rigiditylp26J.

The structure in Fig.3.27(a) has walls of different length on opposite sides resulting in 
stiffness eccentricity, and probably, though not necessarily, also in strength eccentricity. 
As shown, centres of strength and stiffness in general will not coincide. It is assumed that 
the floor plan is supported by internal columns which do not contribute to seismic 
resistance. Eccentricity in plan is also apparent in the frame building of Fig. 3.27(b), as a 
result of an architectural requirement for a large open space in a small building plan. The 
third example is the common example of an eccentric service core constructed from walls 
enclosing stairs, elevators etc., in a regular frame plan layout. The first two structures are 
eccentric in both X and Z directions, while the third is eccentric only in the X direction.

The eccentricity of the centre of stiffness from the centre of mass is found from:
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e RX ~  ^  ^ Z i X i /  ^  ^ Z i  ’ e RZ ^  ^ X j Z j  ^ ^  ^ X j  C ^ l )
1 1  1 1

where k/j and kxj are element (i.e. walls or frames) stiffness in the Z and X directions
respectively, and Xj and Zj are measured from the centre of mass.

(a) Structural Wall Building
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(c) Frame with Eccentric Service Core 
Fig.3.27 Examples of Structures Asymmetric in Plan
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The eccentricity of the centre of strength, Cv, is defined by
n n m m

= I V* * , = £ >V, 1 I  V , P-52)
1 1  1 1

where Vzi and VXj are the design base shear strengths for elements in the Z and X 
"directions respectively. JSJote "that relative, rather than absolute values may’v e  used to 
establish the locations of centres of stiffness and strength in the initial stages of design. 

p  Most design codes require consideration of accidental eccentricity between centre of 
mass and centre of stiffness, in addition to the calculated eccentricity. Accidental 
eccentricity is intended to provide consideration of uncertainty in calculations of mass 
and stiffness distributions. Typically this is effected in force-based design by considering 
two alternate positions of the centre of mass, separated by +0.05Z* from the calculated 
location of Cm, where Z^is the building plan dimension perpendicular to the direction of 
seismic force considered. However, as has been pointed out by Paulay^26l this appears to 
be inconsistent with other aspects of seismic design, where larger uncertainties may exist. 
In particular, calculation of the location of the centre of mass is likely to be one of the 
most reliable of the calculated parameters in seismic design. Also, design for accidental 
eccentricity is likely to be ineffectual, since it involves increasing the strength of all 
elements which will not reduce the apparent torsional strength eccentricity, ey. In fact, it 
can be argued that it will exacerbate the problem, since the overall base shear capacity will 
be increased in proportion to the strength increase of the individual elements, without 
reducing the strength eccentricity. Hence torsional moments are likely to increase. As a 
consequence of these considerations we do not recommend consideration of accidental 
eccentricity, which will not be discussed further in this text.

3.8.2 Torsional Response of Inelastic Eccentric Structures

Torsional response of asymmetric structures responding to seismic excitation is 
complex, involving both strength and stiffness eccentricity, as well as the torsional mass 
inertia. Peak response displacements at opposite sides of an asymmetric building do not 
occur simultaneously, nor do they correspond to peak torsional response. As such it is 
not possible to provide exact analytical methods appropriate for simple preliminary 
design. However, analytical studies in recent years, particularly by Castillo et altC6l and 
Bever^l have enabled the following guidelines to be established:

Maximum response displacements of structures with stiffness eccentricities, with or 
without strength eccentricity can be calculated as the sum of direct (Az,cm) torsional 
components of displacement. For response in the Z direction (Fig.3.28):

AZ/ ~ cm ~ @{Xj (3.53)

taking care with signs. Thus for walls 1 and 2 in Fig.3.28:

A, = Acm -  0(0.5LX -  \evx |); A 2 = A CM + 0(0.5Lx + \evx |) (3.54)
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Fig.3.28 Torsional Response of an Asymmetric Wall Building (Plan View)

Note that the strength eccentricity is used in Eq.(3.53). The twist angle 6  to be 
considered in Eq.(3.53) is found from the total building strength in the direction 
considered, Vbz> and the effective rotational stiffness J r. eff as

Q  ~  ^ B Z  * e R X  I  J R , e j f  (3.55)
where

1 n m ( \
J R , eff ~  ^  ^e/,Z/ (■*/ “  e R X  )  ^  ^ e l .X j  \Z j  ~  e R Z  )  (3.56)

M s y s  1 1

Note that the stiffness eccentricity is used in Eq.(3.56), and the elastic stiffness of 
elements responding in the Z direction is reduced by the design system ductility, jLLsys* 
Since the transverse (X direction) elements are expected to remain elastic, or nearly 
elastic, their elastic stiffness is not reduced. Thus, with reference again to Fig.3.28 under 
Z direction excitation:

J rjt = k , ( 0 . 5 ^ - \ eR\f +kej 0 . 5 L x +\eR\)2\/jU,m- + 2kel,(0.5Lz )2 (3.57)

Note that the stiffness eccentricity e^x in Eq.(3.55) can be based on ether elastic or 
effective stiffness. Since the latter are each taken as ket/Hsysi identical values are obtained. 
In Eq.(3.57), it is assumed that the elastic stiffness of walls 3 and 4 is the same.

Since torsional eccentricity is most common in wall buildings the justification for the 
above approach, and further discussion of torsional effects, is presented in Chapter 6 .
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3.8.3 Design to Include Torsional Effects

(a) Design to Avoid Strength Eccentricity: The first objective in consideration of 
torsion will be to investigate the possibility of eliminating the problem. With a building 
whose plan layout is symmetrical in location and in dimensions of lateral force-resisdng 
elements this is of course no problem. Even when the plan layout of lateral force resisting 
elements is unsymmetrical, it may be possible to eliminate strength eccentricity. With 
respect to Fig.3.28, it may be possible to assign equal strengths to the two end walls (1 
and 2 ) despite their different lengths by increasing the flexural reinforcement content of 
wall 2 in comparison with that of wall 1. This would occur during allocation of the total 
base shear between the different elements (Section 3.5.6). Note that the approach 
outlined in the previous section indicates that there will still be a torsional component of 
response despite the zero strength eccentricity, which needs to be considered in the 
design process outlined in (c) below. Torsional response of systems with stiffness 
eccentricity, but no strength eccentricity is confirmed by inelastic time-history results^4).

(b) Design to Minimize Strength Eccentricity: When the plan layout of lateral force- 
resisting elements is such that strength eccentricity is unavoidable, the design objective 
will generally be to minimize the strength eccentricity, so that the inelastic twist will be 
minimized. This will be the case when the drift of the most flexible element governs 
displacement-based design, but may not be the optimum solution when ductility capacity 
of the stiffest element governs (see Section 6.4.5).

(c) Modification o f Design Displacement to Account for Torsion: The most 
common design situation, particularly for frame buildings, but also for many wall 
buildings of more than four storeys, will be that design displacements are governed by 
code drift limits. In these cases, the code drift will apply to the element with greatest 
displacement, including torsional effects, meaning that the design displacement at the 
building centre of mass, used in the SDOF design, will need to be reduced in proportion 
to the torsional displacements. The design displacement for the centre of mass will thus 
be found, reorganizing Eq.(3.53) to give:

where Â cr is the drift-controlled displacement of the critical element. With reference 
again to Fig.3.28, and assuming that drift limits apply to wall 2, the design displacement 
for the SDOF substitute structure will be

ẐM ~ î,cr @(Xi,cr evx) (3.58)

^ cm ~ ^ 2  0(0.5LX + \evx\) (3.59)
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It is also possible, particularly for low-rise wall buildings, or buildings containing walls 
with low height/length aspect ratios, that the displacement capacity of the stiffest wall 
corresponding to material strain limits may govern design. In this case the design 
displacement at the centre of mass will be larger than the displacement of the critical 
element. Equation (3.56) still applies, with due consideration of signs, and with reference 
to Fig.3.28, the design displacement for the substitute structure will be

~ (3.60)

In general it will be necessary to adopt an iterative approach to determine the design 
displacement when torsional effects are significant, since 6  depends on eR and ey 
which in turn depend on the relative strengths assigned to the lateral force-resisting 
elements in both orthogonal directions, and the system ductility. However, adequate 
simplifying assumptions can often be made to avoid the necessity for iteration. Since this 
is mainly relevant to the behaviour of wall structures, it is discussed in further detail in 
Chapter 6 .

3.9 CAPACITY DESIGN FOR DIRECT DISPLACEMENT-BASED DESIGN

Direct displacement-based design is a procedure for determining the required strength 
ot different structural systems to ensure that a given performance state, defined by 
flexural strain or drift limits, is achieved under a specified level of seismic intensity. From 
this design strength, the required moment capacity at intended locations of plastic hinges 
or shear capacity of seismic isolation devices, with seismic isolated structures) can be 

determined. As with force-based design, it is essential to ensure that inelastic action 
occurs only in these intended locations, and only in the desired inelastic mode. For 
example, a cantilever wall building will have intended plastic hinges at the bases of the 
various walls, where inelastic action will be required to occur by inelastic flexural rotation. 
Special measures are required to ensure that unintended plastic hinges do not occur at 
other locations up the wall height, where adequate detailing for ductility has not been 
provided, and to ensure that inelastic shear displacements, which are accompanied by 
rapid strength degradation, do not occur.

Moments and shears throughout the structure resulting from the distribution of the 
base shear in accordance with Sections 3.5.6 and 3.5.7 include only the effects of the first 
inelastic mode of vibration. This is adequate for determining the required strength at 
plastic hinge locations. However, actual response of the structure will include effects of 
higher modes. These will not affect the moments at the plastic hinge locations, as these 
are defined by, and limited to, the first inelastic mode values, but will influence moments 
and shears at other locations.

A further factor to be considered is that conservative estimates of material strengths 
will normally be adopted when determining the size of members, and (for reinforced 
concrete design) the amount of reinforcing steel. If the material strengths exceed the 
design values, as will normally be the case, then the moments developed at the plastic
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hinge locations will exceed the design values. Since response is inelastic, it is the actual 
strength, not the theoretical design strength that will be developed under the design level 
of seismic intensity. AW moments throughout the structure corresponding to the first 
inelastic mode will then increase in proportion.

Required strengths at these locations, or for actions other than flexure, are found from 
capacity design considerations^1!. Basic strengths Se for these locations and actions 
corresponding to the first-mode force distribution are thus amplified by an overstrength 
factor (fP to account for maximum feasible flexural overcapacity at the plastic hinge 
locations, and by a dynamic amplification factor 0) to represent the potential increase in 
design actions due to higher mode effects. The relationship between design strength Sd 
and basic strength Se is thus

~ S r — CtiSE (3.61)

where Sr is the required dependable strength of the design action S, and </>s is the 
corresponding strength reduction factor. As is discussed in Chapter 4, a value of (f>s -  1 
should be adopted for flexural design of plastic hinges, but values of (j>$ < 1 are 
appropriate for other actions and locations.

The conventional approach currently adopted in force-based design is explained with 
reference to design of a cantilever wall building. For the required moment capacity of 
cantilever walls, the base moment is amplified to account for material overstrength, and a 
linear distribution of moments is generally adopted up the wall height to account for 
higher mode effects. As is apparent from Fig.3.29(a), this implies higher amplification of 
moments at mid-height than at the base or top of the wall. Reinforcement cut-off is 
determined by consideration of tension shift effects. This is achieved by vertical offset of 
the moment profile.

Shear forces corresponding to the design force distribution are amplified by the 
flexural overstrength factor, and the dynamic amplification factor 0̂  directly in
accordance with Eq.(3.61), as shown in Fig.3.29(b). The factor adopted in this figure has 
been obtained from previous research, related to force-based design and is presented 
elsewhere^1] in the following form:

0)y = 0.9 + n/10 for n<6 ^  ^
cov = 1.3 + 77 / 30 for 6 < n < 15

where n is the number of storeys in the wall, and need not be taken greater than 15. It is
shown in Section 6 . 6  that this equation is generally non-conservative, and alternative 
recommendations are made for displacement-based design.
^  For frame structures, beam shear forces, and moments at locations other than potential 
plastic hinges are amplified by the flexural overstrength factor. Since higher modes are 
not normally considered for beam design, the dynamic amplification factor is not 
normally included. However, it should be noted that vertical response is essentially a
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higher mode, and may amplify the gravity moments considerably. A strict formulation of 
capacity design would take this into account.

Column end moments and shear forces are amplified for both beam plastic hinge 
overstrength and dynamic amplification. For one-way frames, upper limits for dynamic 
amplification of column moments of 1.80 have been recommended, with 1.3 for column 
shear forces. Further amplification for beam flexural overstrength is required^1!.

In this section we have discussed conventional capacity design, as currently applied to 
force-based design of structures. We show in Section 4.5 and the design chapters related 
to specific structural types that modifications to the capacity factors for both flexural 
overstrength, and dynamic amplification are appropriate for direct displacement-based 
design.
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Fig. 3.29 Recent Recommendations for Dynamic Amplification of Design 
Forces for Equivalent Lateral Force Design of Cantilever Walls^P1l

3.10 SOME IMPLICATIONS OF DDBD

3.10.1 Influence of Seismic Intensity on Design Base Shear Strength

Direct displacement-based seismic design implies significantly different structural 
sensitivity to seismic intensity than found from current codified force-based design 
procedures. This can be illustrated with reference to Fig.3.30, where acceleration spectra 
(Fig.3.30(a)), and displacement spectra (Fig.3.30(b)) are shown for two seismic zones. It
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is assumed that the spectral shapes for the two zones are identical, and each are found by 
multiplying a base-level spectrum by the zone factors Zi or Z2 .

Consider the design of two reinforced concrete buildings, one designed for each of the 
seismic zones, where the structural geometry, including member sizes (but not 
reinforcement contents) are identical for the two buildings. We assume that structures are 
designed to exactly satisfy the strength requirements for the two zones. If the buildings 
are designed by conventional force-based procedures, the fundamental periods of the two 
buildings will be assumed to be the same, since the same allowance for reduction of 
gross-section stiffness will be made. Assuming the same force-reduction factor is used for 
each design it is thus clear (see Fig.3.30(a)) that the required base-shear design forces Vbi 
and Vb2 for the two buildings are related by:

ZV - V  —Y b2 V b\ 2 (3.63)

Fig.3.30 Influence of Seismic Intensity on Design Base Shear Force

Under direct displacement-based design, the assumption of equal geometry ensures 
that the yield displacements, and the limit-state design displacements, based on drift 
limits, for the two buildings are the same. Hence the ductility, and also the effective 
damping will also be the same for the two buildings. As may be seen from Fig.3.30(b), 
with equal design displacements and damping, the effective periods at design 
displacement response will be related to the zone intensity by:

Te 2 =Te i ^~  (3.64)
2



Chapter 3. Direct D isplacement-Based Design: Fundam ental Considerations 129

From Eq.(3.1) the required effecdve stiffness is inversely proportional to the period 
squared, hence:

K'2 = Kei (3.65)

Further, since the design displacements are equal, Eq.(3.2) yields the ratio of base shear 
forces as:

V - VBasel. Base I
f z2

7 J
(3.66)

Thus the required base shear strength is proportional to the square of the seismic 
intensity. This is a fundamentally important difference between the two approaches, 
particularly for regions of low (or very high) seismicity. It should be noted however, that 
the difference between the conclusions resulting from force-based or displacement-based 
considerations is largely a consequence of the assumption in the force-based approach 
that stiffness may be assumed to be equal to a constant fraction of the gross-section 
stiffness. As has been pointed out in relation to Fig.1.4, and is discussed in some detail in 
Section 4.4, stiffness of a member is directly proportional to strength. Thus the elastic 
stiffness of the members of the structure in the lower seismic zone will be less than for 
the structure in the higher seismic zone. An iterative force-based solution, correcting the 
suffness of the structural members based on the strength found from the previous 
iteration would eventually come to a similar conclusion to that resulting from DDBD.

3.10.2 Influence of Building Height on Required Frame Base Shear Strength

A further finding of some interest can be obtained by examining the sensitivity of 
required base shear strength of buildings with identical plan geometry and storey mass, 
but with different numbers of storeys. We assume for simplicity that the section 
dimensions of structural members are not affected by building height, and that the design 
deflected shape is also independent of building height. Clearly this latter assumption will 
become increasingly crude when large variations in building height are considered, but is 
reasonable for frame buildings up to about 1 0  storeys, and for dual wall/frame buildings 
up to 20 storeys. Figure 3.31 compares two frames of different heights. Let n — number 
of storeys, with constant mass m per storey. In the following, Cj to Cs are constants.

Effective mass: tne — C^nm (3.67a)

Design Displacement: A d = C2n (3.67b)
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Fig.3.31 Design Displacement Profiles of Buildings Differing only in Height

With the above assumptions, both the yield displacement, and the design displacement 
will be proportional to height. Hence the design displacement ductility and thus the 
effective damping will be independent of height, and the design displacement response of 
the buildings will lie on the same damping curve (see Fig.3.1(d)). Provided that the design 
displacement given by Eq.(3.67b) is less than the displacement at peak period (e.g. Te =4 
sec. in Fig.3.1(d)), and that the design displacement spectrum is linear with period, the 
effective period can thus be expressed as:

Te = C3Ad = C3C2w (3.67c)

From Eq.(3.1), the effective stiffness will be:

4n m CAC,nm  ̂ m
k. = ^ T ^ = i r r V  = C s ~  <3-67d)T (CjCj) n n

From Eqs.(3.2), (3.67b) and (3.67d) the design base shear will be

YYl
V Base =  k A d  = C 5 ~  C 2 «  =  C 6 W  (3 '6 7 e )n

Recalling that /7?is the mass of one storey, it is seen that the design base shear strength 
is independent of the number of storeys. This might seem to point the way towards 
further possible design simplifications.

3.10.3 Bridge with Piers of Different Height

We return to the example of a bridge crossing a vallev, with piers of different heights, 
first discussed in Section 1.3.4, and subjected to longitudinal seismic excitation. Figure 
1 . 1 1  from Section 1.3.4 is reproduced below as Fig.3.32(a).
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(a) Structure (b) Force-Displacement Response

Fig.3.32 Bridge with Unequal Pier Heights under Longitudinal Excitation

As was discussed in Section 1.3.4, designing in strict accordance with force-based 
design would require allocating shear between the piers in proportion to the elastic 
stiffnesses of the piers. This is based on the assumption that yield displacements, and 
ductility demands for the piers can be equalized by distributing strength in proportion to 
stiffness. We have shown this to be invalid, since the yield curvature, and hence the yield 
displacement is essentially independent of strength. The consequences, as noted in Table
3.6 are that flexural reinforcement ratios for the piers should be approximately in 
proportion to the inverse of pier height squared. The sequence of design operations 
follows the arrow in the second column of Table 3.6

With DDBD, the initial stiffness is largely irrelevant, and the relationship between 
flexural reinforcement ratios in the piers is the designer’s choice. Normally equal 
reinforcement ratios will be chosen, and the moment capacides of the flexural plastic 
hinges will be essentially equal. This implies distributing the total seismic force between 
the piers in inverse proportion to height, as indicated in Table 3.6, Column 3, which also 
shows that the sequence of design operations, indicated by the arrow, is the exact reverse 
of that for force-based design. Of course it would be possible to use a rational 
reinforcement distribudon for force-based design, but only if the concept of the 
importance of initial stiffness is abandoned.

Table 3.6 Difference between Force-based and Displacement-Based Design 
Parameters for Bridge under Longitudinal Excitation

ITEM Force-Based
Design

DDBD

Yield Displacement Equal a  H2
Ductility Demand Equal a 1 /H2

Stiffness a l / f f a  1/H ji
Design Shear Force a  1/JFdP a  1/H

Design Moment a  1/H2 Equal
Reinforcement Ratio a 1/H2 '

f
Equal
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3.10.4 Building with Unequal Wall Lengths

The structural wall building shown in Fig.3.33, also considered in Chapter 1, and in 
Design Examples 3.5 to 3.7 is now considered. Force-based design, relying on initial 
stiffness distributes the design base shear force between the different length walls in 
proportion to wall length cubed on the invalid assumption that the walls can be made to 
yield at the same displacement. Since the yield curvature is inversely proportional to wall 
length, so will the yield displacements be. Table 3.7 compares the proportions of the 
design parameters based on initial-stiffness force-based design, and direct displacement- 
based design.

A B C

Fig.3.33 Building with Unequal Length Cantilever Walls

Table 3.7 Comparison of Design Parameters for Force-Based and DDBD Designs
of a Cantilever Wall Building

ITEM Force-Based
Design

DDBD

Yield Displacement Equal a l //„,
Ductility Demand Equal a lw

Stiffness a l j (X I 2 1[
Design Shear Force a i j a i j

Design Moment a i j a i j
Reinforcement Ratio a  /„. '

i Equal



4
ANALYSIS TOOLS FOR DIRECT DISPLACEMENT-BASED 
DESIGN

4.1 INTRODUCTION

It is beyond the scope of this book to include a detailed treatment of material 
properties, methods of analysis for determining section strengths, and general global 
structural analysis methods. There are, however, a number of aspects of these topics 
which are of special relevance for direct displacement based design (DDBD), particularly 
related to the strength and deformation characteristics of reinforced concrete and 
masonry sections. Hence this chapter provides a detailed examination of selected topics. 
More general treatments are available in other sources P1.™! to which the interested reader 
is referred.

4.2 FORCE-DISPLACEMENT RESPONSE OF REINFORCED CONCRETE 
MEMBERS

Fig.4.1 Lateral Deformation of a Bridge Column

One of the most basic tools for DDBD is the moment-curvature analysis of reinforced 
concrete and masonry sections. This is used to define section strengths, limit state 
curvatures, and also the elastic stiffness. From these data, member and structure force-

133
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displacement characteristics can be directly generated, as discussed in Section 4.2.8, and 
suggested in Fig.4.1 for a simple bridge pier. The treatment in the following relates 
specifically to reinforced concrete sections, though the principles are identical for 
reinforced masonry. In general, moment-curvature analysis of steel sections is un
necessary, since the elastic stiffness is directly known. Generation of force-displacement 
response of steel sections is briefly covered in Section 4.3.

4.2.1 Moment-Curvature Analysis

n layers of rebar

Fig.4.2 Strains and Stresses in an Arbitrary Symmetrical R.C. Section

Figure 4.2 shows an arbitrary symmetrical reinforced concrete section subjected to
bending, with the top of the section in compression. The normal assumptions for flexural
analysis are made:

• The strain profile is linear at all stages of loading up to ultimate (i.e. the Navier- 
Bernoulli “plane-sections” hypothesis holds).

• Steel strain and concrete strain at a given distance from the neutral axis (see Fig. 
4.2) are identical (i.e. perfect bond between steel and concrete exists).

• Concrete and reinforcement non-linear stress-strain relationships are known:

/ , 0 , ) = < M ^ 0 -)) = <M £(v,) (4 -Ua))

fsw = ® s(£ s(y)) = ®s(£ly)) W ) )

• Concrete tension strength is ignored in the analysis.
• Axial force (if any) is applied at the section centroid.
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As discussed subsequently, different concrete stress-strain relationships will apply to 
core and cover concrete. Note that the reason that concrete tension strength is ignored in 
the analysis is that the section will be subjected to reversed loading under seismic attack. 
Since the neutral axis will generally be on the compression side of the section centroid, 
cracks under reversed loading will extend through the entire section. That is, the 
compression zone will occur in a location previously cracked under moment of the 
opposite sign, and no tension capacity will exist after application of service loads, or 
preliminary low-level seismic response. Further, the contribution of concrete tension 
strength to flexural strength is normally negligible.

Let the axial force on the section be denoted by iV Then for axial force equilibrium at 
any level of response, using the nomenclature of Fig.4.2:

N = lUA.dy+i.L 4 = K, (4-2)
l I

where Asl is the total area of all reinforcing bars at layer /\ distance from the centroidal 
axis. Analytically, the position of the neutral axis is adjusted by trial and error until 
Eq.(4.2) is satisfied.

Taking moments of the stress resultants about the section centroid:

M = jO c(e( )b(v)y.dy + (*(,v )M , (4-3)
1

The corresponding curvature is given by:

0 = ^  = - ^ — (4.4)c (d - c )

where £c and €sn respectively are the extreme-fibre compression strain, and strain at the 
level of the reinforcing bars at maximum distance from the neutral axis (see Fig.4.2).

Moment-curvature analysis is normally organized in accordance with the following 
steps:

1. Divide the section into a number of slices perpendicular to the loading axis.
Determine the area of unconfined cover concrete, confined core concrete, and
reinforcing steel in each layer.

2 . Select an extreme fibre compression strain, starting with the lowest value.
3. Assume a neutral axis location.
4. Calculate concrete and steel stresses at the centre of each layer, and hence the

concrete and steel forces in each layer
5. Check axial force equilibrium in accordance with Eq.(4.2).
6 . Modify the neutral axis position to improve agreement in Eq.(4.2).
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7. Cycle steps 3 to 6  until satisfactory agreement is obtained between external and 
internal forces.

8 . Calculate the moment (Eq.(4.3)) and curvature (Eq.(4.4)).
9. Increment the extreme fibre compression strain, and repeat steps 3 to 8 .
10. Continue incrementing the extreme fibre compression strain until the ultimate 

compression strain (discussed subsequently) is reached.

I 4.2.2 Concrete Properties for Moment-Curvature Analysis

Fig.4.3 Stress-Strain Model for Concrete in Compression fM4l
As noted above, separate stress-strain relationships should be used for the 

compression response of unconfined cover concrete and confined core concrete. As 
shown in Fig. 4.3, confined concrete has increased compression strength, and more 
importantly, increased compression strain capacity. The enhancement of compression 
stress- strain characteristics of the core concrete is a result of the action of well-detailed 
transverse reinforcement in the form of hoops or spirals. In conjunction with longitudinal 
reinforcement, close-spaced transverse reinforcement acts to restrain the lateral 
expansion of the concrete that accompanies the onset of crushing, maintaining the 
integrity of the core concrete.

Figure 4.4 shows four column sections confined by different configurations of 
transverse reinforcement. In Fig.4.4(a), the confinement is provided by circular spirals or 
hoops. As the concrete attempts to expand, it bears uniformly against the hoop or spiral, 
placing it in tension, resulting in a uniform radial compression on the concrete.
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r/r?/77'//

L J
/////////

(a) Circular hoops (b) Rectangular hoops
or spirals with cross-ties

J

hoops
^r-

unconfined 
concrete /

y////

(d) Overlapping rectangular (e) Confinement by 
hoops transverse rebar

(f) Confinement by 
longitudinal rebar

Fig.4.4 Confinement of Column Sections by Transverse Hoops and Spirals^4!

In Fig.4.4 the unconfined cover concrete is shown shaded. It is normally assumed 
that the maximum effective radial confining pressure, fi that can be exerted on the core 
concrete occurs when the spirals or hoops are stressed to their yield stress f yh. Taking a 
free body across the column diameter, and noting that this exposes two bar forces f yhAh 
where A/t is the spiral or hoop cross-sectional area, the confining stress in the core is:

<4-5>D s
w here s is the spacing of the hoop or spiral along the column longitudinal axis, D ’is the 
diameter of the confined core, measured to the centreline of the hoop or spiral, and pv— 
4Ah!D>s is the volumetric ratio of transverse hoops or spirals.

Note that the longitudinal spacing s of the hoops or spiral also affects confinement 
efficiency, as shown in Fig. 4.4(e), since the confining effect is concentrated as a line load 
at the level of the spiral. However, this load is partially distributed to the longitudinal 
reinforcement which tends to make the confining effect more uniform (see Fig.4.4(f)), 
illustrating the importance of the longitudinal reinforcement to confinement of concrete.



138 Priestley, Calvi and Kowalsky. D isplacement-Based Seism ic Design of Structures

The hoops or spirals also act to restrain the longitudinal reinforcement from buckling 
when in compression. Budding may occur after longitudinal reinforcement is first 
subjected to inelasdc tension strain under one direction of seismic loading. When the 
loading direction is reversed, the bars initially transfer all the compression force on the 
section, and must yield in compression before previously formed cracks close. It is during 
this stage of response that the bars are susceptible to buckling. Once the cracks close, the 
compression stiffness of the concrete can be expected to restrain the tendency for bar 
buckling. It will thus be seen that bar buckling is more dependent on the inelastic tensile 
strain developed in a previous yield excursion, than on pure compression characteristics. 
To ensure inelastic buckling does not occur, the maximum spacing of transverse hoops or 
spirals must be related to the bar diameter, as discussed further in Section 4.2.5(c).

With rectangular sections, it is possible to develop different levels of lateral confining 
stress in orthogonal directions. If AShx is the total amount of lateral reinforcement in a 
hoop layer crossing a section perpendicular to then the maximum confining stress 
that can be developed in that direction is

a  = Q ;^ ± =  (46)

V

where is the area ratio of transverse reinforcement in the x direction, s is again the 
spacing of hoop sets along the member axis, and Ce is a confinement effectiveness 
coefficient, relating the minimum area of the effectively confined core (see Fig.4.4) to the 
nominal core area bounded by the centreline of the peripheral hoop, and hcy is the core 
width perpendicular to the direction considered, measured to the centreline of the 
peripheral hoop.

Clearly a similar expression can be developed in the orthogonal direction. Ideally, 
rectangular sections should be designed to have equal area ratios of confining 
reinforcement in the orthogonal directions, in which case the volumetric confinement 
ratio is:

A  = P a x  +  P a y  =  2 A , (4-7)

and the lateral confining stress is given by

/, = 0.5 C ,p J yt (4.8)

The similarity to Eq.4.5 is obvious. Note that a confining effectiveness coefficient Ce is 
sometimes also assigned to circular sections, but since it will normally be higher than 0.95 
for typical designs, it is generally taken as 1.0. For rectangular sections, values of between 
0.75 and 0.85 are appropriate, depending on the ratio s/hCi and the number of 
longitudinal bars in the section. For walls, Ce ~ 0.5 is generally appropriate.
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The stress-strain relationships illustrated in Fig. 4.3 can be described by the Mander 
model^4!:

r-\ + xr (4.9)

where f*cc is the compression strength of the confined concrete which is related to the 
unconfined compression strength and the lateral confining pressure by:

and

f  = f 'J  cc J  c

x = £c l£ci

£cc =  0.002 

E

2.254 Ji + 7 -94^  - 2 —— 1.254

( f ' ^
1+5 ^-£L-lI f ' c  JJ

I Ec = 5 0 0 0 (MPa) # 60,000^/77(^0 ,

^sec =
 /’’_ J  CC

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

4.2.3 Masonry Properties for Moment-Curvature Analyses

Stress-strain curves for masonry are similar to those for concrete^1!. For unconfined 
masonry, the peak compression strength is typically reached at a slighdy lower strain than 
for unconfined concrete, but the confinement provided at critical sections, such as at the 
base of cantilever walls, by stiff supporting members (e.g. foundation beams) enhances 
the critical strain parameters such that use of equations for unconfined concrete are 
normally adequately conservative.

It is rather unusual to confine masonry by use of transverse reinforcement to improve 
the compression stress-strain characteristics. Clearly confinement is difficult in hollow
cell masonry as a result of constraints provided by limited grout spaces. However, tests 
on masonry wails where confining bars or plates were inserted in the mortar beds indicate 
a significant improvement in ductility capacity, and also a deferred onset of damage to the 
masonry in the form of the typical vertical splitting of zones with high compression 
stress^1!.
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4.2.4 Reinforcing Steel Properties for Moment-Curvature Analyses

Fig. 4.5 Reinforcing Steel Stress-Strain Characteristics

In conventional seismic design the reinforcing steel design strength is often taken as 
the yield strength. That is, the increase in stress due to strain-hardening is generally 
ignored. When carrying out moment-curvature analyses however, it is important that the 
most realistic representation of the full stress-strain characteristic be utilized, including 
the strain-hardening portion. This is particularly important for DDBD, because the 
design attempts to match the strength at the expected design displacement to the required 
strength, rather than to use an artificially low nominal “yield” strength.

Figure 4.5 illustrates the characteristics of typical monotonic and cyclic stress-strain 
response of reinforcing steel. The monotonic response can be represented by three 
phases:

Elastic: 0<£5 <£y : f  =E £ < fJ  S S S j  V
(4.16)

Yield plateau: £y<^<e,h: f s -  f y

Strain-hardening: f s = f u e „ - e ,
s £ s u  “  & s h  J

(4.17)

(4.18)

In Eq.(4.16) to (4.18), and f s and the reinforcing steel strain and stress, Es is the 
elastic modulus, and the other symbols are defined in Fig.4.4. Note that the curve only 
continues up to £su, the strain at ultimate stress, as behaviour past this point is
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characterized by local necking of the reinforcement, with reduction of stress elsewhere, 
and cannot be relied on in design.

Typical values for the characteristic stresses and strains depend on the type, and grade 
of reinforcement used. In seismic applications in the American continent, ASTM 706IX9I 
grade 60 reinforcement (fy minimum = 414MPa) is normally used. Strain-hardening 
usually starts at about €Sh — 0.008, the ultimate strain is about = 0 . 1 0  to 0 .1 2 , and the 
ratio of ultimate to yield stress is typically f j f y — 1.35 to 1.50. In Europe tempcore 
reinforcement is almost always used, with a higher yield stress (typically f y — 500MPa 
(7 2.5ksi)), an ultimate strain of about 0.09, a ratio of ultimate to yield stress of about f j f y 
-  1 .2 , and essentially no pronounced yield plateau.

As is illustrated in Fig. 4.5, the cyclic characteristics of the reinforcing steel differ from 
the monotonic curve. On unloading and reloading, the stress-strain curve softens early, 
due to the Bauschinger effect, and no pronounced yield plateau is apparent. However, it 
is found that force-displacement response predicted from moment-curvature 
characteristic based on the monotonic stress-strain curves for both concrete and 
reinforcement provide a good envelope to measured cyclic response. Where full cyclic 
moment-curvature response is required (this is more normally the case for research 
applications rather than for design), more complete equations are appropriate, and the 
reader is referred elsewhere!M41.

4.2.5 Strain Limits for Moment-Curvature Analysis

(a) Damage-Control Compression Strain: The useful limit to confined concrete 
compression strain is usually taken to occur when fracture of the transverse 
reinforcement confining the core occurs. This may be estimated by equating the increase 
in strain-energy absorbed by the concrete, above the value appropriate for unconfined 
concrete to the strain-energy capacity of the confining steel. Considering a unit volume of 
core concrete under uniform axial compression, the increase in strain-energy absorbed 
can be expressed as:

SE = C }f' £ (4.19)conc. \J cc cu

where Cj is a coefficient dependent on the shape of the unconfined and confined stress 
strain curves. Similarly, the strain-energy capacity of the transverse reinforcement, related 
to the same unit volume of core concrete can be expressed as

^  rebar ~  ^ i P v J y h £ su (4.20)

where C2 depends on the shape of the reinforcing steel stress-strain curve. Thus equating 
'4.19) and (4.20), and assuming that the unconfined ultimate st^in of the concrete is 
0.004, the following expression for the ultimate compression stpun for confined concrete 
can be derived: /

https://en.wikipedia.org/wiki/Bauschinger_effect
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e dc = 0.004 + —2pl"/v̂ v" -  0.004 + 1.4 (4.21)
C J ' c c  f  c c

In Eq.(4.21) an average value of C2 /C\—\A is adopted, based on typical steel and 
concrete stress-strain shapes. Equadon (4.21) is approximate for a number of reasons:

• It is based on pure axial compression of the core concrete. Under combined axial 
compression and flexure, the equadon will predict conservatively low estimates 
for £cu.

• It does not take into account the additional confinement of the critical section by 
the adjacent member. If the member is a column supported on a foundation, 
then the foundation will act to restrain lateral expansion of the critical lower part 
of the column plastic hinge, thus adding to the confining effect. Similarly, the 
end portion of the plastic hinge of a beam framing into a column will be 
confined to some extent by the column, provided the column remains elastic.

• Although experiments^17! have shown the equation to provide good estimates of 
ultimate compression strain, the logic (energy balance) does not appear to apply 
at reduced levels of extreme fibre compression strain. At these levels, inverting 
Eq.(4.21) to provide estimates of transverse reinforcement strain (^ rather than 
£sU) over-predicts the measured strains.

The combined effects of these approximations results in effective ultimate 
compression strains under combined axial force and flexure that exceed the predicted 
values by a factor of about 1.3 to 1 .6 . The influence on ultimate displacement is similar. 
Our view is that this degree of conservatism is appropriate for structures designed to a 
“damage control” limit state (see Section 3.3.2).

(b) Serviceability Limit Compression Strain: The limit compression strain for 
concrete corresponding to the serviceability limit state should be a conservative estimate 
of the strain at which spalling initiates. Below this strain-limit repair should not be needed 
which is compatible with performance criteria for the serviceability limit state. In seismic 
response, maximum compression strains almost always occur adjacent to a supporting 
member (e.g. a foundation beam, for a concrete column or wall), which provide an 
additional restraint against initiation of spalling. Experimentsf™ 1 have indicated that a 
compression strain of £c>s ~ 0.004 is a conservative lower limit to initiation of spalling, 
and this value will be used for concrete structures in this text. For masonry structures a 
somewhat more conservative estimate is appropriate, and we recommend £C}S = 0.003.

(c) Damage-Control Tension Strain Limit: It is inappropriate to use £su , the strain 
at maximum stress of the reinforcing steel found from monotonic testing, as the 
maximum permissible tension strain for moment-curvature analysis for several reasons. 
First, under cyclic loading, the effective ultimate tensile strain is reduced by the peak 
compressive strain, £sC, achieved under a previous reversal of loading direction, as
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suggested in Fig. 4.4P5). Second, once high tensile strains have been developed, the 
longitudinal reinforcement becomes susceptible to buckling when subjected to reversed 
loading that puts the reinforcement in compression. This buckling typically occurs before 
the previously developed flexural cracks are closed, and while the bars are still subject to 
tensile strain (but compressive stress). This engenders low-cycle fatigue of the reinforcing 
bar at levels of tensile strain significantly below £sll. The level of strain will depend on the 
volumetric ratio and longitudinal spacing of the transverse reinforcement. Finally, slip 
between reinforcing steel and concrete at the critical section, and tension-shift effects 
result in reinforcement strain levels being lower than predicted by a “plane-sections” 
hypothesis. Based on these considerations, the ultimate curvature of the section analysed 
should be based on a steel tension strain limit of 8S = 0 .6 £5U, if this occurs before the 
concrete ultimate compression strain £cu is developed. To ensure this level of strain is 
attainable without the reinforcement buckling, the spacing of transverse reinforcement 
hoops or layers should not exceed s — (3 + 6(ft/ f y -\))di)i (o^/“ longitudinal bar diameter).

(d) Serviceability Limit Tension Strain: It has been common in the past to require 
■'elastic” or “near-elastic” response at the serviceability limit state. This is generally taken 
to mean that the displacement ductility demand should be H — 1 ? implying reinforcement 
tension strains that are at, or only slightly above yield strain. This is, in our view 
excessively conservative, as strains of several times the yield strain can be sustained 
without creating damage requiring repair. The critical aspect is likely to be the crack 
widths developed by the seismic response. Moreover, it is not the instantaneous 
maximum value occurring during seismic response, but the residual crack width that will 
be of concern, since potential corrosion is the issue here. Analyses reported elsewhere^ 
indicate that for structural elements with compression gravity loading (walls, columns), a 
maximum tension strain of 0.015 during seismic response will correspond to residual 
crack widths of about 1.0 mm (0.04in), and for members without axial compression (e.g. 
beams) a peak strain of about 0.010 is appropriate. A residual crack width of 1.0mm 
should not need remedial action in normal environments. In aggressively corrosive 
environments, lower residual crack widths may be appropriate, with correspondingly 
reduced serviceability tensile strain limits.

4.2.6 Material Design Strengths for Direct Displacement-Based Design

In gravity-load design of structures, it is common practice to assume minimum, or 
characteristic lower bound values for material strengths when determining the nominal 
strength of sections. This is typically combined with a strength reduction factor (or with 
partial material factors) to ensure a conservative estimate of the section strength. Thus, 
the design flexural strength requirement may be expressed as:

<pf MN > Mr (4.22)
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where (f>f is the flexural strength reduction factor (typically (j)f<0.9), and and Mr are 
the nominal (designed) and required moment capacities.

This conservative approach has obvious relevance for gravity-load design, where the 
consequences of the dependable strength (fy M )̂ being less than the moment demand 
could be catastrophic failure. However, in seismic design, it is expected that under design 
seismic attack, the moment capacity will be considerably less than the demand resulting
from fully elastic response. Consequently, incorporadon of extreme conservatism in
estimates of material strengths, and use of strength reduction factors will not result in 
“protecting” the section against inelastic action. All that will happen is that the section 
strength will be higher than needed, but will still be developed, with considerable ductility 
demand, under design seismic attack. A small reduction in displacement demand might 
result, but this is best directly incorporated into the specified design displacement.

Consequently it is recommended that flexural strength reduction factors not be used 
when designing locations of intended plastic hinging. Based on recommendations for 
seismic design of bridges^4! it is also recommended that the following design material 
strengths be adopted:

Concrete: f  ce -  1 .3/\ (4.23a)
Steel: f ye = \\fy (4.23b)

In Eq.(4.23) f ’ce and f ye are low estimates of expected strength. The value for f ye is felt 
to be appropriate for both reinforcing and structural steel. The concrete strength 
acknowledges the influence of conservative batching practice (average 28-dav 
compression strength is typically 2 0 % above the specified value), and the increase in 
strength after 28 days before the structure is subjected to the design loading, which will 
certainly occur later than 28 days.

As is discussed in Section 4.5, it will also be necessary to obtain estimates of maximum 
feasible strength in plastic hinges, for capacity design calculations, using upper-bound 
material strengths. The following values are recommended:

Concrete:f9co-  1 . 7f c 
Steel: f yo = \.3fy

4.2.7 Bilinear Idealization of Concrete Moment-Curvature Curves

For design purposes, it is generally of sufficient accuracy to use a bilinear 
approximation to the moment-curvature response, consisting of an initial “elastic” 
branch, and a post-yield “plastic” branch. For reinforced concrete and masonry sections, 
it is important that the elastic branch not be based on the initial uncracked section 
stiffness, as this value is only appropriate for very low levels of seismic response. The 
normal procedure is to use the secant stiffness from the origin through first yield as the 
effective elastic stiffness. First yield is defined as the point on the moment-curvature

(4.24a)
(4.24b)
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response when the extreme tension reinforcement (i.e. the rebar furthest from the neutral 
axis) first attains yield strain, or when the extreme concrete compression fibre (again, at 
maximum distance from the neutral axis) attains a strain of 0 .0 0 2 , which ever occurs first. 
The moment and curvature at first yield are denoted My and (/)’y respectively. This line 
defining the elastic stiffness is extrapolated up to the nominal moment capacity, which is 
defined by an extreme fibre compression strain of 0.004 or an extreme tension 
reinforcing bar strain of 0.015, which ever occurs first. The corresponding curvature is 
termed the nominal yield curvature (fa.

The plastic branch is defined by connecting the nominal yield point (Mjv, (fa) to the 
ultimate condition: Mu , (/>u.

This procedure is illustrated for a rectangular column section in Fig. 4.6, where the full 
moment-curvature relationship is shown in Fig.4.6(a), and the initial portion is shown in 
Fig.4.6(b) to expand the elastic branch. From Fig. 4.6(b) it is seen that the nominal yield 
curvature is defined as:

Mu
t y = T T ty  (4'25)

The elastic stiffness is the slope of the initial branch. That is:

= M V M x

‘ e/ = ^  *y
E l ei — ~~~~ — ~~ (4.26)

and the stiffness of the plastic branch is given by:

Mu- M ,
E lpi = ;  , N (4.27)

The column represented in Fig. 4.6 had a square section, 800x800mm (31.5x31.5 in), 
had a longitudinal reinforcement ratio of 1 .8 8 %, and a transverse reinforcement area ratio 
of 0.436% (equivalent to a volumetric ratio of 0.872%). Material properties were/’c = 
30MPa (4350 psi)3f y = f yh — 425 MPa (61,600 psi), and axial load = 2MN (450 kips).

In Fig. 4.6(b), the cracking moment Mcr and curvature (f>cr have also been identified. 
For reasons elaborated above in section 4.2.1 these have been based on the assumption 
of zero tension strength for the concrete. Note that the elastic stiffness defined by 
Eq.(4.26) is only about 40% of the initial stiffness of the un-cracked section.
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(a) Full M om ent-curvature response

(b) Initial section O f M om ent-Curvature Response

Fig.4.6 Example Moment-Curvature Curve for an 800x800 mm (31.5x31.5 in)
Column Section
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4.2.8 Force-Displacement Response from Moment-Curvature

(a) Structure (b) Moments (c) Curvature (d) Displacement

Fig.4.7 Obtaining Displacements from Curvature Distributions

Figure 4.7 illustrates what might appear to be the obvious method for obtaining the 
displacement at the top of a simple bridge pier subjected to a specified lateral force i 7, 
rrom the moment-curvature relationship, and to hence build the force-displacement 
response. The procedure, though related to a bridge pier for simplicity, is general for 
columns and walls, and can be easily adapted to develop force-rotation response, which 
mav be more general for (say) beam members. Using the nomenclature of Fig.4.7, and 
measuring the distance h down from the line of application of the inertia force, the 
moment at h, and at the base (h —H) will be given by:

M („ = F  A; and M h = F  ■ H (4.28)

The curvatures at all heights h could then be read from the moment-curvature 
relationship to produce the curvature distribution (f)̂  shown in Fig. 4.7(c), which could 
be integrated to provide the top displacement, A, as:

ii
A = \<pVl)h.dh (4.29)

Repeating this process for values of 0< F< Mu/H would then be expected to provide 
-he full force-displacement response.

Unfortunately this process does not produce force-displacement predictions that agree 
well with experimental results. There are a number of reasons for this:
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• Tension shift is ignored. As shown in Fig.4.7(a), the influence of shear force is 
likely to incline the flexural cracks from the horizontal orientation appropriate 
for pure flexure. The result is that the “plane-sections” hypothesis is incorrect, 
and reinforcement tension strains at a given level will be higher than predicted 
from the moment at that sectionlpiJ. Thus a simple integration of the theoretical 
curvature distribution is an approximation.

• The approach ignores shear deformation, though this can be separately added to 
the displacement response (see Section 4.8, e.g.).

• Anchorage deformation (strain-penetration) is ignored. Equation (4.29) implies 
that the curvature drops to zero immediately below the column base (or, for a 
beam, at the column face). In fact, strains of the tension reinforcement will only 
drop to zero at a depth equal to the true development length of the 
reinforcement. This implies a partial pullout of the bar at the column base 
section, which can be estimated by integrating the reinforcement strain profile 
below the base. On the other side of the column, the concrete compression 
strains will also not immediately drop to zero at the base, but will gradually 
dissipate with depth. The reinforcement tension strain effect is more important, 
and it is useful to define a “strain penetration” length Lsp, over which the 
curvature may be considered constant and equal to the column base curvature.

• In some cases the moment-curvature response will exhibit negative stiffness; that 
is, the moment will decrease as the curvature increases. This will generally be the 
result of reduced effective section size caused by spalling of cover concrete. 
Attempting to integrate the curvature distribution in accordance with Eq.(4.29) 
will result in only one section (the base) of infinitesimal length, being subjected 
to increased curvature as the moment drops. All other sections will not have 
reached the peak moment, and hence will presumably have a reduction of 
curvature. Strict application of Eq.(4.29) would then result in the ultimate 
displacement being obtained as soon as the critical section reached the peak 
moment. This does not accord with observations that the displacement 
continues to increase as the moment decreases.

The solution to these problems is to use a simplified approach based on the concept 
of a “plastic hinge”, of length LP, over which strain and curvature are considered to be 
equal to the maximum value at the column base. The plastic hinge length incorporates the 
strain penetration length L$p as shown in Fig.4.8 . Further, the curvature distribution 
higher up the column is assumed to be linear, in accordance with the bilinear 
approximation to the moment-curvature response. This tends to compensate for the 
increase in displacement resulting from tension shift, and, at least partially, for shear 
deformation.

The strain penetration length, LSp may be taken as:

Lsp = 0 .022 f yedbl (fye in MPa); Lsp = 0 .15 f yedhl (fye in ksi) (4.30)



Chapter 4. Analysis Tools for Direct D isplacement-Based Design 149

H

Fig.4.8 Idealization of Curvature Distribution

where f ye and dbi are the yield strength and diameter of the longitudinal reinforcement, 
and the plastic hinge length, L/>, for beams and columns, is given by:

md where Lc is the length from the critical section to the point of contraflexure in the 
member. Equation (4.31b) emphasises the importance of the ratio of ultimate tensile 
strength to yield strength of the flexural reinforcement. If this value is high, plastic 
deformations spread away from the critical section as the reinforcement at the critical 
section strain-hardens, increasing the plastic hinge length. If the reinforcing steel has a 
’o\v ratio of ultimate to yield strength, plasticity concentrates close to the critical section, 
resulting in a short plastic hinge length. A modification of Eq.(4.31) for walls is suggested 
in Section 6.2.1(b).

In Figs. 4.7 and 4.8, L c —H. The lower limit of LP — 2L$p implies strain penetration 
Doth down into the foundation, and also up into the column, and applies when Lc is 
short. The force displacement response, for the cantilever column of Fig.4.7 can then be 
assembled from the moment-curvature response using the following equations:

(4.31a)
where

(4.31b)
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F  = M /H  (4.32)

A y =<py{H + LSP)2 13 (4.33)

A „ =  A y +  A  P =  A  v +  <PpL P H  =  A y +  f e ,  -  <Py )L P H  (4 '3 4 )

Equation (4.34) implies that the centre of plastic rotation occurs at the member end. 
This will be exact when Lp —2JLsp> and is an acceptable approximation in all cases. 
However, when 0.08Lc — Lsp, an improved estimate of the plastic displacement can be 
obtained by replacing H  in Eq.(4.34) by the distance from the centre of the plastic hinge 
to the point of contraflexure for members in single bending, and by the centre to centre 
distance of plastic hinges at member ends for members in double bending.

Fig.4.9 Force-Displacement Response

The resulting bilinear force-displacement response is shown as the dash-dot line in 
Fig.4.9. This is normally adequate for design purposes. However, a more accurate 
representation is possible, as shown by the solid line in Fig.4.9. In this “refined” 
approach, suitable for prediction of experimental response, the elastic portion is 
represented by a bilinear characteristic, with the cracking force and displacement at the 
corner, joined to the force and displacement at first yield. Above first yield, the 
displacement is based on the effective plastic curvature related to the first-yield curvature, 
and taking into account the increased strength. Thus:
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Cracking: Acr =(/>ci.H 2/3, Fcr = M cr /H

First Yield: A' = (f)' (H + LSP )2 /3; F y = M y / H

After Yield: A = A ',
M
M.. '-<P\

M
LPH ■ F  = M /H

(4.35)

(4.36)

(4.37)
y  J

Again the accuracy can be improved by replacing H in Eq.(4.37) by the distance from 
the centre of the plastic hinge length to the point of contraflexure.

In both bilinear and refined representations, the displacement ductility capacity is 
related to the nominal yield displacement (Eq.(4.33):

(4.38)

4.2.9 Computer Program for Moment-Curvature and Force-Displacement

The CD provided with this book includes a computer program, CUMBIAlM14l, for 
moment-curvature and force-displacement analysis of reinforced concrete members of 
circular or square section, based on the principles and equations outlined in the previous 
sections. A manual for operating the program is also provided.

4.3 FORCE-DISPLACEMENT RESPONSE OF STEEL MEMBERS

As noted earlier, it will rarely be necessary to carry out moment-curvature analyses of 
steel sections, since the elastic stiffness is unaffected by cracking, and the yield moment 
and plastic moment can be readily calculated. However, it should be emphasised that in 
calculating the plastic moment capacity, strain-hardening should be considered, and the 
level of maximum useable compression strain should be restricted to about 0.02 to avoid 
local buckling of flanges etc. The principles developed above for moment-curvature and 
force-displacement analysis of concrete sections can of course be equally applied to steel 
sections. This may be advisable when unsymmetrical sections are considered.

4.4 ELASTIC STIFFNESS OF CRACKED CONCRETE SECTIONS

It was mentioned in Chapter 1 that, contrary to common assumptions made in force- 
based seismic design, the elastic stiffness of cracked concrete sections is essentially 
proportional to strength, and the concept of a constant yield curvature independent of 
strength is both valid, and important in terms of direct displacement-base design. A 
summary of the research leading to these statements, and to Fig. 1.4 is included below. A 
more complete presentation is available in [P3]. The research is based on moment- 
curvature analysis of different concrete sections, and the bilinear representation described 
in Section 4.2.7. It has been verified in numerous experiments^4!.
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4.4.1 Circular Concrete Columns

Circular reinforced concrete columns are the most common lateral force-resisting
elements for bridges in seismic regions^™]. In order to investigate the effective stiffness
of circular columns, a parameter analysis was carried out varying the axial load ratio and 
flexural reinforcement ratio for a typical bridge column. The following basic data were 
assumed:

• Column diameter D — 2m (78.7 in)
• Cover to flexural reinforcement = 50 mm (2 in)
• Concrete compression strength f*ce — 35 MPa (5.08 ksi)
• Flexural reinforcement diameter d̂ i ~ 40 mm (1.575 in)
• Transverse reinforcement: spirals = 20mm (0.79in) at 100mm (4in) spacing

• Flexural reinforcement Ratio Pi!Ag — 0.005 to 0.04 (5 levels)

A selection of the moment-curvature curves resulting from analysis with the program 
CUMBIA provided on the attached CD is shown in Fig.4.10 for two levels of flexural 
reinforcement ratio, and a range of axial load ratios. Only the initial part of the moment- 
curvature curves has been included, to enable the region up to, and immediately after 
yield to be clearly differentiated. Also shown in Fig. 4.10 are the calculated bilinear 
approximations for each of the curves. Note that the apparent over-estimation by the 
bilinear representations of the actual curves is a function of the restricted range of 
curvature plotted, and is resolved when the full curve is plotted. It will be seen that the 
moment capacity is strongly influence by the axial load ratio, and also by the amount of 
reinforcement. However, the yield curvature of the equivalent bilinear representation of 
the moment-curvature curves does not appear to vary much between the curves.

Data from the full set of analyses for nominal moment capacity, and equivalent bilinear 
yield curvature are plotted in dimensionless form in Fig.4.11. The dimensionless nominal 
moment capacity and dimensionless yield curvature are respectively defined as

where £y = f yJE s is the flexural reinforcing steel yield strain.
The influence of both axial load ratio and reinforcement ratio on the nominal moment 

capacity is, as expected, substantial in Fig. 4.11(a), with an eight-fold range between 
maximum and minimum values. On the other hand, it is seen that the dimensionless yield 
curvature is comparatively insensitive to variations in axial load or reinforcement ratio.

• Steel yield strength
• Axial load ratio

f ye = 4 5 0  MPa (65.3 ksi) 
Ni/TaAg -  0 to 0.4 (9 levels)

1V1 N

r  d 3J  ce
(4.39)

and

<pDy=<l>yD l£ y (4.40)
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Curvature (1/m)
(a) Reinforcement Ratio = 1%

Curvature (1/m)
(b) Reinforcement Ratio = 3%

Fig.4.10 Selected Moment-Curvature Curves for Circular Bridge Columns 
(D = 2m; Pce = 35 MPa; fye =450 MPa)l«l

Axial Load Ratio (Nu/f'cAg) 

(a) Nominal Moment

Axial Load Ratio (Nu/f'cAg) 

(b) Yield Curvature

Fig.4.11 Dimensionless Nominal Moment and Yield Curvature for 
Circular Bridge Columns (P3J
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Thus the yield curvature is insensitive to the moment capacity. The average value of 
dimensionless curvature of (foy -  2.25 is plotted on Fig 4.11(b), together with lines at 
10% above and 10% below the average. It is seen that all data except those for low 
reinforcement ratio coupled with very high axial load rado fall within the ±10% limits.

It should be noted that though the data were generated from a specific column size 
and material strengths, the dimensionless results can be expected to apply, with only 
insignificant errors, to other column sizes and material strengths within the normal range 
expected for standard design. The results would not, however apply to very high material 
strengths (say /*c>50MPa (7.25ksi), or ^>600MPa (87ksi)) due to variadons in stress- 
strain characteristics.

The data in Figs. 4.10 and 4.11 can be used to determine the effective sdffness of the 
columns as a function of axial load rado and reinforcement rado, using Eq. (4.26). The 
rado of effecdve sdffness to initial uncracked section stiffness is thus given by

EL
ELgross

(4.41)
gross

Results are shown in Fig. 4.12 for the ranges of axial load and reinforcement ratio 
considered. It will be seen that the effective elastic stiffness ratio varies between 0.13 
and 0.91. For the most common values of the variables, however, the ratio will be 
between 0.3 and 0.7.

Axial Load Ratio (Nu/ffcAg)
Fig.4.12 Effective Stiffness Ratio for Circular Bridge Columns^3!



Chapter 4. Analysis Tools for Direct D isplacement-Based Design 155

It should be noted that for convenience in computing the stiffness ratios of Fig 4.12, 
the gross stiffness of the uncracked section has been calculated without including the 
stiffening effect of the flexural reinforcing steel. That is

r 7UD4
gross ~  64 (4'42)

Since the reinforcement increases the uncracked section moment of inertia by as much 
as 60% for the maximum steel ratio of 4%, the stiffness ratios related to true un-cracked 
sections would be lower, particularly for the higher reinforcement ratios. The value of 
the concrete modulus of elasticity used in computing Fig. 4.12 was

E = 5 0 0 0 (MPa) ; E = 6 0 0 0 0 (psi) (4.43)

4.4.2 Rectangular Concrete Columns

Ductile rectangular columns can occur in bridge design, and at the base level of multi
storey frame buildings. For the purposes of this study the special case of a square column 
with flexural reinforcement evenly distributed around the perimeter was investigated. 
The following basic data were assumed:

Column dimensions b — h — 1.6 m (63.5 in)
Cover to flexural reinforcement = 50mm (2 in)
Concrete compression strength f*ce — 35 MPa (5.08 ksi)
Flexural reinforcement diameter = 32 mm (1.26 in)
Transverse reinforcement: hoops “ 20mm dia. (0.^9in) /5 legs per layer
Steel yield strength fye — 450 MPa (65.3 ksi)
Axial load ratio — 0 to 0.4 (9 levels)
Flexural reinforcement ratio pJAg -  0.005 to 0.04 (5 levels)

Moment-curvature trends predicted by CUMBIA for the rectangular sections followed 
the same trends apparent for circular columns^3!.

Data from the full set of analyses for nominal moment capacity, and equivalent 
bilinear yield curvature are plotted in dimensionless form in Fig.4.13. The dimensionless 
nominal moment capacity, and dimensionless yield curvature are respectively defined as:



156 Priestley, Calvi and Kowalsky. D isplacement-Based Seism ic D esign of Structures

Axial Load Ratio (N u/ f ’cAg) 
(a) N om inal M oment

Axial Load Ratio (N u/ f  *cAg) 
(b) Yield Curvature

Fig. 4.13 Dimensionless Nominal Moment and Yield Curvature for 
Large Rectangular Columns iP3l

where b and h are the column width and depth respectively.
Trends for the rectangular columns, apparent in Fig.4.13, are similar to those displayed 

in Fig.4.11 for circular columns. Nominal moment capacity is strongly dependent on both 
axial load ratio and reinforcement ratio, with approximately an eight-fold increase in 
moment capacity from minimum axial load and reinforcement ratio to maximum axial 
load and reinforcement ratio. Dimensionless yield curvature is only weakly dependent on 
axial load ratio and reinforcement ratio, thus implying that the yield curvature is 
insensitive to the nominal moment capacity. The average value of dimensionless 
curvature of (foy =2.10 is plotted on Fig.4.13(b), together with lines at 10% above and 
10% below the average. It is seen that all data except those for pi =0.005 at both low 
and high axial load ratio fall within the +/- 10% limits of the average value.

As with the circular columns, the dimensionless results of Fig.4.13 can be expected to 
apply to other column sizes and material strengths within the normal range of material 
strengths. Small errors can be expected for small column dimensions, where the ratio of 
cover to core dimensions will be significantly larger than for the data presented here. As 
with the circular column data, results should not be applied to rectangular columns with 
very high strength concrete or reinforcing steel.

The data of Figs.4.13 have been used to develop curves for the effective section 
stiffness ratio, based on Eq.(4.41). Results are presented in Fig.4.14. For ease of 
application of the results, the stiffness of the gross uncracked section was computed 
ignoring the stiffening effect of flexural reinforcement as, Igr0ss ~ bh /12, with the 
modulus of elasticity given by Eq.(4.43).
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Axial Load Ratio (N u / f ’cAg)
Fig.4.14 Effective Stiffness Ratio for Large Rectangular Columns lP3l

The range of effective stiffness calculated in accordance with Eq.(4.41) is from 0.12 to 
0.86 times the gross section stiffness, indicating the strong dependence of effective 
stiffness on axial load ratio and reinforcement ratio. Clearly the common assumption of a 
constant section stiffness independent of flexural strength is entirely inappropriate.

Results from Fig.4.14 can be applied to other column sizes than those used to generate 
the graph by appropriate substitution of section dimensions into Eq.(4.41).

4.4.3 Walls

(a) Rectangular Concrete Walls: Similar calculations to those reported in the
previous two sections can also be carried out for rectangular structural walls, and have 
been fully presented elsewhere for both concrete and masonry walls[p21>A7l. Analyses for 
concrete walls considered two separate cases — one where the flexural reinforcement was 
distributed uniformly along the wall length, and the second, more common case where 
most of the flexural reinforcement was concentrated at the wall ends, with a 
comparatively light amount of reinforcement distributed along the wall length. It is 
emphasized that though the latter is the more common case, this is largely because of the 
misconception that concentrating the flexural reinforcement at the wall ends increases the 
flexural capacity when compared with the same total amount of reinforcement distributed 
uniformly along the wall length. In fact, the flexural strength associated with the two 
distributions will be very similar, as simple trial calculations will show.
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Results are presented in Fig.4.15 for the dimensionless yield curvature for walls with 
different axial load rados and reinforcement ratios, in similar fashion to the above 
analyses for columns. However, lower ranges of axial load ratio (with a maximum of 
Nu/PceAg— 0.125), and reinforcement rado (with a maximum of pt — 0.02) were adopted 
since these were considered to be practical upper limits for structural walls. Two different 
conditions were considered. In the first, a reinforcement ratio of 0.005 was considered to 
be uniformly distributed along the wail length, with the remainder concentrated near the 
wall ends. In the second case the full amount of reinforcement was uniformly distributed. 
In Fig.4.15 the yield curvature has been made dimensionless by multiplying by the wall 
length /h,, and dividing by the yield strain £y of the flexural reinforcement, in similar 
fashion to columns.

Average values of dimensionless curvature of (f)oy =1.85 and 2.15 for concentrated and 
distributed rebar are plotted in Figs.4.15 (a) and (b) respectively. An average value of

<pDy=<Pylj£y= ^  ±^%  (4.46)

essentially covers all data from the concentrated and distributed analyses. We recommend 
that this is sufficiently accurate to be used for design of all rectangular walls.

Axial Load Ratio (N/f'cAg) Axial Load Ratio (N/f'cAg)
(a) Rebar Concentrated at Wall Ends (b) Rebar Distributed along Wall

Fig.4.15 Dimensionless Yield Curvature for Rectangular Walls

Analyses where all the flexural reinforcement was distributed uniformly along the wall 
length resulted in an average dimensionless curvature approximately 10% higher than 
given by Eq.(4.46), with about twice the scatter of Fig.4.15lp2Il  The effective stiffness for 
rectangular walls can thus be calculated, as a fraction of gross wall stiffness as
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= (44 ’ )

where t is the wall width, and Myv is the calculated nominal flexural strength. Typical 
values are about 0.2 to 0.3. In Eq. (4.47), (f>Dy may be taken from Eq. (4.46) for all walls 
or the more accurate averages from the analyses of the walls with concentrated or 
distributed reinforcement may be adopted.

(b) Rectangular Masonry Walls: Similar analyses to those described above have been 
carried out for masonry wallsfA7I. The coefficient for the dimensionless curvature defined 
by Eq.(4.46) was found to vary between 2.06 for unconfined concrete masonry with 
uniformly distributed flexural reinforcement to 2.17 for confined clay or concrete 
masonry, also with distributed flexural reinforcement. It is recommended that an average 
value of 2.10 be used in all cases.

(c) Flanged Walls: PaulayF2̂  has investigated the dimensionless yield curvature for 
different sections, including flanged concrete structural walls. For I-section and T-section 
walls with the flange in compression, he recommends dimensionless curvature 
coefficients (Eq.(4.46)) of 1.4. Paulay’s values for rectangular walls are on average about 
10% below the values established above. The main reason for this difference appears to 
be some simplifying assumptions made by Paulay, including ignoring the effects of strain- 
hardening of the flexural reinforcement, which is included in our analyses. Spot 
comparisons for flanged walls indicate a similar influence of strain-hardening, and we 
therefore recommend a coefficient of 1.5 for flanged walls where the flange is in 
compression. Note that for T-section walls with the flange in tension, or I-section walls 
loaded perpendicular to the web, the higher values defined in Section 4.4.3(a) above are 
recommended.

4.4.4 Flanged Reinforced Concrete Beams

Similar studies have been carried out to investigate the influence of flexural 
reinforcement ratio on the stiffness of flanged beams. These were based on the section 
shown in Fig. 4.16, and have been fully reported elsewhere^3’1"22!. The appropriate value 
for the stiffness of a beam in a building frame under seismic action will be the average of 
the values applicable for positive and negative bending, as a result of the moment reversal 
along the beam length. As with columns and walls, it was found that the flexural strength 
and stiffness increased essentially proportionately as the reinforcement content increased, 
and that effective stiffness ratios (related to the gross section stiffness) varied between 
0.17 and 0.44.

If strain-hardening is ignored, and based on the average of positive and negative 
bending, it was found that the dimensionless curvature could be written as
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Fig.4.16 Reinforced Concrete Beam Section Analysed for Yield CurvaturelP22l 

<t>Dy =  QyK = 1 -7 ± 1 0% (4.48a)

Including the effects of strain-hardening increased the dimensionless yield curvature to

0Dy=<Pyhb/£y =L9±\O%  (4.48b)

For rectangular-section beams rather than flanged beams, average values for 
dimensionless curvature were about 10% higher than given by Eq (4.48), and with 
somewhat increased scatter. It is thus clear that the concept of a constant dimensionless 
yield curvature for concrete beam sections is an adequate approximation.

4.4.5 Steel Beam and Column Sections

There is less need for studies on steel sections, of the type reported in the previous 
sections for concrete and masonry members, since the elastic section stiffness can be 
directly computed from the known section dimensions. However, at the start of the 
design process, the overall depth of the section may be approximately known, but the 
flange thickness, and hence the strength and stiffness of the section will be chosen after 
strength requirements have been computed. In force-based design, a trial and error 
approximation should be carried out to ensure assumed stiffness and final flexural 
strength are compatible. For direct displacement-based design, however, the initial yield 
curvature is of greater interest, as it defines the yield displacement, and hence the ductility 
demand, enabling the effective damping to be computed.

It will be readily appreciated that for a symmetrical structural steel section, of overall 
depth h the first-yield curvature will be given by:

ooCD
40
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^ = 4  (4'49)

This curvature applies at the first-yield moment. For typical steel beam and column 
sections the nominal flexural strength will be only slighdy higher than the yield moment 
say Mn ~ 1.1 M )̂y and hence the effective yield curvature can be written as:

fiy = 2 .2 -y - (4.50)
h

It is of interest to note that this value is almost identical to concrete column sections 
reinforced with steel of the same yield strength.

4.4.6 Storey Yield Drift of Frames

The comparative invariance of dimensionless yield curvature of beams and columns 
indicates that storey yield drift of frames might similarly be essentially independent of 
reinforcement ratio and strength. Fig.4.17(a) shows a typical concrete beam/column 
subassemblage extending half a bay width either side of the joint, and half a storey height 
above and below the joint. This can be considered a characteristic element of a frame 
building. Since bay width will normally exceed storey height, and column curvatures will 
rvpically be less than beam curvatures as a consequence of capacity design procedures 
see Section 5.8), beam flexibility is likely to be the major contributor to the deformation.

The deflected shape is shown in Fig.4.17(b). The yield drift 6̂ , can be expressed as

6y = e»y + 9jy + 2A c1 Lc + 2As 1 Lc (4-51)

where Oby and djy are the rotations of the joint centre due to beam flexure and joint shear 
deformation respectively, Ac is the flexural deformation of the column top relative to the 
tangent rotation at the joint centre, and As is the additional deformation of the column 
cop due to shear deformation of beams and columns. To allow for strain penetration of 
longitudinal reinforcement into the joint region, it is assumed that the yield curvature in 
the beam develops at the joint centroid, and reduces linearly to zero at the beam midspan, 
as shown in Fig.4.17(c).

The yield drift due to beam flexure is thus:

6  (0 .5L ) 0  Lh
0  W  b )=% -*- (4.52)

J o

For a concrete frame, ignoring strain-hardening, and thus substituting from 
Eq. (4.48(a)):
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eby =  0.283^ (4.53)

Typical calculations based on a storey height/bay length ratio of 0.533 (storey height 
= 3.2m, bay length =6m) and a maximum column curvature of 0.75$, indicate column 
displacement Ac will add about 40% to the yield drift in Eq. (4.51). It is further assumed, 
based on experience, that the joint deformation and member shear deformation add 25% 
and 10% respectively to the yield drift. As a consequence, the yield drift for a reinforced 
concrete frame may be estimated as

0 =(1.0 + 0.4 + 0.25 + 0 . 1 ) x 0 .2 8 3 fv

-  0.5£, (4.54)

Equation (4.54) is compared in Fig.4.18 with the results from 46 beam/column test 
assemblages which included a wide range of possibly relevant parameters^22!, including

Column height/beam length aspect ratio {HJLh) 
Concrete compression strength {fee)
Beam reinforcing steel yield strength (fye) 
Maximum beam reinforcement rado (A'/b^d) 
Column axial load rado (A\/f*ceA^
Beam aspect ratio (Lf/Iib)

0 .4 -0 .86
22.5 -  88MPa (3.3 - 
276 -  61 IMPa (40-
0.53% -  3.9%
0 - 0.483 
4 .4 -1 2 .6

■ 12.8ksi)
■ 89 ksi)

Test units with equal, and with unequal top and bottom reinforcement rados were 
considered, as were units with and without slabs and/or transverse beams framing into 
the joint. Note that Eq.(4.54) only includes two of these parameters (beam reinforcement 
yield strength (which dictates the yield strain £y =f/Es)y and beam aspect rado), on the 
assumption that the other parameters are not significant variables. As is apparent from 
Fig.4.18, the agreement between experimental drifts and predictions of Eq.(4.54) is 
reasonable over the full, and rather wide range of yield drifts. The average ratio of 
experiment to theory is 1.03 with a standard deviation of 0.16. Considering the wide 
range of parameters considered, the comparatively narrow scatter is rather satisfactory. 
Note that the two test units with experimental drifts of about 1.5% are thought to have 
suffered beam slip through the column joint region, resulting in excessive yield drift, but 
have been included in the averaging. The significance of different experimental 
parameters included in the list of variables noted above, to the theoretical/experimental 
drift ratio has been examined elsewhereiP3’ P22l. In no case was the significance of any of 
the parameters not included in Eq.(4.54) found to be high enough to warrant inclusion in 
the design equation.
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o<
(c) Assumed Beam Curvature Distribution

Fig. 4.17 Elastic Deformation Components to Drift of a 
Beam Column Subassemblagetp22l
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Theoretical Drift Ratio (%)
Fig. 4.18 Experimental Yield Drifts of Reinforced Concrete Beam/Column 

Test Units Compared with Predictions of Eq.(4.54)lp22l

It is evident that the procedure adopted above to estimate the yield drift of reinforced 
concrete frames can also be adapted to predict the yield drift of structural steel frames. 
Substituting from Eq.(4.50) into Eq.(4.52), the drift due to beam flexure will be:

* *  = 0 .367ey (4.55)

and making the same assumptions about the percentage increase of yield drift from joint 
rotation, column flexure, and shear deformation, the following drift predictor results

0y = 0 .65e  (4.56)
_ _

That is, the yield drift for a structural steel frame is expected to about 30% higher than 
for a reinforced concrete frame with the same gross dimensions, and the same steel yield 
Stress. This equation has not, however, been checked against experimental results.

4.4.7 Summary of Yield Deformations.

From the moment-curvature analyses reported in the previous sections, it was found 
that stiffness and strength are effectively proportional, for a given structural member type 
and size, or structure type. The independent parameter, for stiffness calculations, is thus
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:he yield curvature, or yield displacement. The following yield curvatures are applicable 
for the “corner” of the equivalent bilinear approximation of force/deformation response:

• Circular column: (py — 2.25ey / D (4.57a)

• Rectangular column: ^ = 2.10 £ jh c (4.57b)

• Rectangular concrete walls: *,=2.0 0ey/lw (4.57c)

• T-Section Beams: <Py =\.10£ylhb (4.57d)

• Flanged concrete wails: 0,=1.5O£,//w (4.57e)

• Rectangular masonry walls: <j>y =2.\0£y/lw (4.57f)

The equation for flanged walls applies for I-section walls and for T-section walls when 
rhe flange is in compression. For reinforced concrete and structural steel frames, the yield 
drift can be expressed, with adequate accuracy as

Concrete frames: e , - o . s e , t (4.58a)

Structural steel frames: 6y -  0 .6 5 ^ (4.58b)

4.5 ANALYSES RELATED TO CAPACITY DESIGN REQUIREMENTS

In Section 3.9, capacity design was introduced. The basic philosophy is that DDBD is 
used as a means to determine the required strength of locations where inelastic rotations 
(plastic hinges) are intended. To ensure that plastic hinges do not occur at other parts of 
rhe structure, and to ensure that undesirable modes of inelastic deformation, such as 
shear failure do not develop, the dependable strength of these locations and actions is set 
ro be higher than the force levels at these locations, corresponding to the maximum 
feasible strength being developed at the plastic hinges. This is in recognition that in 
ductile design, it is the actual strength, rather than the conservative design strength, that 
will be developed in the design-level earthquake.

This premise is Illustrated in Fig. 4.19, which examines the force-displacement 
response of a simple bridge pier under lateral seismic response. If the pier had very high 
strength, it could respond elastically to the inertia forces, and have the maximum 
displacement and force corresponding to point A in Fig.4.19(c). The design strength is 
however much lower, and if the actual strength exactly equalled the required strength, the 
expected maximum response is defined by point B. If the actual strength exceeds the 
design strength, then it will be this strength that is developed, unless the actual strength
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exceeds that corresponding to point A. The response corresponding to actual strength is 
defined by point C. Note that the different strengths of A and B imply different stiffness.

A-*|

(a) S tructure (b) D eflection 
Profile

(c) Force-D isp lacem ent 
R esponse

Fig.4.19 Strength Developed in Design Earthquake by a Simple SDOF Pier

There are a number of reasons why the actual flexural strength may exceed the design 
strength:

• Material strengths (e.g. concrete compression strength, steel yield strength) may 
exceed the nominal or characteristic values used in design.

• Dependable flexural strength may incorporate a strength reduction factor (or 
partial material factors).

• Strain-hardening of reinforcement or structural steel may not have been 
considered in determining the flexural capacity of the section.

• The section size or reinforcement content may exceed the exact values required 
to equal the required strength.

A section or action being capacity-protected would need to take these possible 
increases of the plastic hinge flexural strength into account, and be designed for the 
appropriate action in equilibrium with the enhanced strength of the plastic hinge. In 
addition to this, the basic design for the plastic hinges may be based on a SDOF estimate 
of response, as is the case with DDBD. Amplification of the action requiring capacity 
protection due to higher mode effects must also be taken into account.

The general requirement for capacity protection is defined by Eq.(3.61), which is 
reproduced here as Eq.(4.59) for convenience:

</>sSD>SR=fa)SE (4.59)

where SE is the value of the design action being capacity protected, corresponding to the 
design lateral force distribution found from the DDBD process, (jf is the ratio of 
overstrength moment capacity to required capacity of the plastic hinges, 0) is the
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amplification of the action being considered, due to higher-mode effects, Sp is the design 
strength of the capacity protected action, and (f>s is a strength-reduction factor relating the 
dependable and design strengths of the action. Further background is given in Section 
3.9.

With conventional design, the value of the overstrength factor 0° can be large, because 
of the reasons elaborated in the four bullets above. Since DDBD is based on the required 
strength at maximum displacement demand, with less conservative assumptions about 
material strengths and strength-reduction factors (see Section 4.2.6), lower overstrength 
factors are appropriate, reducing the cost of implementing capacity design. This is 
illustrated in the following example.

4.5.1 Design Example 4.1: Design and Overstrength of a Bridge Pier Based on 
Moment-Curvature Analysis

The simple circular bridge pier of Fig.4.19 has been designed by DDBD for a drift of 
4%. The required lateral force at this drift is F  — 2690kN (605kips). It is required to 
determine the longitudinal and transverse reinforcement requirements, and the expected 
maximum feasible overstrength in the plastic hinge. The following data are applicable:

Height H— 10m (32.8ft); column dia.— 1.8m (6ft); cover to long, rebar — 50mm (2in) 
Long, rebar. 4,=40mm (1.575in)-fy -  420MPa (60.9ksi);/„ = 630MPa (91.4ksi) 
Trans.rebar: dbl = 20mm (0.787m);/; = 420MPa; f ,  = 630MPa; =0.12
Concrete: f c = 30 MPa (4.35ksi). 
Axial Load: Nu = 3.82MN (858kips) (= 0.05/V g

In accordance with the recommendations of Section 4.2.6 the following are the design
strengths applied to seismic design: ^  ^ j , O'' ./ , \

S 11 ^ ' Ai ^  ■ / 'A* *-
Concrete: f ce = 13 f c = 39 MPa (5.66ksi) ~ r "---------- >,
Long Rebar: f ye = 1.1f y = 462 MPa (67.0ksi)fe = 462/200,000 =0.00231) J

fue 1. i/„ 693 MPa _____________________  _
Trans Rebar: f yu -  1.0fy -  420 MPa (60.9ksi)

The following steps summarize the analysis process for section design.

Design Displacement: AD = 0.04x10,000 = 400 mm (15.75in)
Strain Penetration: From Eq.(4.30), LSp =0.022^^/= 0.022x462x40^=406.5mm 
Yield Displacement: From Eq.(4.57a), the yield curvature is

$  = 2.25€y/Z>=2.25x0.00231 /1.8=0.00289/m (73.4E-6/in)
Thus the yield displacement is Ay^ (/ / + L ^ )2/3=0.00289(10+0.407)2/3=0.1043m

i.e. =104.3mm (4.11 in)

Plastic Hinge Length: From Eq.(4.31), k — 0.08 and hence Lp—O.O&H+Lsp̂  2LSP
i.e. LP = 0.08x10000+406.5 = 1206.5mm (47.5in)
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Plastic Curvature: Plastic displacement AP-Ao-Ay = 400-104.3 =295.7mm(11.6in)
Hence, inverting Eq.(4.34): 0p=Ap/(LPH) = 0.2957/(1.206x10) = 0.0245/m(622E_6/in)

Design Curvature: <f>D=(py+(l>p -  0.00289+0.0245 = 0.0274/m (0.000696/in) 
Design Moment: MD -  2690x10 = 26,900kNm (238,100 kip.in.)

An initial section analysis is carried out using CUMBIA (see provided CD) with a 
typical volumetric ratio of transverse reinforcement of pv — 0.006. Since pv = 4Aft/D’sy 
this would result in a spacing of the hoops of

s — 4x314/(1800-2x50+20)x0.006 = 122mm (4.80in).
This analysis results in a required flexural reinforcement area of 63,600mm2 (98.6in2) 

to provide the design moment at the design curvature. The analysis also indicates that the 
neutral axis depth, c, at the design curvature will be about 460mm (18.1in).

The required flexural reinforcement area corresponds to a longitudinal reinforcement 
ratio of: pi — 63600/(0.785x18002) = 0.025, which is within the practical range of 0.008 < 
pi < 0.04, and requires 50.6 D40 bars. It is decided to use 52 bars to provide a whole 
number _o.£barsJn^each quadrant^ ^ ---------- —  —

Ultimate Compression strain: From the required design curvature and the neutral 
axis depth, the required ultimate compression strain is given by Eq.(4.4) as 

£cU =<h'c = 0.0274x0.46 = 0.0126.

Trans verse Reinforcement Ratio: Inverting Eq. (4.21):

Pv ={£cu -0-004) / / -  (4-60)
>•4 /v*fm

Solving Eq.(4.60) requires a knowledge of the confined compression strength of the 
concrete which depends on the lateral confining pressure (Eq.(4.10)), which in turn
depends on the transverse reinforcement ratio (Eq.(4.5)). Using the initial guess of p v — 
0.006, and substituting into Eq.(4.5): fi — 0.5x0.006x420 = 1.26MPa. Substituting this 
value in Eq.(4.10):

A ,  = 39 ' 2 .254Jl + 7-9 4 X l -2 6 - 2 ^ - 1 . 2 5 4 '  
v V 39 39 j = 47.lMPa(6.83fo/)

(Note that design aids for determining confined concrete compression strength are 
provided in Fig. 10.9). With the calculated value, substituting into Eq.(4.60):

A, =(0 .0 126 -0 .004) -------- — -------- = 0.00574
1 .4x420x0 .12

This is very close to the initial assumption of 0.006, and no further modification is 
required. The spacing of transverse reinforcement is thus set at 120mm (4.75in).
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Design Verification and Capacity Design Factors: A moment-curvature analysis 
is now run with the design longitudinal reinforcement of 52D40 bars (65,300mm2), and 
the transverse hoops of D20@120 crs. using the expected material strengths. The results 
are shown in Fig.4.20 by the line idendfied as “Design”. At the design curvature of 
0.02’74/m the moment capacity is MD -  27,200kNm (241,000 kip.in). This is 1.2% 
above the required design value.

Also shown in Fig.4.20 are two moment-curvature curves designated “Overstrength” 
A and B. Curve A corresponds to maximum feasible overstrength. For this case, f co 
= \ . 7 f c = 51 MPa (7.4ksi); f yo = 1.3fy = 546MPa (79.1 ksi); and f yho = 1.3f yh = 546MPa 
r-T9.1 ksi), in accordance with the recommendations of Section 4.2.4. At the design 
curvature of 0.0274, the moment capacity is 31,900kNm (283,000 kip.in), which is 
18.7% higher than the design requirement. Thus the appropriate value of (j.f to use in Eq. 
4.59) is $  — 1.187. This would be appropriate if it were used to determine required 

strength in other members of the bridge (say the superstructure). It would, however, be 
inconsistent to jise_ this value of overs trength for determining the required shear strength 
of the column, since it is based on maximum feasible strengths of concrete and transverse 
reinforcement, whereas the shear capacity will use lower values. It is clear that the same 
values should be used for concrete strength and transverse reinforcement yield strength 
for both overstrength demand, and shear capacity since they apply to the same region of 
the structure.

Curvature (m “^)
Fig.4.20 Moment-Curvature Response for Example 4.1



170 Priestley, Calvi and Kowalsky. D isplacement-Based Seism ic Design of Structures

Accordingly, Fig. 4.20 shows a second overstrength curve (B), which is based o n / ^  : 
Pee ~ 39MPa, and f yu0 — fyh =420 MPa, since these values should be used in estimating 
the shear capacity (see Section 4.7). It will be seen that this results in a rather small 
reduction in the overstrength moment capacity, and little inefficiency would result from 
using curve A. At the design curvature, the moment capacity of curve B is 30,840kNm 
(272,900 kip.in), which implies (jp — 1.146.

An additional cu m , labelled “(Force-Based)” is included in Fig. 4.20. This is based on 
conventional force-based design assumptions that the minimum specified material 
strengths (f*a fy> f yh) should be used in design, and that strain-hardening of the flexural 
reinforcement should be ignored. The nominal capacity would be estimated at an extreme 
fibre compression strain of 0.003. For the material properties and reinforcement details 
used in the final design above, this would result in a nominal flexural strength of MN — 
20,400kNm (180,500 kip.in), which is well below the required design strength. Using 
the same assumptions about material strengths, it would be necessary to increase the 
longitudinal reinforcement to 93,650 mm2 (a 48% increase) to match the required 
strength. The resulting overstrength demand can be estimated by the ratio of the capacity 
of curve A to the nominal strength of the (Force-Based) curve, resulting in 

/  = 31,943/20,800 = 1.536.
If a flexural strength reduction factor of (j)f — 0.9 were incorporated in the design, as is 

common practice in many codes, the overstrength factor would increase to (ft ~ 1.706. 
The extreme and unnecessary conservatism of current force-based design procedures is 
thus apparent in this example./

z
4.5.2 Default Overstrength Factors

For some simple structures the design effort involved in determining the required 
flexural overstrength factors for capacity design may be excessive. In these cases it would 
be permissible to use conservative default values for the overstrength factor (ft. Provided 
the design is based on a strain-hardening model for the flexural reinforcement, it is 
recommended that the default value should be (ft = 1.25. If strain-hardening is ignored 
in determining required section properties, it is recommended that (ft -  1.6 be assumed.

4.5.3 Dynamic Amplification (Higher Mode Effects)

Dynamic Amplification due to higher mode response is dependent on the type of 
structure being designed. As such, it is separately dealt with in each of the special chapters 
devoted to different structural types. Note that in Ex. 4.1 there were no higher modes.

4.6 EQUILIBRIUM CONSIDERATIONS IN CAPACITY DESIGN

Equilibrium must be satisfied at all stages of design, whether design level or 
overstrength is considered. This is illustrated in Fig.4.21 for a simple portal frame
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subjected to both gravity and seismic loading, at design and overstrength levels. It is 
assumed that the columns are ductile, and reach their capacity in both design and 
'verstrength response, as discussed in Section 4.5. For simplicity the moment capacities 

at top and bottom of the columns are assumed to be identical.

(a) Design Moments and Forces (b) Overstrength Moments and Forces

Fig.4.21 Equilibrium of Moments and Forces in a Portal Frame 
(moments drawn relative to member centrelines on tension side of member)

(a) Design-Level Response: The design lateral force Fj) is in equilibrium with the sum 
of the shears in the two columns. The design moments in the columns form at the 
column base and at the soffit of the beam. Since the shear in the columns is the slope of 
the bending moment, the following equilibrium equation applies:

T7  _ d l  + 2Md r

F° -  H ---------
(4.61)

where H is the clear height to the soffit of the beam, and Mol and Mor are the design 
moment capacities in the left and right columns respectively. Note that MjyL ^ Mdr, since 
the axial forces in the two columns are different. Note also that gravity moments have no 
influence on the validity of Eq.(4.61), since the column capacity is developed regardless 
of the ratio of seismic and gravity moments in the columns.

To determine the moment capacities of the two columns, it is thus necessary to 
determine the axial forces in the columns.

Vertical force equilibrium requires that the axial forces in the columns must equal the 
beam shears at the beam/column joint centroids. To find the beam shears we first note 
that the beam and column moments must also be in equilibrium at the joint centroids,
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and that the column moments at the joint centroids exceed the moments at the beam 
soffit:

M bl = [ \ QJ hb) = M d l(H + hb)/H  (4.62a)
U. J/7

M BR = M DR(H + hb)/H  (4.62b)

Note that the gravity load moments resulting from the load IFagain have no influence 
on the moments at the joint, which are totally defined by the column moment capacities. 
The shear in the beam can be separated into the gravity load and seismic force 
components:

Gravity: VR~W  t 2 (4.63a)

Seismic: VB = M̂ bl+ M br) (4 63b)
//

The sign of the gravity-load shear changes at the two ends of the beam, while the 
seismic shear is constant. The reactions at the base of the columns (ignoring the column 
weights) are thus:

W (MRI + Mrr) n w (Mrj + m rr )
Rn, =  Rn„=  —  + —  ----------—  (4.64)

2 L DR 2 L

The moment capacities of the column hinges must be calculated with the appropriate 
value of the axial force, given by Eq.(4.64). This may involve iteration, though normally 
one or two cycles are sufficient. In the initial design phase, when the design force Fd is 
known, and the column design moments are required, it is useful to recall that the 
moment-axial force relationship is likely to be nearly linear over the range of axial force 
expected, and hence the required flexural reinforcement content (for a reinforced 
concrete design), can be found from the approximate combination:

M d = Fd H !  4 ;  N = R m = W ! 2  (4.65)

This should then be checked with a detailed analysis, using the relationships of Eq.(4.62) 
and (4.64).

(b) Overstrength Response: The principles utilised in the previous section indicate 
that when the overstrength moment capacity is estimated at plastic hinge locations, the 
axial force should be adjusted to reflect the increased beam seismic shear resulting from 
the increased plastic hinge moment capacity of the columns. With respect to Fig. 4.21(b), 
the following relationships apply for seismic response force and seismic beam shear 
respectively:
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^  2(m ? + )F °  = ^  (4.66)H 

T, o  { m ?  + M ?)-(l  + h , / H )
V° = ^  b- L (4.67)

L

The seismic overstrength moment capacities, and the overstrength column shear 
demands for capacity design thus need to be determined in conjunction with the revised 
column axial forces:

R°l = W I 2 - V ° -  R°r = W !  2 + Vb° (4.68)

Required shear strength for the columns is given direcdy from the overstrength 
moment distribution as:

VL° = 2M° !H- V° = 2M°r /H (4.69)

and the beam maximum required shear strength, at the right end of the beam is

V°R = V° + W I2  (4.70)

The principles applied in this section are simple fundamental requirements of 
equilibrium, and should be self-evident to all designers. Unfortunately we find that 
equilibrium is not afforded the same emphasis as (say) matrix analysis methods in 
engineering curricula, and have hence provided this rather basic treatment of the subject.

4.7 DEPENDABLE STRENGTH OF CAPACITY PROTECTED ACTIONS

The discussion on capacity protection has thus far concentrated on demand. Equation 
(4.59) requires that the dependable capacity of the capacity protected action, (f>sSo is at 
least equal to the demand. Note that in this case the use of a strength reduction factor, (f>s 
is justified, since the consequence of the strength of the required action being less than 
that of the demand may be catastrophic. An example is the shear strength of a building or 
bridge column. Insufficient shear strength to cope with shears associated with flexural 
overstrength in plastic hinges could result in shear failure followed by reduction in 
capacity to support gravity loads to the extent that failure occurs.

4.7.1 Flexural Strength

Members where plastic hinges are not prescribed must have adequate flexural strength 
to ensure that unexpected plastic hinges do not occur. This is to ensure that undesirable
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deformation modes such as soft-storev mechanisms in building frames do not develop. 
Aspects related to this are fully covered in [PI] and Secdon 5.2.3.

Determination of nominal flexural strength M/\ is straightforward, and basic to all 
aspects of structural design, and again will not be further elaborated. However, we 
recommend that advanced secdon analyses, based on moment-curvature analyses, and 
including the effects of reinforcement strain-hardening be included in the design. 
Capacity should be based on nominal, or characteristic material strengths, rather than the 
enhanced values used for determining strength of plastic hinges, defined in Section 4.2.5. 
For concrete sections, nominal capacity should be determined at an extreme fibre 
compression strain of 0.004, or a reinforcement strain of 0.015, whichever occurs first. A 
flexural strength reduction factor of (f)f — 0.9 should be adequate to cope with possible 
material understrength, though the value will depend on local code requirements for 
material strengths, and expected construction quality.

4.7.2 Beam/Column Joint Shear Strength

Integrity of beam/column joints is essential to the successful performance of building, 
bridge, wharf and industrial frames, and requires careful consideration of the force 
transfer through the joint region. This has been extensively covered for buildings in [PI] 
and for bridges in [P4]. Since an adequate coverage of this important topic requires 
considerable length, it is not repeated here, and the interested reader is referred to the 
above texts.

4.7.3 Shear Strength of Concrete Members: Modified UCSD Model

There is also a great body of information relating to the shear strength of concrete 
members in the research literature [e.g. P4, K4, A9 etc], with a significant divergence 
between design approaches and design equations required by different national codes. 
Many of these do not recognise that flexural ductility affects the shear strength in plastic 
hinge regions, and the influence of axial force resulting from gravity and from prestress is 
often treated quite differently. In [P4] a new approach for determining the shear strength 
of concrete columns was outlined that considers most of the critical parameters, and 
since this has subsequently been upgraded to improve agreement with experimental 
resultslX4l, the modified approach, generally referred to as the modified UCSD model is 
outlined here. Independent studies have indicated that this approach provides a better 
agreement with experimental results than other methods^3'.

In the modified UCSD model, the shear strength of concrete sections is found from 
the additive equation:

(4.71)
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where vQ vs, and Vp are shear strengths provided by concrete mechanisms, transverse 
reinforcement truss mechanisms, and axial force mechanisms respectively. These are 
described separately in the following sections.

(a) Concrete Shear-Resisting Mechanisms, (Vc): The key component of the strength 
of concrete shear-re si sting mechanisms in flexurally cracked members is provided by 
aggregate interlock on the rough flexure/shear cracks. In plastic hinge regions, the 
strength of aggregate interlock reduces as the flexure/shear crack widens under ductility. 
The strength is also dependent on the aspect ratio of the member, defined as the distance 
from the critical section to the point of contraflexure, divided by the section depth, (i.e. 
M/(VD)} where Afand Fare the moment and shear at the critical section and D  is the 
total section depth) and on the volumetric ratio of longitudinal reinforcement, pi=As/Ag. 
The strength is thus given by:

Vc = *V 7\,-A, = a P r4 K , ■ (0 .84 )  (4.72)
M

where 1.0 < OC = 3 -------< 1.5 (4.72a)
VD

/? = 0.5 + 20p l <1.0 (4.72b)

and yis given by Fig. 4.22, for concrete columns. Note that in Fig.4.22, the prime variable 
is the curvature ductility demand, which is directly related to the width of flexure/shear 
cracks in the plastic hinge region. A secondary variable is the mode of ductility. It has 
oeen found[A3>plJ that the strength of concrete shear-resisting mechanisms of members 
subjected to ductility demands in two orthogonal directions (biaxial ductility) degrades 
r.iore rapidly than sections subjected to uniaxial ductility. This is reflected in Fig.4.22.

Curvature Ductility Curvature Ductility
(a) D esign  of N ew  M em bers (b) A ssessm ent o f E x is ting  M em bers

Fig.4.22 Ductility Component of Concrete Shear-Resisting Mechanism for 
Columns (Modified UCSD Model)



176 Priestley, Calvi and Kowalsky. D isplacem ent-Based Seism ic Design of Structures

Figure 4.22 also distinguishes between design of new members, and assessment of 
existing members. A Jess conservative approach is appropriate for the latter, since the 
consequences of excessive conservatism is assessment may be unnecessary strengthening.

For concrete beam sections, it is suggested that the strength given by Eq.(4.72) be 
reduced by 20% to compensate for the conditions of concrete confinement which are 
less satisfactory than for columns, and that the tension, rather the total reinforcement 
area be used to determine j3.

Note that the reduction in shear strength with ductility only applies to the plastic 
hinge regions of members designed for ductility. In parts of members between plastic 
hinges, and in members protected against plastic hinging by a capacity design approach, 
the value of J  used in Eq.(4.72) will be the value at a curvature ductility of 1.0.

(b) Axial Load Component, VP\ In many design equations for concrete shear strength 
the axial load on the section is combined in a composite equation with the concrete 
shear-resisting mechanisms. This would imply that the well-known enhancement of shear 
strength with increased axial compression would reduce with flexural ductility. This is not 
supported by experiments. In the UCSD model, the shear strength enhancement resulting 
from axial compression is considered as an independent component (see Eq.(4.7l)), 
resulting from a diagonal compression strut, as illustrated in Fig. 4.23 for columns, and in 
Fig.4.24 for the beam of a portal frame (the extension to other beams with seismic 
moment-reversal along the length is obvious). It will be noted that the axial force in 
beams will often be low, and it is traditional to ignore its influence on shear strength. 
Nevertheless, in some structures, particularly bridge bents, the influence can be 
substantial. This will particularly be the case if the beam is prestressed.

(a) Double Bending (b) Single Bending

Fig. 4.23 Contribution of Axial Force to Column Shear Strength
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Fig. 4.24 Contribution of Axial Force to Shear strength of a Portal Framed4)

In Figs.4.23 and 4.24, the average inclination of the strut involving the axial force is 
shown at an angle £ to the member axis. For the column of Fig. 4.23(a) which is 
restrained from rotation at top and bottom, the axial force is effectively applied to the 
column through the centre of the flexural compression zone at the beam top, and exits 
through the centre of flexural compression at the bottom. The horizontal component of 
this strut acts to resist the applied shear force, thus enhancing the column shear strength. 
For the cantilever column of Fig.4.23(b), the axial load is applied at the centre of the 
column at the top, but again exits through the centre of flexural compression at the 
bottom. The angle of the strut to the column axis is less than in Fig. 4.23(a), and hence 
the resistance to lateral shear is less. In Fig.4.24, due to the uniformly distributed inertia 
force, the axial force varies along the length of the beam, which will be subjected to axial 
tension at one end, and axial compression at the other, unless prestressed, as suggested in 
Fig.4.24. The vertical component of the inclined strut either adds to, or resists the applied 
shear force, depending on whether the axial force is tensile or compressive.

In assessment of existing structures the full axial force component should be relied on. 
For new structures a more conservative approach, where the axial force component is 
reduced by 15% has been proposed^4!. The following equations thus apply for VP:

Design: Vp = 0.85/Man ^  (4.73a)

Assessment: Vp — P .id in^  (4.73b)

where the angle between the strut and the member axis.

(c) Transverse Reinforcement Truss Shear-Resisting Mechanism, The strength of 
transverse reinforcement truss mechanisms is illustrated in Fig.4.25 for rectangular and 
circular columns. The rectangular column illustration (Fig.4.25(a)) is also relevant for 
rectangular or T-section beams. The critical flexure-shear crack crosses the section at an
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© © ©

© © ©
(a) Rectangular column (b) Circular column

Fig.4.25 Effectiveness of Transverse Reinforcement for Shear Resistance of
Columns lP4l

average angle of 6  to the vertical axis. The layers of transverse reinforcement crossed by 
the crack act to transfer some of the shear force across the crack. The maximum force 
that can be transferred by a layer of area Av depends on the yield strength of the 
transverse reinforcement, and the orientation of the bars of the layer with respect to the 
axis along which the shear is applied. For example, at the vertical sections denoted 1 in 
Fig.4.25(a), the octagonal hoop, which forms part of the layer will provide resistance at 
45° to the direction of applied shear, and the effective area of this hoop at this section 
will be Ah/^2, where Ah is the area of the hoop bar, whereas the outer peripheral 
rectangular hoop will be fully effective at both sections 1 and 2. It can be shown^4! that 
for the case of one peripheral and one octagonal hoop, the average effective area is Av — 
3.61 A^ If however, the transverse reinforcement consists of a peripheral hoop and two 
overlapping internal hoops (shown by dashed lines in Fig. 4.25(a)), the average effective 
area is Av -  4.61 Ah.

With a circular column (Fig.4.25(b)), the orientation of the hoop forces restraining a 
flexure shear crack depends on the position of the individual hoop where the crack
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intersects it. At the column centreline, the hoop force A ijyh is parallel to the applied shear 
force, but as the distance from the column centreline increases, the inclination CC to the 
direction of applied force also increases, and the effective force restraining the crack, i.e. 
Aifyhtana  decreases. Given that there are two forces restraining the crack (Fig.4.25(b)), 
the average restraining force, taking all possible locations of the hoop or spiral with 
respect to the intersecting crack, can be shown to be

7T r
F  =  ^ A hfyH (4-74)

If the angle of the flexure-shear crack to the member axis is 6, for either the 
rectangular or circular column, the depth from the extreme compression fibre to the 
neutral axis is C , and the cover to the centre of the peripheral hoop is c0 , then the number 
of layers of hoop crossed by the inclined crack is

( D - c - c )
n = -̂-----------°- ■ cot(0) (4.75)

where s is the spacing of hoops or spirals along the member axis.
The total shear resistance provided by the transverse reinforcement for the rectangular 

column can thus be estimated as:

7/ (D - c ~ co)- cot(#) /a s \Rectangular column: Vs —------------------------------------ (4. / 6a)

where Av is the effective area of hoops in a single layer, as discussed above, and for a 
circular column with circular hoops or spirals:

Jl A J ^ D -c -c ^ -c o t{ 6 )
Circular column: Vs = —.------------------------------------  (4.76b)

2 s

Equation (4.76a) may be considered “exact”, but Eq.(4.76b) is approximate since the 
average effective force given by Eq.(4.74) is exact only if the crack penetrates the full 
width of the column. However, it has been shown that the error is small, and 
conservative^4!. Although standard practice in the United States adopts an angle of 0 — 
45°, this has been found to be unnecessarily conservative, provided longitudinal 
reinforcement is not prematurely terminated. European practice is based on plasticity 
theory and a variable angle 0. It has been found that sufficiently conservative designs can 
be obtained taking 6 — 35°. For assessment of existing structures the less conservative 
value of 6 ~ 30° is appropriate^4!. The principles and equations outlined in this section 
can also be applied to concrete beam sections.
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(d) Strength Reduction Factor for Shear Capacity: For design it is appropriate to 
include a strength reduction factor in addition to the conservatism applied in the 
equations for the individual shear-resisting components described above. It is 
recommended that this be taken as (ps — 0.85 (see Eq.(4.71)). For assessment of existing 
structures, where the required shear strength has been determined in accordance with the 
capacity-protection measures of Secdon 4.5, no shear strength reduction factor need be 
applied, since a “best estimate” of performance will be required.

(e) Comparison o f Assessment Equations with Circular Column Test Data: Figure 
4.26 compares shear strength predictions of Eq.(4.71) using the assessment values of the 
component strengths, and a strength reduction factor <ps —1.0, with experimental data for 
a wide range of circular columns. Brittle and ductile shear failures are those for which the 
initial shear strength (curvature ductility =1) was less than or more than, respectively, the 
shear corresponding to flexural strength. Measured, rather than nominal, material 
properties were used in the predictions which are very satisfactory, regardless of what 
variable is used to organize the test results. Note that the columns failing in flexure have 
strengths below the predicted shear strength. This does not indicate unsatisfactory 
behaviour, since the strength was dictated by the flexural capacity which was less than the 
shear strength. Design shear strength, including the (ps =0.85 factor, is shown by the 
dashed line, and is a lower bound to all shear failures.

(f) Prediction o f Ductility Capacity for Flex ure-Sh ear Failure o f Existing Columns:
With new designs, the design procedure should ensure that shear failure does not occur. 
With existing columns, however, it may be found that shear failure is predicted. When 
this occurs at less than the flexural strength of the column, brittle failure is expected, 
though the displacements will be larger than assessed from a simple bilinear 
approximation based on flexure alonelM6l. This is explained in relation to Fig.4.27.

Figure 4.27 shows the force-displacement response of bridge columns roughly based 
on Example 4.1. The bilinear flexural response is indicated by the solid line, and the 
“refined” response, including onset of cracking and non-linearity of the post-first yield 
behaviour in shown by the dashed line labelled “A”. The second dashed line, labelled “B” 
includes shear deformation calculated in accordance with recommendations made in 
Section 4.8. Three possible shear strength envelopes are shown, each corresponding to a 
different spacing of the transverse reinforcement. Strength envelope 1 corresponds to 
close spacing of the transverse reinforcement, and shear failure is not expected before the 
full displacement capacity is reached, whether shear deformation is included or not.

Shear strength envelope 2 degrades to intersect the predicted force-displacement 
response. The failure displacement (and force) depends on whether shear displacement is 
included or ignored. The values are 284mm and 297mm (11.2in and 11.7in) respectively. 
In terms of displacement-based design the differences are not significant, particularly 
when the slight reduction in strength resulting from the increased displacement associated 
with the response including shear deformation is considered. The bilinear and refined 
displacement curves are identical in this region.
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Fig.4.26 Shear Strength Comparison: Circular Column Data vs Assessment
Prediction Organized by Significant Variables (Design Strength Shown Dashed)

With shear strength envelope 3, corresponding to wide-spaced transverse 
reinforcement, there is a significant difference in the predicted failure displacements 
depending on which force-displacement curve is used, with the values being 100mm, 
135mm and 149mm (3.9in, 4.3in, and 4.9in) for the bilinear, refined, and refined+shear
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deformation respectively. In displacement-based assessment of an existing structure the 
higher displacements would translate into a significant increase in seismic intensity able to 
be accommodated by the structure, particularly when the enhanced damping associated 
with the implied ductility is included in the analysis. Note that shear deformation has 
conservatively not been applied to the strength envelopes in the above discussion.

Displacement (mm)
Fig.4.27 Force-Displacement Response of Columns with Different Shear Strengths

4.7.4 Design Example 4.2: Shear Strength of a Circular Bridge Column

The bridge column of Design Example 4.1, presented in Section 4.5.1, is analysed to 
see if it has adequate shear strength to satisfy the design requirements of Sec. 4.7.3. 
Additional information required is that the column is expected to have similar ductility 
demands in orthogonal directions, and hence the biaxial data of Fig.4.22 apply for 
determining the strength of the concrete shear-resisting mechanisms.

Design shear forcer. Curve B of Fig.4.20, which is based on overstrength flexural 
reinforcement properties, but expected concrete strength, applies. Thus, as noted in 
Section 4.4.1, the overstrength moment capacity is 30.8 MNm (273,000 kip.in). With a 
column height of 10m (32.8ft), the overstrength shear force is thus:

V° = 3.08MN (693kips).
A shear strength reduction factor of (/>/ — 0.85 is specified. There is no dynamic 

amplification to be applied, and hence the capacity-design Eq.(4.71) can be expressed as:

V °   ̂ 08VN =VC +VS +VF > —  = —  = 3.63M7V(815 kips) 
(pf 0.85
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Concrete shear-resisting mechanisms'. From Ex.4.1, the curvature ductility is: 
0d/$v — 0.0274/0.00289 = 9.48. Interpolating from the biaxial line of Fig. 4.22, the 
concrete strength coefficient is y~  0.101. Since the column aspect ratio exceeds 2, and 
rne longitudinal reinforcement ratio is 0.025, both OC and (5  =1.0. The strength of the 
concrete shear-resisting mechanisms, with f*ce — 39 MPa, is thus, from Eq.(4.72):

Vc = a.p.yJf\'i,(0&A!. ) = 0.101^39(0.8 x 2.543) = 1.2S3 MN(2S9kips)

Axial Load component The axial load is 3.82MN, and the depth of the compression 
zone, c, is 460mm. The angle of the axial load strut is thus given by tan^ = (0.9-0.23)/10 
=0.067. From Eq.(4.73a), the shear strength resulting from the axial load component is:

Vp = 0.85 P. tan ^ = 0.85 x 3.82 x 0.067 = 0.21 %MN(49kips)
Transverse reinforcement component Equation (4.76b) applies, with 6 — 35°. The 

pitch of the hoops is s — 120mm, and hence the available strength is

71 A hf yll( D  — c — cu) cot($) n  3 1 4 x 4 2 0 (1 8 0 0 -4 6 0 -4 0 )co t35
2 s 2 120

The total shear strength is thus:

= 3.214 MTV (723/dps)

VN =VC + VS+VP = \ .283 + 0.218 + 3.214 = 4.715 MN > 3.628 MN (OK).

In fact, a spacing of 180mm (7.1 in) would be adequate for required shear strength, but 
che more critical confinement requirement of 120mm governs, and is thus specified. Note 
that the shear requirement is not added to the confinement requirement — the same 
reinforcement can simultaneously provide confinement and shear strength. If the 
reinforcement is stressed by shear strength requirements, it will bear against the core 
concrete, providing effective confinement to the concrete. On the other hand, if the 
transverse reinforcement is in tension due to confinement, this stress can be used to 
transfer shear force across open cracks. If it is further considered that the peak shear and 
confinement demands occur in orthogonal directions, it is clear that the column need 
only be designed for the more critical of shear and confinement.

4.7.5 Shear Strength of Reinforced Concrete and Masonry Walls

(a) Shear Demand: The design shear force for reinforced concrete or masonry walls is 
strongly influence by capacity design influences -  particularly higher mode effects. This is 
discussed in some detail in Section 6.6, and is only briefly considered here. Figure 4.28 
shows two profiles of moment up the height of a cantilever wall, with Fig.4.28(a) 
corresponding to the design distribution of lateral forces, resulting from the DDBD 
procedure, and Fig.4.28(b) including a possible distribution resulting in maximum feasible 
base shear. In Fig.4.28(b) the base moment M° exceeds the design moment Mr, as a 
result of material strengths exceeding expected values (see Sections 4.2.4 and 4.5).
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Fig.4.28 Moment Profiles for a Cantilever Structural Wall

Critical higher mode effects result in a much more rapid decrease in moments with 
height than for the design profile, and hence the overstrength base shear force, given by 
the slope of the moment profile at the wall base (V°=M°/I-F) is significantly larger than 
the design base shear force (VD =Mj)/He). In the example shown in Fig.4.28, with M° — 
1.25A/d, the overstrength shear is V° — 2.2VD.

(b) Concrete Shear-Resisting Mechanisms: The strength of the concrete shear- 
resisting mechanisms can be determined from Section 4.7.3(a) as for columns. However, 
it could be noted that at maximum shear response, the ductility demand is unlikely to be 
as high as the design level, since the design level for displacement and ductility demand is 
dominated by first mode response, while peak shear demand will be strongly influenced 
by second, and perhaps third-mode response, which are unlikely to occur simultaneously 
with peak first mode response. The aspect ratio for the wall to be used when determining 
the factor OCin Eq.(4.72a) should be based on the overstrength effective height; that is,

M/VD = H°!lw.

With flanged walls, it is recommended that the effective shear area be based on the 
web dimensions (in the direction considered) and that the area of any flanges be 
conservatively ignored.

(c) Axial Force Component: The concepts outlined in Section 4.7.3(b) for the 
contribution of axial force in shear resistance were related to a single axial force 
component. In multi-storey walls, axial force, and its influence on shear strength will be 
composed of a number of components; one for each floor level. Thus Eq.(4.73) should
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be replaced by a summation of the effects from each floor considered separately. The 
load at each floor should be considered to be applied through the geometric centroid of 
the wall, and the resulting angle of the compression strut calculated separately for each 
floor.

(d) Transverse Reinforcement Mechanisms: Again the recommendations of Section 
4.n.3(c) can be directly used. When the wall flexural reinforcement is uniformly 
distributed along the wall length, as we recommend, it will help to control the diagonal 
flexural-shear cracking, and hence enhance the concrete shear-re sis ting mechanisms. 
Also, with longer walls, the critical 35° angle of diagonal cracking is likely to intersect a 
floor slab, potentially mobilizing addidonal shear resistance. With typical storey heights of 
3m (10ft) this can be expected for walls longer than about 2.5m (8.2ft). Although this 
may not be relied upon in design, it provides addidonal security against shear failure.

4.7.6 Response to Seismic Intensity Levels Exceeding the Design Level

When structures are designed to the damage-control limit state under a level 2 
earthquake, there remains the possibility that they may be subjected to higher intensity 
levels, perhaps corresponding to level 3 (see Secdon 2.2.2.(c)). It is clearly important that 
to satisfy the life-safety performance criterion required for a Level 3 earthquake, shear 
failure must not occur. The influence of increased seismic excitation on shear strength is 
expressed in the proposed design approach by an increase in curvature ductility, which 
results in a decrease in the strength of the concrete shear-resisting mechanisms (see 
Fig.4.22). Generally the inherent conservatism of the proposed shear design approach will 
be sufficient to ensure safe performance under a Level 3 earthquake. However, if the 
concrete shear-resisdng mechanisms provide a large portion of the total shear strength, 
added conservatism in the shear design would be appropriate. This could be effected, for 
example, by using the minimum levels for the parameter Ain Fig.4.22 (a).

4.8 SHEAR FLEXIBILITY OF CONCRETE MEMBERS

4.8.1 Computation of Shear Deformations

For slender members, with aspect ratios M/ VD > 3, shear deformation will be small, 
and can be ignored. It will be recalled that in Section 4.2.7 the use of a linear elastic 
curvature distribution in predicting force-displacement response was partiv to 
compensate for shear deformation. It should also be noted that ignoring shear 
deformation is not necessarily unconservative in a displacement-based design 
environment, since shear deformation will increase the displacement capacity 
corresponding to strain-based flexural limit states.

For members of low aspect ratio, and particularly when assessing the force- 
displacement characteristics of existing structures, it may be advisable to consider shear 
deformation. In this context it should be pointed out that only approximate methods for
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predicting shear deformations of concrete members are available, though compression- 
field theoryfC8J provides a means for predicting total deformation, including shear 
components, for monotonic response of members with positive stiffness. The following 
simplified approach is modified from an approach developed by Miranda et aUM6l, and 
assumes a bilinear flexural force-displacement approximation is utilized. Adaptation to 
the “refined” approach of Fig.4.9 is obvious.

Calculation of shear deformation is divided into three phases of the force- 
displacement response:

(a) Elastic, Prior to Shear Cracking: With the bilinear approximation to response, it is 
assumed that the elastic phase is represented by constant flexural section stiffness of

EIeff = M n I <py (4.77)

In the elastic range, prior to the formation of diagonal shear cracks, flexural cracking 
reduces the shear stiffness approximately in proportion to the reduction in flexural 
stiffness. Thus, the shear stiffness in this phase may be approximated by:

E I u
K ,ff= K .sroSS- Y r ~  (4-78)

gross

where the shear stiffness for an uncracked cantilever column of shear area As, shear 
modulus G and length H is given by:

For solid sections, the shear area may be taken as As ~ 0.87/4graw, with adequate 
accuracy, and the shear modulus as G ~ 0.43 E, for concrete and masonry structures.

Shear cracking may conservatively be assumed to occur when V—Vĉ  given by 
Eq.(4.^2), with y— 0.29 (MPa units; y~ 3.5, psi units). Note that this corresponds to the 
initial strength for the assessment model, which is used here in preference to the design 
model, since a best estimate of deformation is required. The displacement at onset of 
diagonal cracking is thus:

A * = V c ! K eff (4.80)

(b) Elastic, After Shear Cracking: The shear stiffness for incremental displacements 
after onset of diagonal shear cracking is basecUM61 on a model developed originally by 
PaulaylP31l. This considers the shear flexibility of an equivalent strut-and-tie model, 
incorporating both the compression of the diagonal strut, and the extension of the tie 
representing the transverse reinforcement. The unitary shear stiffness (i.e. shear stiffness 
of a unit length of member) for members with transverse reinforcement perpendicular to 
the axis is given by
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7 pnsmA d.coX2 0 ,
4 . q  Esb J  (4.81)

sin Q + npa

where #is the angle the diagonal strut makes with the member axis, pa is the area ratio of 
rransverse reinforcement, n — Es/Ec is the steel/concrete modular ratio, bw is the 
effective width of the section, and d is the effective depth of the section.

There are some problems associated with the use of Eq.(4.81), particularly in applying 
it to circular sections. One general problem, however, is that for typical values of n and 
pa it implies that the shear stiffness increases as the angle # reduces from 45° to 30°. This 
appears counter-intuitive, as members suffering shear distress typically exhibit a 
decreasing angle 0as shear force increases to maximize shear strength (see Eq.(4.76),e.g). 
1 hat this should be accompanied by decreasing shear deformation is unlikely, and is not 
supported by experimental results, so far as we are aware. Nevertheless, Eq.(4.81) gives 
reasonable prediction of shear deformation of rectangular co lum ns^ when 6 — 45°. 
With this approximation, Eq.(4.81) can be simplified to:

K „  -- ,  ■ E .b J  (4.82)
0.25 + Yipa

A further problem with Eqs(4.81 and 4.82) is the evaluation of the modular ratio. This 
will increase as the flexural strength of the column is approached, resulting in a decrease 
in effective shear stiffness. This occurs as a result of softening of the diagonal 
compression strut. Consequendy, the value for n should reflect this. An average value of 
n — 10 is recommended.

For circular columns, as mentioned earlier, additional problems are associated with 
definition of pa> bw and d. The following approximate values are suggested:

p = l A _  = 039p  and b. = d = 0.8D (4.83)
a 2'D's

where pv is the volumetric ratio of transverse reinforcement (see Sec.4.2.2).
The shear stiffness defined by Eq.(4.82) applies for shear forces between diagonal 

cracldng, and nominal flexural strength. At nominal flexural strength the shear 
deformation is thus:

\ * = \ j + ( K v - Vc)/Krr (4.84)

where Vjv is the shear force corresponding to flexural strength.

(c) Ductile phase: In the post-yield phase the concrete compression struts within the 
plastic hinge region will continue to soften, and thus shear deformation will continue to 
increase. Experiments on columns where shear failure does not occur have indicated that 
the shear deformation, as a fraction of total deformation remains essentially constant, or
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reduces slightly, as the ductility increases. Since rational computation of the shear 
deformation in this phase of response is difficult, and the significance to total 
deformation is typically small, it is recommended that the shear deformation be increased 
in propordon to the flexural deformation after yield. That is:

Af = A r ^  (4.85)
/.A'

If the “refined” force-displacement representation of Section 4.2.7 is adopted, 
Eq.(4.85) should be applied after the member has attained its nominal flexural strength.

4.8.2 Design Example 4.3: Shear Deformation, and Failure Displacement of a 
Circular Column

The column of Design Examples 4.1 (Secdon 4.5.1) and 4.2 (Section 4.7.4) is now re
analysed with the effective column height reduced from 10m (32.8ft) to 5m (16.4ft) to 
make it more shear-critical. Note that the column aspect ratio is now 5/1.8 = 2.8, 
indicating that shear deformation probably should be considered. Longitudinal and 
transverse reinforcement, and axial load remain as in the previous examples. First the 
force-displacement response needs to be reassessed.

Table 4.1 Force-Displacement Data for Example 4.3 (lMN=225kips, lm=39.37in)

Row Moment
(MNrn)

Curvature
(nr1)

Shear
Force(MN)

Flexural 
Disp. (mm)

Shear Disp 
(mm)

Total Disp 
(mm)

1 0.0 0.0 0.0 0.0 0.00 0.00
2 18.87 0.00242 3.774 24.23 1.81 26.04
3 19.88 0.00260 3.976 24.75 2.95 28.70
4 21.31 0.00298 4.262 28.55 456 33.11
5 22.36 0.00339 4.472 31.22 4.75 36.98
6 24.08 0.00450 4.816 37.70 7.70 44.40
7 24.13 0.00571 4.826 44.24 8.88 53.12
8 24.73 0.00695 4.946 50.5^ 9.56 60.14
9 26.21 0.00814 5.242 56.59 10.10 66.70
10 26.72 0.00928 5.344 62.42 11.14 "3.55
11 27.14 0.01038 5.428 68.00 12.13 80.10
12 27.85 0.01250 5.570 78.66 14.04 92.70
13 28.39 0.01453 5.678 88.78 14.84 104.62
14 28.89 0.01651 5.778 98.62 17.60 116.22
15 29.34 0.01849 5.868 108.44 19.35 127.79
16 29.72 0.02044 5.944 118.06 21.07 139.13
17 30.36 0.02421 6.072 136.60 24.38 160.98
18 30.84 0.02533 6.168 142.31 24.39 167.70
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Table 4.1 includes data necessary to construct the force-displacement response. The 
moment and curvature are values found from moment-curvature analysis of the column, 
using the procedures outlined in Section 4.2, and the overstrength data corresponding to 
curve B in Fig.4.20. The data in Row 2 correspond to first yield of the extreme 
longitudinal reinforcement. Because the axial compression stress is low, flexural cracking 
occurs at a very low moment, if the recommendation to take tension strength as zero is 
adopted. Consequendy, the moment-curvature response is essentially linear up to first 
vield, and intermediate values have been omitted, for simplicity. The “refined” force- 
displacement approach of Section 4.2.7 can thus also be assumed to be linear before first 
vield. Shear force is simply found from V—M/S.

Flexural displacement. Since the yield strength for this assessment is taken as 1.3 fy -  
546MPa (79.1 ksi), the strain penetration length needs to be recalculated from the value 
used in Example 4.1: L$p — 0.022fyedbi — 0.022x546x40 = 480.5mm (18.9in)

Plastic hinge length. From Eq.(4.31), LP — 0.08x5000+480.5 = 880.5 >2x480.5 
i.e. Lp =961mm (37.8in)

First yield displacement. From Table 4.1, Row 2, the first yield curvature is (/>yy — 
0.00242. Thus, A’y = 0.00242x(5+0.481)2/3 m = 24.23mm (0.95in).

Subsequent flexural displacement From Eq.(4.37), the flexural displacement for 
moments higher than first yield are given by:

A a. MA = A’ ----- +
; M

LPH -  24.23 + {</>- 0.00242 |0.961 x 5000mm (4-86)P 18.87 \J 18.87 )

The displacements resulting from Eq.(4.86) are listed in Table 4.1 in Column 5 
(Flexural Disp. (mm)), and the force vs. flexural displacement is plotted in Fig.4.29 by the 
dashed line labelled Flex. Disp.

Shear displacements prior to shear cracking. Following the recommendations of 
Sec. 4.8.1, the shear stiffness in the elastic range of flexural response is given by Eq.(4.79). 
This requires the ratio of effective to gross flexural stiffness to be calculated. The 
effective stiffness can be calculated from the moment-curvature data at first yield as

EIeJf = My/<ffv = 1 8.87/0.00242 = 7798M/W
Now:

Igwss — ;z£)4 /64 = k(\ .8)4 /64 = 0.515m4, and from Eq.(4.43) 

Ec = 5000-\/39 = 31 IGPci ■
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Displacement (mm)

Fig.4.29 Force-Displacement Response, and Shear Strength, for Example 4.3 
(1MN = 224.8kips; 1mm = 0.0394in)

Hence:
EIeff / EIgnus = 7798 /(31,200 x 0.515) = 0.485

The shear force at diagonal cracking is, from Eq.(4.72) with CC— p — 1.0:

Vc =0.29739x0.8x2.543 = 3.6&MN (827 kips)

The elastic shear displacement at diagonal cracking is thus, with {7=0.43x31.2 
= 13.42GPa and As = 0.87x2.543=2.212m2:

4 , ,  = J k  .  L JL . =-------168X5000-------= .28mm(0.05,n)
' kseff GAS EIeff 13,420x2.212x0.485

Note that in this case diagonal shear cracking and flexural yield occur almost at the same 
shear force.

Shear displacement after diagonal cracking: Using the recommendations of
Eq.(4.81) for circular columns, the effective area ratio of transverse reinforcement is 
taken as pa — 0.39/?v = 0.39x0.006=0.00234, and bw~ d ~  0.8x1.8 = 1.44m. Substituting 
into Eq.(4.82):
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* = ° '2^ —  E,btJd = °-25x0-QQ234 .200,000 x 1.442 = 885MN
0.25 + npa 1 0.25 + 10x0.00234

This is the unitary stiffness (stiffness for a unit column height). The column shear 
stiffness is thus

KoLcr = ks,cr / H = 885/5 = M l MN / m

The incremental shear displacement for shear forces higher than the diagonal cracking 
shear force Vc is thus:

a <y-vc)Ac = ------ — mm ■
0.177

Displacements resulting from this equation are added to the elastic shear displacement 
at diagonal cracking (see Eq.(4.84)), and listed in Column 6 of Table 4.1. These apply only 
up to the nominal flexural strength. In accordance with Eq.(4.85) the shear displacements 
have been increased pro-rata with the flexural displacements from Row 9 (which 
corresponds to nominal flexural capacity based on the enhanced yield strength) onwards. 
It will be seen that shear displacements are about 18% of the flexural displacements. 
Column 7 of Table 4.1 lists the total (flexural+shear) displacements, which are plotted by 
the solid line, marked “Total Disp.” in Fig.4.29.

Shear strength: Again, it is assessed that the column could be subjected to ductile 
response in orthogonal directions, and thus the biaxial data of Fig. 4.22(b) apply.

Initial shear strength: At a displacement corresponding to jU<f> — 1, the assessed shear 
strength will be as follows:

Vc = 0.29^39x0.8x2.543 = 3.68MN
VP= 3.82(0.9-0.23)/5 = 0.512MN
Vs = 3.887MN (from Ex. 4.2, but with 0=30°) = 3.887MN

Total = 8.083MN (1817kips)

Shear strength at fu ll ductility. At curvature ductilities of /!$ > 13, the assessed 
strength of the concrete shear-resisting mechanisms decreases to:

Vc = 0.05^39x0.8x2.543 = 0.635MN (143kips),

and the total shear strength is thus 4.034MN (1132kips). The displacements at which 
these to limits apply have been calculated from the biaxial approximation to the force- 
displacement response, conservatively ignoring shear displacement.

The assessment shear strength envelope is plotted in Fig.4.29 by the solid line. It will 
be seen that it intersects with the total displacement curve at 162mm (6.4in), which is very 
close to the assessed flexural displacement limit. Thus the assessment is that shear failure
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is unlikely to occur before the displacement capacity is reached (since the force- 
displacement response is based on maximum feasible flexural reinforcement strength). 
Note that for a new design, however, a more conservative approach is required, using the 
design strength components of Sec.4.7.3 and a shear strength reduction factor of 0.85. 
The design strength envelope based on this approach is also shown in Fig.4.28 (by the 
dash-dot line), and indicates a safe design displacement of only 76mm (3.0in), about 50% 
of the displacement that would be permitted in an assessment situation. Note that 
satisfying the conservatism of the design approach would be easy to provide (the hoop 
spacing in the potential plastic hinge would be reduced to 75mm (2.95 in)) but the 
consequence of excessive conservatism in assessment of an existing column could mean 
expensive retrofit measures.

4.9 ANALYSIS TOOLS FOR DESIGN RESPONSE VERIFICATION 

4.9.1 Introduction

Direct displacement-based design (DDBD) is a simple method for determining the 
required strength of plastic hinges to satisfy a specified performance limit state, defined 
by strain or drift limits. Combined with capacity-design requirements defined in the 
structure-related sections of this book, it provides a complete seismic design approach for 
comparatively simple and regular structures. It may also be used to provide preliminary 
estimates for member strengths for structures which do not fit the “simple and regular” 
criteria. In these latter cases, and in cases where the structure has special importance, due 
to function, or cost, design verification by additional analysis will be required.

It has already been established (see Section 1.3), that elastic modal analysis should be 
considered unsuitable as a design tool, for a number of reasons. Similarly, elastic modal 
analysis will generally be considered unsuitable for design verification, though the 
deficiencies cited related to determination of initial stiffness no longer apply, since it will 
be possible to use reasonable estimates of stiffness based on actual provided strength (see 
Section 4.4). However, the inability of elastic modal analysis methods to model the 
variation of flexural stiffness with axial force remains. This leaves two candidates for 
acceptable analysis methods: time history analysis, and static inelastic (pushover) analysis. 
Aspects relating to these methods are discussed in the following sections.

4.9.2 Inelastic Time-History Analysis for Response Verification

(a) Elastic or Inelastic Time H istory Analysis?. Although some design procedures 
accept elastic time-history analysis (ETHA) as an analysis approach, our view is that there 
is little value in its use for design verification. It suffers from most of the deficiencies 
apparent in elastic modal analysis, and cannot represent the differences resulting from 
structural systems with different hysteretic characteristics. With one-dimensional (line) 
element modelling, computational times are generally not large, even with inelastic time
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history analysis (ITHA), and current lap-top computers are capable of analysing complex 
structures under three-dimensional response. As a consequence of these considerations, 
the following discussion is limited to ITHA.

Inelastic time-history analysis provides the most accurate method for verifying that 
inelastic deformations and rotations satisfy the design limits, and also for determining the 
higher mode effects, which are needed for defining the required design strengths of 
capacity-protected members.

Despite the above comments relating to the suitability of lap top computers for 
analysis, and by inference, the viability of ITHA in the design office environment, it must 
be recognized that a large number of subjective modelling decisions will generally be 
needed, and it is essential that the importance of these choices be properly understood by 
the analyst, who should have appropriate experience in ITHA, and knowledge of 
material behaviour before using it for design verification. The following attempts to 
provide some guidance in these choices.

(b) Degree o f Sophistication in Element Modelling The degree of sophistication in 
modelling, and the computational time, will largely be dictated by the choice of elements 
used in member modelling: line, fibre or solid elements. The choice should be dictated by 
Einstein’s maxim, that analysis should be as simple as possible, but no simpler. In general 
this will result in a decision to use line elements.

(i) Line elements: Beams and columns in structural frames, bridge piers, wharf piles and 
other members whose connection to adjacent members can be idealized as a point 
connection are normally represented by line members. With suitable moment-rotation 
hysteresis characteristics, the non-linear flexural response characteristics can be modelled 
with considerable accuracy, and simplified representations of axial and shear 
deformations can also be included. Non-linear axial force/moment interaction envelopes 
enable the strength characteristics of columns to be represented with adequate accuracy.

Normally, bilinear moment rotation properties will be used to represent the strength 
envelope, with a lumped-plasticity representation. For concrete and masonry members, 
elastic and post-yield stiffness characteristics should be based on moment-curvature 
analysis of the member (see Section 4.2.1), with the elastic stiffness represented by the 
secant stiffness to the “first yield” point of the response (Fig.4.6). Thus, using the 
formulation of Section 4.2.6, the effective moment of inertia will be:

M n _  M y 
E A  E A

(4.87)

The post-yield stiffness will also be found from the moment-curvature response of the 
member considered, and a hysteretic rule will be chosen characteristic of the member 
type and material used. Hysteretic rules are discussed in more detail in Section 4.9.2(f).
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In Section 4.4 it was noted that the elastic stiffness of reinforced concrete and (by 
analogy) reinforced masonry columns and walls is a function of the axial force. Thus in a 
frame, where the column axial force varies as a result of seismic response (e.g. columns A 
and C in Fig.4.30(a)), the elastic sdffness should also vary. Although many inelastic 
analysis computer codes can model the axial force/moment strength interaction, few 
have the capability of modelling the axial force/sdffness interacdon. An exception is the 
2D/3D code “Ruaumoko”[C1-. A “student” version of Ruaumoko, with restricted 
capabilities is included on the CD provided with this book. Lack of ability to model the 
axial force/stiffness relationship can result in significant errors in column member forces, 
particularly in the elastic range of response, but is unlikely to result in significant errors in 
displacements and inelastic rotations, nor in significant errors in steel frame member 
forces.

With frame analysis, careful consideration of modelling the beam-column joint 
stiffness is needed. A common error is to model the joint as effectively rigid. However, 
due to strain penetration, and joint shear deformation, the joint region is far from rigid, 
and may contribute as much as 30% to total lateral deformation^11. As illustrated in Fig. 
4.30(b), a minimum acceptable representation of the joint region will be to use lumped- 
plasticity line members to represent the beam between the column faces, with a linear 
elastic portion of elastic stiffness equal to the beam elastic stiffness, from the joint 
centroid to the column face. If the column is to be modelled by an inelastic element, a

‘V" ' '
4 ■

A B

Location of

I f<
(a) Column Seismic Axial Forces (b) Joint Representation

Fig. 4.30 Modelling a Regular Frame with Line Elements
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similar treatment will be provided. However, if the design philosophy is to keep the 
column elastic, it may be adequate to use a simple column element from joint centroid to 
joint centroid, and eliminate the nodes at the top and bottom of the beam. Elastic 
members will not be appropriate for ground-floor columns, where column-base plastic 
lunges are expected to form. Some time-history analysis codes (e.g. Ruaumokofa l) enable 
special joint deformation elements to be located between the nodes at the joint 
boundaries. This will normally only be appropriate when it is desired to model joint 
tailure.

The effects of strain penetration from critical sections into supporting members, 
briefly discussed above in relation to beam/column joints, must also be considered at the 
base of frame columns, and at top and bottom of bridge piers by additional elastic 
members. Numerical simulation of this is discussed in detail in Secdon 4.2.7. It is also 
important that the effects of foundation flexibility, including the foundation structure and 
the supporting soil be adequately modelled. There is little point in carrying out a 
sophisticated ITHA if a flexible foundation is unrealistically modelled as rigid. Vertical, 
translational and rotational stiffness may be modelled by elastic or inelastic springs. 
Specific advice is provided in chapters dealing with specific structural types.

(n) Fibre elements: A number of ITHA codes (e.g. SeismoStructP11!) for concrete structures 
are based on representing the cross-section of linear members by a number of fibres, 
separately representing the concrete and reinforcing steel, as illustrated in Fig.4.31. The 
length of the member is divided into a number of segments, with each segment 
represented by fibre elements, and with the sections delimiting the segments following 
the Navier-Bernoulli approximation that plane sections remain plane. Each of the fibres 
represents an area of concrete, or a longitudinal reinforcing bar, and is given appropriate 
material properties to model reversed loading (i.e. arbitrary tension/compression 
histories). Typically, separate material rules are used for the unconfined cover concrete, 
and the confined core concrete, and in advanced formulations (e.g. SeismoStruct), the 
stress-strain properties of the confined concrete are automatically generated. Material 
stress is normally assumed constant between integration points along the fibre segment. 
The advantages of this more sophisticated representation of linear members are:

• No prior moment-curvature analysis of members is needed.
• The hysteretic response is defined by the material properties, and hence does not 

need to be defined.
• The influence of varying axial force on strength and stiffness is directly modelled.
• Simulation of biaxial loading, is as straightforward as uniaxial loading, with 

interaction between flexural strength in orthogonal directions being directly 
computed.

• Member post-peak strength reduction resulting from material strain-softening or 
failure can be directly modelled.

There are, however, also draw-backs to modelling using fibre-elements. With current 
formulations:



196 Priestley, Calvi and Kowalsky. D isplacem ent-Based Seism ic D esign o f Structures

Fig.4.31 Section Modelling with Fibres

• Fibre elements model only flexural response. Shear strength and shear 
deformation are generally not modelled.

• The interaction between flexural ductility and shear strength (see Section 4.7.3) is 
not modelled.

• Shear deformation in joint regions must be modelled by special non-fibre 
elements.

• Integration of the segment curvatures to obtain rotations and displacements 
suffers from the same problems identified in Section 4.2.6 for direct integration 
of curvature from linear-member analysis. To some extent this can be obviated 
by adopting a critical segment length equal to the plastic hinge length computed 
in accordance with Eq.(4.30).

• If the moment in a segment is determined at the segment centroid, then the 
capacity of the structure may be over-estimated, since the moment at the critical 
section will exceed that at the segment centroid, which is the location where 
strength will be determined. Again this can be corrected in the analysis, by 
adjusting the location of critical segment boundaries (e.g. the beam-end at a 
beam-column interface) such that the integration gauss points coincide with the 
true boundary.

• Strain-penetration into foundations etc, requires special treatment.
• Properties for the confined core concrete may have to be manually defined.

Flowever, in some fibre analysis programs, as with some moment-curvature
programs, the stress-strain characteristics of the core concrete are directly 
determined from the transverse reinforcement.

• Because of the large number of fibre elements needed to fully model a complex
structure, computer time for ITHA can be very large with current computing 
power — as much as 24 hours for a single run. This makes design verification
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impractical if (say) seven records are to be run. The problem may be particularly 
severe if 3-D response is needed.

It should be emphasised that in fibre analysis it is not essential, nor even desirable that 
all members (or even all segments of a member) be modelled by fibres, joint rotations 
and foundation flexibility effects can be modelled by elastic or inelastic springs, with the 
appropriate degrees of freedom, and members expected to remain elastic with essentially 
constant stiffness may be modelled by elastic line elements. In fact, given the major 
current drawback of excessive computational time, this simplification should be adopted 
wherever possible. The fibre program “SeismoStruct” is provided on the attached CD.

■Hi) Three-dimensional solid elements: Three-dimensional solid elements are used rather 
infrequently in ITHA, are of value only when modelling of complex intersections 
between members is required, and should only be attempted by highly specialized 
organizations. Computational effort is considerable, and in our view, existing 
formulations do not adequately represent bond-slip and anchorage of reinforcement, 
confinement effects, and the behaviour of unconfined or confined concrete under 
reversed flexure and shear loading where separate patterns of intersecting cracks may 
develop. The cost of ITHA using inelastic 3-D elements is typically high, and the 
accuracy of the results is difficult to assess. For these reasons, we believe design 
verification should be confined to line and fibre elements at the current state of the art.

(c) Two-dimensional or Three-dimensional Structural Representation?: All
structures are three-dimensional. However, in many cases it will be reasonable to 
independently consider the seismic response in the principal directions, and hence to 
provide simpler two-dimensional representations of the structure. Examples are straight 
bridges, and symmetrical buildings where response in the orthogonal directions are likely 
ro be essentially independent. Two-dimensional structural representation is generally 
significantly easier to develop and to interpret the results from than is the case with 3-D 
representation. Further, when columns are expected to respond inelastically in orthogonal 
directions (bridges, building column bases), 3-D analyses will require special hysteretic 
rules modelling the interaction of strength and ductility in orthogonal directions, unless 
fibre elements are used. Such rules are not readily available, and the current state-of-the- 
art is to model the ductility effects independently, though a biaxial strength envelope may 
be available, depending on the computer program used.

When significant torsional response is possible, as in wharves (see Chapter 12), and 
some buildings (Chapters 5, 6 and 7), then 3-D representation of the structural response 
is necessary. However, as, for example, discussed in Chapter 12 for wharves, it is 
sometimes possible to capture the salient features of the 3 D response with 2-D 
structural modelling.

(d) Strength Interaction Modelling: As discussed in Section 4.9.2(b) above, many 
ITHA programs provide means for modelling the axial-force/flexural-strength 
interaction, either directly, as in the case of fibre elements, or as specified input, as in the
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case of line elements. However, as was discussed in Section 4.7.3 there is also an 
interaction between flexural ductility and shear strength with concrete structures. This is 
much more difficult to represent in ITHA, and we are not aware of any general-purpose 
ITHA program currendy capable of modelling this interaction. For design verification 
this is not generally a problem, as the design philosophy will be to avoid shear failure, and 
the results from the ITHA in terms of member ductility and shear demand can be used 
in conjunction with the shear strength model of Section 4.7.3 to design the transverse 
reinforcement.

Where ITHA is used to assess the safety of an existing structure, the inability to 
model the shear-strength/flexural-ductility interaction envelope, and the subsequent rapid 
reduction in shear strength once the envelope has been reached is of more serious 
concern. Although it may be possible to identify the level of seismic intensity 
corresponding to just reaching the envelope, the increment of intensity7 required to cause 
collapse is currently beyond the capabilities of existing commercially available programs.

(e) Mass Discretization: Masses will normally be lumped at nodes, implying a degree 
of mass discretization. In some computer programs the discretization will be carried out 
automatically from values of element mass per unit length provided as input; in other 
programs the nodal masses will be directly input.

(i) Frame buildings: Referring again to Fig. 4.30(a), nodal masses in 2-D representations 
will normally be provided at the intersections of all beams and columns. This will enable 
realistic values for seismic axial forces in the beams to be determined. In some cases these 
axial forces can have a significant effect on beam moment capacities. However, in most 
cases it will be admissible to lump the entire floor mass at one representative node. In 
the case represented in Fig.4.30(a), this would clearly be the node defined by the central 
column. Note that tributary column mass is generally lumped at the floor levels above 
and below the column considered. Note also that increasing the number of nodal masses 
will increase the number of significant elastic modes, some of which will have very low 
periods. This can result in computational problems, and so excessive refinement of the 
mass distribution should be avoided.

When 3-D modelling and 2-D or 3-D seismic input is adopted, it is important that the 
mass torsional inertia is correcdy represented. Referring to the plan simulation of a 
rectangular floor slab shown in Fig.4.32, a minimum of four nodes is required to fully 
represent the mass torsional inertia. Assuming that the mass is uniformly distributed, the 
distances of the mass node points are at the torsional radii of gyration respectively 
(JL/Vl2) and (B/̂ J 12) from the floor centroid in the longitudinal and transverse 
directions.

(ii) Wall buildings: Similar considerations apply for wall buildings. Generally floor masses 
will be concentrated at the centreline of the wall or walls. Again, excessive refinement in 
the assumptions of the mass distribution should be avoided.
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Fig.4.32 Plan Distribution of Mass for Torsional Inertia Modelling of a Building
Floor Slab

k,
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Deflection Pier Geometry Mass and Stiffness
(b) Bearing-supported Superstructure

Fig.4.33 Mass Discretization for Bridge Inelastic Time-History Analysis
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(Hi) Bridges: In most cases adequate accuracy can be obtained by lumping the 
superstructure mass above each pier, as indicated by the solid circles in Fig.4.33(a), which 
represent the tributary mass from a half-span on either side of the pier. A tributary mass 
is also shown at each abutment which should be included when abutment flexibility is 
modelled in the analysis. The lumped mass at the top of each pier should be located at 
the height of the centre of mass of the superstructure, and should include the pier-cap 
mass, and a proportion of the pier mass. If the pier is prismatic, and inelastic response is 
expected, then 1 /3rd of the pier mass should be added to the superstructure masst™!. The 
simulation described will normally be adequate to obtain pier displacements and ductility 
demands.

Where superstructure moments and shears are of concern it may be necessary to 
represent the superstructure between piers by an increased number of elements, and to 
distribute the superstructure mass proportionately to the nodes, as suggested by the 
hollow circles in Fig. 4.33(a). Three internal nodes per span will generally be sufficient for 
this purpose. Similarly, for tall piers, where significant moments from the inertial 
response of the distributed pier mass can be expected, additional nodes up the pier height 
will be needed. Again, three internal nodes, as shown for the central column in Fig.

^  3^o^4^2(a) will generally be sufficient for this purpose.
When the superstructure is separated from the piers by flexible bearings (e.g. 

Fig.4.33(b)), and where pier mass is a significant proportion of the total mass, it will be 
necessary to separate the superstructure mass m\ and the effective pier mass mi and 
locate each at the appropriate mass centres, because of the large difference in 
displacement between the top of the pier and the superstructure centre of mass. The 
discretization is shown to the right of Fig.4.33(b) where the different stiffness of the 
bearings (A/) and pier (ki) is identified, and a short strain-penetration length is indicated 
below the column base.

Further discussion on modelling bridges for ITHA is included in Chapter 10 and a 
more complete treatment of the subject is available in [P4].

(iv) Wharves and piers: Mass modelling for concrete piers supported on moment-resisting 
piles follows the principles discussed in relation to Figs. 4.31 and 4.32, and is discussed in 
detail in Chapter 12.

(f) H ysteresis Rules: The inelastic response of members in ITHA based on line 
members is defined by force-deformation equations describing the loading, unloading 
and reloading of the members. The collective equations describing the response for a 
given member are termed the hysteresis rule for the member. It is important that the 
hysteresis rule provides an accurate representation of the material and structural response 
of the member. It is demonstrated in Fig.4.37 that the equal-displacement approximation, 
which can be interpreted to indicate that the choice of hysteresis rule is of little 
importance, is based on invalid assumptions.

Figure 4.34 illustrates the basic shapes of a selection of hysteresis rules appropriate for 
structural analysis. In the sketches of Fig.4.34, response for stable cyclic response is
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shown with the elastic and initial inelastic cycles shown by dotted lines, and subsequent 
cycles shown by solid lines. Where the initial and subsequent cycles coincide they are 
shown by solid lines. The elasto-plastic rule of Fig.4.34(a) has been widely used in ITHA 
in the past, but is of comparatively restricted applicability. It can be considered an 
approximation to the flexural response of steel beams and columns, provided the critical 
sections can be considered compact (no flange buckling) under inelastic response. 
However, the reduction of stiffness on unloading, (the Bauschinger effect) which causes 
rounding of the hysteretic response and a reduction of energy absorption of about 20% 
compared with elasto-plastic response, is not modelled. Elasto-plastic response is 
appropriate for seismic isolation systems using planar coulomb friction isolation sliders 
(e.g. PTFE/stainless steel flat bearings). For these elements the initial stiffness normally 
results from the structural elements, with the inelastic portion defined by essentially 
rigid/perfectly plastic behaviour of the slider.

The bilinear hysteretic response of Fig. 4.33(b) has a post-yield stiffness of 20% of the 
initial stiffness (i.e. r  — 0.2), though the actual value of the post-yield stiffness will vary 
depending on the specific application. Compact steel sections are better represented by 
bilinear response with 0.02</<0.05 than by elasto-plastic response, which is a special case 
of bilinear response with t  — 0. The high value of r  — 0.2 in Fig 4.34(b) is representative 
of seismic isolation provided by elastomeric bearings or friction-pendulum systems, with 
the value of r  depending on the initial structural stiffness, and the isolation system 
characteristics.

Figures 4.34(c) and 4.34(d) are based on the modified Takeda hysteresis rulelQ1l, and 
represent a range of hysteresis shapes appropriate for reinforced concrete and reinforced 
masonry structures. The modified Takeda rules are characterised by unloading and 
reloading stiffnesses that are significantly lower than the initial "elastic” stiffnesses. The 
"thin” hysteretic response of Fig. 4.34(c) is appropriate for inelastic members with 
significant axial load, such as building columns, bridge piers, walls and piles, and is a 
special case of the more general “fat” Takeda rule shown in Fig.4.34(d). For the thin 
Takeda rule the unloading stiffness is defined as:

ku = k rJU^5 (4.88)

where // is the displacement ductility at the initiation of unloading. On the initial cycle the 
rule reloads to the elastic yield point in the reversed direction, but on subsequent cycles it 
reloads to the previous maximum force-displacement point. This is a special case of the 
“fat” rule, with (3 = 0.

The “fat” Takeda rule of Fig.4.34(d) incorporates the “thin” rule as a special case, as 
noted above, and has an unloading stiffness defined by

ku = k rJu-a (4.89)
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(a) Elasto-PIastic (Steel) (b) Bilinear, r=0.2 ("Isolation Unit)

(c) “Thin” Modified Takeda ( r.c.column) (d) “Fat” Modified Takeda (r.c. beam)

Fig. 4.34 A Selection of Hysteresis Rules Appropriate for Inelastic Time-History
Analysis

where 0<#<0.5, and // is again the displacement ductility. A value of (X —0 implies 
unloading with the initial stiffness. The rule reloads to a point defined by /3Ap (see Fig. 
4.34(d)) from the previous peak displacement in the direction of loading considered, 
where AP is the plastic displacement. For well-detailed reinforced concrete beams, values 
of OC= 0.3, and 0=0.6 are generally considered to be appropriate.

Note that with the Takeda rules, the initial stiffness should be the value applying at 
first yield, taking into account the reduction in effective stiffness resulting from flexural 
and shear cracking (Eq.(4.86)).

Figure 4.34(e) describes a flag-shaped hysteresis rule suitable for modelling the 
response of hybrid prestressed members. In hybrid members (see Section 5.11.2) the 
prestressing steel is unbonded, resulting in a non-linear elastic force-displacement
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characteristic. The energy dissipation in hybrid systems, shown in Fig.4.33(e) results from 
vield of special mild-steel bars which contribute to both flexural strength and energy 
dissipation. Further details are given in Chapter 5.

Finally, Fig. 4.34(f) shows a hysteresis rule appropriate for a spring representing non
linear soil response, such as might occur in the soil near the top of a laterally loaded pile. 
After an initial cycle involving inelastic response of the soil spring, the soil separates from 
the pile, leaving a gap. On reloading in the same direction there will be no soil reaction 
until this gap is closed. Typically inelastic soil response has a comparatively high post- 
vield stiffness, as illustrated in Fig.4.34(f).

(g) Elastic Damping Modelling: It is common to specify a level of elastic damping 
in ITHA to represent damping in the initial stages of response, before hysteretic damping 
is activated. This is normally specified as a percentage, typically 5%, of critical damping. 
There are a number of ways this damping could be defined, as discussed subsequently, 
but the principal difference is whether the damping force is related to the initial or 
tangent stiffness. In the hysteresis rules of Fig.4.34, the initial stiffness is k, in all cases, 
but the tangent stiffness, rk\ (see Fig 4.34) reduces to a lower value once the 
displacements exceed yield.

Typically research papers reporting results on single-degree-of-freedom (SDOF) 
ITHA state that 5% elastic damping was used, without clarifying whether this has been 
related to the initial or tangent stiffness. With multi-degree-of-freedom (MDOF) 
analyses, the situation is often further confused by the adoption of Rayleigh damping, 
which is a combination of mass-proportional and stiffness-proportional damping. It is 
our understanding that many analysts consider the choice of the initial elastic damping 
model to be rather insignificant for either SDOF or MDOF inelastic analyses, as the 
effects are expected to be masked by the much greater energy dissipation associated with 
hvsteretic response. This is despite evidence by others (e.g. [04]) that the choice of initial 
damping model between a constant damping matrix and tangent-stiffness proportional 
damping matrix could be significant, particularly for short-period structures.

The difference between initial-stiffness and tangent stiffness damping is discussed 
with reference to Fig. 4.34(d). For SDOF systems, the constant value of the damping

coefficient is determined with respect to the initial vibration frequency, — , the

initial loading stiffness k\ and a specified fraction of critical damping,

(4.90)

The damping force at any instant is thus

(4.91)

where X is the instantaneous relative velocity.
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With tangent-stiffness damping the damping coefficient is proportional to the 
instantaneous value of the stiffness and it is updated whenever the sdffness changes. 
Thus the damping coefficient given by Eq.(4.90) is multiplied by V̂ /Ay, where kt is the 
instantaneous tangent stiffness. W’ith reference to Fig.4.34(d), the damping coefficient 
will equal that associated with the initial-stiffness value only in the initial elastic response. 
After first yield, the damping coefficient will be referenced to the post-yield, the 
unloading or the reloading stiffness. With the case of elasto-plastic response, the damping 
force will be zero while the structure deforms along a yield plateau.

There are three main reasons for incorporating elastic damping in ITHA:
• The assumption of linear elastic response at force-levels less than yield: Many 

hysteretic rules, including all those shown in Fig.4.34 make this assumption, and 
therefore do not represent the nonlinearity, and hence hysteretic damping within 
the elastic range for concrete and masonry structures, unless additional elastic 
damping is provided.

• Foundation damping: Soil flexibility, nonlinearity and radiation damping are not 
normally incorporated in structural time-history analyses, and may provide 
additional damping to the structural response.

• Non-structural damping: Hysteretic response of non-structural elements, and 
relative movement between structural and non-structural elements in a building 
may result in an effective additional damping force.

Discussing these reasons in turn, it is noted that hysteretic rules are generally 
calibrated to experimental structural data in the inelastic phase of response. Therefore 
additional elastic damping should not be used in the post-yield state to represent 
structural response except when the structure is unloading and reloading elastically. If the 
hysteretic rule models the elastic range nonlinearly (as is the case for fibre-element 
modelling) then no additional damping should be used in ITHA for structural 
representation. It is thus clear that the elastic damping of hysteretic models which have a 
linear representation of the elastic range, and which hence do not dissipate energy by 
hysteretic action at low force levels would be best modelled with tangent-stiffness 
proportional damping, since the elastic damping force will greatly reduce when the 
stiffness drops to the post-yield level. It should, however, be noted that when the post
yield stiffness is significant, the elastic damping will still be overestimated. This is 
particularly important for hysteretic rules such as the modified Takeda degrading stiffness 
rule which has comparatively high stiffness in post-yield cycles.

If the structure deforms with perfect plasticity, then foundation forces will remain 
constant in the structural post-yield stage, and foundation damping will cease. It is thus 
clear that the effects of foundation damping in SDOF analysis are best represented by 
tangent stiffness related to the structural response, unless the foundation response is 
separately modelled by springs and dashpots.

It is conceivable, though unlikely, that the non-structural damping force is velocity- 
dependent rather than strength-limited, and hence a constant damping coefficient may 
bea reasonable approximation for the portion of “elastic” damping that is attributable to
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non-structural forces. There are two possible contributions to non-structural damping 
that should be considered separately:

• Energy dissipation due to hysteretic response of the non-structuraJ elements
• Energy dissipation due to sliding (relative movement) between non-structural and 

structural elements.
For a modern frame building, separation between structural and non-structural 

elements is required, and hence they should not contribute significantiy to damping. 
Further, even if not separated, the lateral strength of all non-structural elements is likely 
to be less than 5% of the structural lateral strength (unless the non-structural elements are 
masonry infill). If we assume 10% viscous damping in these elements, an upper bound of 
about 0.5% equivalent viscous damping related to the structural response seems 
reasonable. Non-structural elements are unlikely to play a significant role in the response 
of bridges.

Sliding will normally involve a frictional force, with the value dependent on the 
friction coefficient, and the weight of the non-structural element. Unless the non- 
structural elements are masonry, the friction force is likely to be negligible. It should be 
noted that it is probable that so-called non-structural masonry7 infill initially contributes 
more significantly to strength, stiffness, and damping than is the case with (e.g.) 
lightweight partitions. However, it is known that the strength degrades rapidly for drift 
levels > 0.5% (which is generally less than structural yield drift). The damping force is 
also likely to degrade rapidly.

It is thus recommended that for modern buildings with separated or lightweight non- 
structural elements, elastic damping should be modelled by tangent stiffness proportional 
damping. The effects of non-structural masonry infill should be modelled by separate 
structural elements with severely degrading strength and stiffness - not by increased 
viscous damping.

It is instructive in determining the influence of alternative elastic damping models to 
consider the steady-state, harmonic response of an inelastic SDOF oscillator subjected to 
constant sinusoidal excitation. This enables direct comparison between hysteretic and 
elastic damping energy, and also between elastic damping energy using a constant 
damping coefficient and tangent-stiffness proportional damping models. To this end, 
Fig.4.35 shows response of a simple SDOF oscillator with initial period of 0.5 sec and a 
“thin” modified Takeda hysteresis rule (Fig.4.34(c)) subjected to 10 seconds of a 1.0 Hz 
forcing function. The steady-state response of the pier corresponded to a displacement 
ductility of about 7.7 — at the upper limit of reasonable ductile response.

Results for the stabilised loops, ignoring the transitory first three seconds of response 
are plotted in Fig. 4.35(a) (initial-stiffness proportional damping) and Fig. 4.35(b) 
(tangent-stiffness proportional damping). In each case the hysteretic response associated 
with nonlinear structural response is plotted on the left, and the elastic damping force- 
displacement response is plotted to the right. The areas inside the loops indicate the 
relative energy absorption. For the case with initial-stiffness proportional damping, the
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energy absorbed by elastic damping is approximately 83% of the structural hysteretic 
energy dissipation, despite the high ductility level. This might be surprising when it is 
considered that the elastic damping corresponds to 5% of cridcal damping, while the 
hysteretic damping is equivalent to about 20% of cridcal damping. This apparent 
anomaly is due to the different reference sdffness used. The elasdc damping is related to

Displacement (m) Displacement (m)

(a) Analysis with Initial Stiffness Damping

r
■0.1 o

Displacement (m) Displacement (m)

(b) Analysis with Tangent Stiffness Damping

Fig.4.35 Steady-state Inelastic response of an SDOF oscillator with “Thin”
Modified Takeda hysteresis
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the initial stiffness, whereas the hysteretic damping is related to the secant stiffness to 
maximum response.

When the elastic damping is tangent-stiffness proportional, as we believe to be most 
appropriate for structural response, the elastic damping energy is greatly reduced, as can 
be seen by comparing the upper and lower right-hand plots of Fig. 4.35. In the lower 
plot, the reduction in damping force corresponding to the stiffness change is clearly 
visible. In this case, the area of the elastic damping loop is only about 15% of the 
structural hysteretic energy dissipation.

Analyses of SDOF systems subjected to real earthquake records show that the 
significance of the elastic damping model is not just limited to steady-state response. 
Figure 4.36 shows a typical comparison of the displacement response for SDOF 
oscillators with initial stiffness and tangent stiffness elastic damping. In this example the 
El Centro 1940 NS record (amplitude scaled by 1.5) has been used, the initial period was 
0.5 seconds, a Takeda hysteretic rule with second slope stiffness of 5% was adopted, and 
the force-reduction factor was approximately 4. The peak displacement for the tangent 
stiffness elasdc damping case is 44% larger than for the initial-stiffness damping case, 
indicating a verv significant influence.o o

A selection of results from a series of analyses of oscillators with different initial 
periods between 0.25 sec and 2.0 sec, subjected to ATC32lX2l spectrum-compatible

Tim e (seconds)

Fig 4.36 Response of an SDOF Oscillator to 1.5XE1 Centro 1940,NS (T=0.5 sec)
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accelerograms is shown in Figure 4.37, which plots the ratio of peak inelastic 
displacement response to peak elastic displacement response. Elastic analyses, using 5% 
damping (note that the choice of damping model is irrelevant for elastic analysis) were 
first carried out, then inelastic analyses where either initial-stiffness or tangent-stiffness 
5% damping were specified, with yield strengths based on force-reduction factors of 
jR= 2, 4 and 6 based on the average elastic response peak force. Modified Takeda 
(representing concrete response), Bilinear (approximating steel) and Flag (representing 
hybrid prestressed precast concrete) hysteresis rules were considered.

The second-slope stiffness ratio for the “Thin” Takeda (Fig.4.34(c)) and bilinear rules 
for these analyses was r — 0.002 (the minimum value considered), but similar results were 
obtained for r  — 0.05 (the maximum considered). The flag hysteresis results in Fig.4.36 
were based on the minimum additional damping considered in the hybrid precast 
modelling (J3 =0.35, see Fig.4.34(e)). Note that in some cases the displacement ratios at T 
= 0.25 sec. have not been plotted as they exceed the range included by the graph axes.

From examination of Figure 4.37 it will be noted that there is a significant difference 
between the response of the initial-sdffness and tangent-stiffness (identified as IS and TS 
respectively) models, that this difference is rather independent of initial period, for 
7^>0.5 seconds, that the difference increases with force-reduction factor, and is 
dependent on the hysteretic rule assumed. It will also be noted that though the “equal 
displacement” approximation (represented by a displacement ratio of 1.0 in Figure 4.37) 
is reasonable for initial stiffness damping and initial periods greater than T — 1.0 seconds, 
it is significandy non-conservative for tangent-stiffness elastic damping.

It is thus recommended that for modern buildings with separated or lightweight non- 
structural elements, elasdc damping should be modelled by tangent-sdffness proportional 
damping. Note, however, that the specification of tangent-sdffness Rayleigh propordonal 
damping for MDOF, multi-storey buildings will not have the desired effect, since most 
of the elastic damping in the critical first mode will be mass-proportional, which is 
constant with inelastic action. Consider the basic form for the fraction of critical damping 
in the Rayleigh damping model:

f \a
2 J

where OC and f5 are the coefficients associated with mass proportional and stiffness 
proportional damping respectively, and (On is the circular frequency. If we specify the 
same value (say 5%) for £ at two different frequencies, where the higher one is K times 
the lower (fundamental) frequency, then:
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Figure 4.37 Response o f SDOF Oscillators to ATC32 Spectrum-Compatible
Accelerograms
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Z=^ \ — I (4.9i)7\ ko\

Subtracting Eq. (4.91) from K'times Eq.(4.90):

(4.92)
2 (L\ K

and hence the damping a!2o\ associated with mass proportional damping in the first 
mode is ^kJ(k + 1), while the damping attributed to stiffness proportional damping in 
the first mode is £/(/r + l ) .

Consider the case where we specify 5% damping at 71 = 1.5 sec and Ti — 0.3 sec. 
Hence K— 5. Then, even if we specify tangent-stiffness proportional Rayleigh damping, 
only 0.83% is stiffness proportional in the critical first mode, while 4.17% is mass 
proportional, and hence acts in an identical manner to initial-stiffness damping when the 
structure responds inelastically.

It is clear from the above discussion that it will be difficult to obtain the correct 
simulation of tangent-stiffness elastic damping, when Rayleigh damping is specified. It 
will always be preferable to specify pure tangent-stiffness damping, at least for the 
fundamental mode. This option may not be available with commercially available ITHA 
codes, and an acceptable alternative is to specify an artificially low damping coefficient, 
^ i n  the fundamental mode. Based on the discussion on significance of elastic damping 
to DDBD, presented in Section 3.4.3, this value should be approximately:

£(1 -  0. l( jU -  1)(1 — r) )
£*= I A , ”  (4-93)

A more complete discussion of the issues related to elastic damping is available in 
[PI 6, and G2].

(h) Choice, Number; and Character o f Accelerograms for Design Verification:

(i) Number of records: Two alternadves are generally defined by codes (e.g. X3,X4) for the 
number of accelerograms to be used in design verification. The first involves using three 
spectrum-compatible records, with the design response being taken as the maximum 
from the three records, for the given response parameter (displacement, shear force etc) 
investigated. The second uses a minimum of seven spectrum compatible records, with 
the average value being adopted for the response parameter considered. Because of the 
simplicity of ITHA with modern computing power, the latter approach is now almost 
always adopted, and there appears to be a tendency to increase the number of records 
above the minimum of seven, to ensure a more representative average.
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(ii) Selection of records: There are three basic choices for the means of obtaining spectrum- 
compatible accelerograms:

• Amplitude scaling of acceleration records from real earthquakes to provide a 
“best fit” to the design spectrum over the period range of interest.

• Generating artificial spectrum-compatible records using special purpose 
programs.

• Manipulating existing “real” records to match the design spectrum over the full 
range of periods.

When the records are obtained by amplitude scaling of existing records, the scatter 
between records is likely to be large, and hence a larger number of records might be 
needed to obtain a reliable average. Care has to be exercised in selecting the period range 
over which the spectrum matching is obtained. In Fig. 4.38, which shows the matching 
referred to the 5% damping elastic displacement spectrum, the matching has been 
reasonably achieved over the period range encompassing the first three elastic periods, 
which might be considered adequate. However, it is seen that at periods longer than the 
fundamental period, displacements of the scaled spectrum are significandy lower than the 
design spectrum. It is important to match the spectrum for a period range that includes 
the period shift expected as the structure responds inelastically. This is shown in Fig.4.38 
for a displacement ductility of = 3. In this example, the scaled displacement spectrum 
becomes increasingly deficient in displacement demand, compared with the design 
spectrum, as the period increases above the elastic period, resulting in an unconservative 
estimate of the inelastic displacement from the time-history analysis. Of course, this 
argument applies to a single record. If a large number of records are used such that the 
average of the displacement spectra over the full range from elastic to inelastic period 
matches the design spectrum, valid average results can be expected. Unfortunately this is 
unlikely to be the case for longer period structures, since the large majority of records 
used in the analyses tend to have peak spectral displacements at periods from 1.0-2.0 
seconds. In this case there is likely to be a consistent deficit in displacement demand at 
the degraded (inelastic) fundamental period, regardless of how many records are used. 
Thus conclusions about structural response for structures with expected displacement 
ductilities of (say) |H = 4 and elastic periods of T >0.75 seconds can be expected to be 
suspect, unless the earthquake records are very carefully chosen. Note that though the 
argument above has referred to code spectrum matching, it also applies to more general 
studies related to investigation of the relationship between elastic and inelastic 
displacement.

The second alternative involves artificially generated accelerograms, using programs 
such as SIMQKE[G6L These can be matched to the design spectrum for the full period 
range with comparatively small error, and can be given the general character of an initial 
segment of increasing intensity, a duration of essentially constant intensity, and a final 
segment of reducing intensity. A lesser number of records are required to obtain a 
meaningful average using artificial records. An objection commonly voiced about artificial 
records is that they are too severe, in that real records are not spectrum-compatible over
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Fig.4.38 Displacement Spectrum Matching for Inelastic Time-History Analysis

the full period range, and that artificial records typically have a longer duration than real 
records. The first of these arguments cannot be accepted, since the larger number of real 
records needed to obtain a full spectrum matching should produce essential identical 
results, and the artificial records can be considered as a more efficient means of obtaining 
the same results. The second objection — excessive duration — is unlikely to be of concern 
when the analyses are being carried out for verification of a new design. When the 
analysis is carried out on an existing structure which is expected to degrade in strength 
under the design spectrum, then duration may be significant. However, it should be 
recognized that few ITHA programs based on line elements have the ability to accurately 
model strength degradation, though this is sometimes available with fibre elements.

Recently, the third option, where existing recorded accelerograms are manipulated to 
obtain full spectrum matching, has become more common. This method has the 
advantage over pure artificial records that the essential character of the original record is 
preserved. Thus, records that conform to the type of source characteristics expected (e.g. 
strike/slip, subduction, near-field forward directivity etc.) can be selected. This is 
important, since the spectrum matching will normally be done at 5% damping, and the 
characteristics at different levels of effective damping will depend on the source 
characteristics and distance from the fault plane. However, to obtain the required 
spectrum matching, the duration of the record typically has to be extended, opening the 
method to the same objection as directed against artificial records. Figure 4.39 shows 
typical spectral matching of acceleration and displacement spectra based on manipulating 
seven real accelerograms.

(in) Multi-component Accelerograms: When structural response is likely to be influenced by 2- 
D or 3-D effects — that is, when the response in orthogonal directions cannot reasonably
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(a) Acceleration Spectra
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Fig. 4.39 5% Spectral Matching Using Manipulated Real Records^1!
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be de-coupled, the accelerograms will have to include two or three orthogonal 
components. The generation of the characteristics of the various components needs 
careful consideration. Examination of recorded three-component accelerograms reveals 
that the two horizontal components have different spectral shapes and intensities, but it 
does not seem that there is a consistent difference when decomposed to fault-normal and 
fault-parallel directions. Thus choice of a predominant, or principal direction of attack 
does not seem feasible at this stage of knowledge. Consequently site-specific design 
spectra are generally generated using the average of fault-normal and fault-parallel 
attenuation relationships. In the event that a code-specified spectrum is adopted, this will 
almost certainly be independent of orientation.

The vertical component typically has lower peak spectral acceleration intensity -  a 
value of 0.67 times the peak horizontal spectral acceleration intensity is often quoted, 
though this appears to depend on distance from the fault, hypocentral depth, and ground 
material — and a systematic difference in spectral shape, with peak acceleration intensity 
typically occurring at a lower period than for the horizontal components, and with 
intensity reducing with period more rapidly than with the horizontal components^. 
Recent near-field accelerograms of shallow earthquakes have indicated vertical 
accelerations that have in many cases exceeded the peak horizontal components.

The above discussion raises the question of how the orthogonal components of real 
records should be scaled. In the following it is assumed that no preferential direction for 
the design spectrum has been identified. There are a number of possibilities:

• Systematically rotate the axes of the two horizontal records, to determine the 
principal direction, and generate new major and minor principal-direction 
accelerograms. Scale the major principal record to the design spectrum, and use 
the same scaling factor for the minor horizontal and the vertical components.

• Scale the larger of the records to the design spectrum, without determining the 
principal direction, and use this scaling factor for the other two components.

• Scale both horizontal records independently to the design spectrum, and scale 
the vertical spectrum to the vertical design spectrum.

It might appear that the first, or possibly the second alternative is the most 
satisfactory. However, without a knowledge of the direction in which the major 
component should be applied with respect to the structure axes (which is the current 
state of the science), multiple analyses would be required, with the direction of the 
horizontal components rotated by (say) 15° between successive analyses to capture the 
maximum response. This approach also has the disadvantage of not recognizing how the 
design spectrum is obtained. As noted above, attenuation relationships used to generate 
site-specific design spectra normally are based on the average of fault-normal and fault- 
parallel response. Thus no specific principal direction is implied by the design spectrum. 
It thus appears that both records should be scaled to the design spectrum. Since the 
records will have low cross-correlation, it is expected that the elastic response 
displacement in any direction will be similar, when the two horizontal components are 
applied simultaneously in any two orthogonal directions. This is illustrated in Fig. 4.40, 
where the response displacements for different bearings are compared with the design
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Ave.=23.6” vs target=24.2” Ave.=27.2” vs target=26.6” Ave.=25.5” vs target=27.8”

Fig.4.40 Response Displacements in Different Bearings for Two-component 
Spectrum-Compatible Records Applied in the NS and EW directions, Compared

with the Spectrum Targets lE1l

values for different specified elastic periods, and with the two spectrum-compatible 
components applied in the NS and EW directions. The data, and records, relate to a study 
for the Port of Los AngelesP'l and are the average of seven spectrum-compatible 
accelerogram pairs. It will be seen that good agreement with the circular design response 
is obtained for all except T=5sec, which was beyond the period range of interest.

This approach appears more compatible with the way in which the design spectra are 
generated, and has the great advantage that a single analysis related to any chosen set of 
axes is sufficient, rather than the multiple analyses required by the first two alternatives. It 
should, however, be applied with some caution. When excitation in one direction 
produces significant displacement response in the orthogonal direction, it would appear 
that use of two spectrum-compatible records will produce higher estimates of peak 
displacement than use of scaled major and minor principal-direction accelerograms 
rotated to a series of possible orientations, as discussed above.

(i) Averaging Results from Multiple Analyses: It might be considered that averaging 
the results from a set of (say) seven spectrum-compatible records or record pairs is
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Maxima Displacements

Record A Positive A Negative
1 6.341 -6.347
2 4.891 -7.945
3 8.948 -3.179
4 4.486 -6.543
5 6.148 -4.569
6 6.198 -4.710
7 4.667 -7.032

Average 5.954 -5.761

Fig.4.41 Bridge Pier Response Displacements from Seven Spectrum-Compatible
Accelerograms

straightforward. In fact some careful consideration of rather simple probabilistic aspects 
is required. Consider the response displacements of the simple bridge pier shown in Fig.
4.41, subjected to uniaxial seismic excitadon. The table indicates the posidve and negative 
displacement maxima obtained from each of seven spectrum-compatible accelerograms, 
and the averages for the positive and negative directions. The maximum of the positive 
and negative displacement for each record is highlighted with bold text. What is the 
correct average response displacement? If the absolute value of the response 
displacement is of interest, then the average of the highlighted values should be used, 
giving a value of 7.023, which is 18% and 22% higher than the averages in the positive 
and negative directions respectively. However the absolute maximum displacement, 
regardless of sign, is unlikely to be a significant design parameter. If longitudinal response 
is considered, the displacement may be required to determine whether a movement joint 
closes up, causing impact, or opens up sufficiendy to cause unseating. In this case, since 
the critical displacements will be different in the different directions, the sign of the 
displacement is important.

Under transverse (or longitudinal) response, the displacements may be critical to 
determine whether steel and concrete strain limits are exceeded in the plastic hinge 
region. The critical locations of the pier for positive displacement are indicated in Fig.
4.41. For these two locations and design parameters (concrete compression strain, and 
reinforcement tension strain) it would clearly be inappropriate to include the negative 
displacements in the averaging, since these provide strains of the incorrect signs in the 
critical region.

The argument supporting the inclusion of the larger negative displacements is to note 
that the polarity of the excitation for a given record is arbitrary, and hence the 
displacement signs are arbitrary, indicating that averaging the larger of the positive and
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negative displacements is correct. This argument is, however, invalid, as it implies 
considering the response for both negative and positive polarities, (which essentially 
implies consideration of 14 rather than 7 accelerograms), selecting the response of the 
seven largest, and discarding the response of the seven smallest. From a probabilistic 
viewpoint it would be equally valid to select the seven smallest and discard the seven 
largest. In fact it is obvious that no selection can be justified, and if both positive and 
negative polarities are considered, the results of all 14 records should be averaged. Using 
the data of Fig. 4.41, this would result in a design displacement of 5.858, 17% lower than 
the value from averaging the peak displacement magnitudes.

Averaging the positive and negative displacements would only be valid if the structure 
has symmetric strength and stiffness characteristics in the opposite directions. For non- 
symmetric structures, the positive and negative displacements should be separately 
averaged. Alternatively, additional analyses could be run, reversing the polarity of the 
records to provide 14 valid values for averaging.

The illogicality of selecting the maximum of the positive and negative displacements 
becomes even more apparent when 2 D or 3-D excitation is considered. If the critical 
polarity of each component is to be adopted, then four possible combinations of the 2 D 
components (+ve/+ve; -ve/—ve; +ve/-ve; -ve/+ve) and eight possible combinations of 
the 3-D components would need to be considered.

There are, however, additional problems with determining the correct average for 
response under multi-axial excitation. Consider the case of the simple wharf segment 
shown in plan view in Fig. 4.42 which has considerable eccentricity between the centre of 
mass and the centre of strength (effective stiffness), as a result of short piers on the 
landward edge and long piers on the seaward edge, as illustrated in Fig. 12.1(a). Because 
of the significant torsional response under longitudinal (X direction) excitation the 
transverse and longitudinal response cannot be decoupled, and simultaneous excitation in 
the orthogonal (X and Y) directions must be modelled.

V  A r i .Critical Pile 4 y
Landward edge

Centre of Strength

— ........
Centre of Mass

Seaward edge

Fig 4.42 Peak Corner Displacements for Critical Corner Pile of a Wharf
(Plan View)
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The critical design parameter will be the average displacement from the seven (or 
more) pairs of accelerograms (record pairs) of a corner pile. As with the previous example 
of the bridge pier, the average displacement is of interest because it can be directly 
correlated to the pile limit strains.

Output from the ITHA will be in the form of X and Y displacements (as well as 
member forces etc). Xormallv the peak values Amax,x and Am a x ,Y  from the analysis will also 
be listed in a summarv table. However, it is not possible to combine these vectorially to 
obtain the peak response displacement for the record under consideration, since AmaXix 
and Amax,y are unlikelv to occur at the same dme. Instead, at each time interval i, the 
vectorial displacement A,- must be calculated according to:

A , = V ( A L + 4 k) (4-93)

and the peak displacement for the record determined from the full range of A; thus 
obtained. This peak displacement will occur in a specific direction. In Fig. 4.42, the 
critical displacements and directions for the first four of the record pairs are indicated by 
vectors. It will be clear that these cannot be averaged as scalars to obtain the design 
response displacement, as they occur in different directions. The correct method of 
averaging becomes apparent when one considers the condition that defines the limit 
strains. Let us first consider the peak response in a specified direction (say 15° from the X 
axis). The average displacement response in this direction will define whether the limit 
strains on the diagonal defined by the direction are satisfactory. To obtain this average, 
the displacement in this direction must be obtained for each record pair, and for each 
time step. The full time-history of response displacements in this direction is searched for 
each record pair to obtain the maximum value, and the average of the maxima in this 
direction from the seven (or more) record pairs is found.

This procedure must be carried out for a series of directions around the full 360°. 
Normally directions at 15° intervals provide sufficient accuracy. The average response 
displacements in the different directions are then searched to find the critical direction, 
and thus the critical displacement.

It is noted that this procedure represents a departure from what has been customary 
practice in the past, but we believe it represents the only logical interpretation of the 
averaging process for response under a number of accelerograms.

4.9.3 Non-Linear Static (Pushover) Analysis

Pushover analysis involves an inelastic analysis of the structure considered, under a 
gradually increasing vector of forces or displacements, representing the expected pattern 
of inertia forces or response displacements in the structure. It has the ability to track the 
formation, and plastic rotation of plastic hinges in the structure, and hence can be of 
value in design verification. There are, however, limitations to the utility of the method.
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First, it can not be directly used to determine the overall displacement demand on the 
structure under the design seismic intensity. This must be obtained from some other 
means, such as modal analysis, since what is obtained is essentially a generalised force- 
displacement response of the structure. Given knowledge of the displacement demand, 
the pushover analysis can be carried out until the displacement at some characteristic 
location reaches the assessed demand, and hence the local inelastic strains and structural 
drifts can be determined. Thus assumptions made in the direct displacement-based design 
approach about the deflected shape can be tested, but not the absolute value of the 
displacements.

A further limitation of the pushover method is that at the current stage of 
development pushover analysis in commercially available analysis codes is generally 
restricted to modelling response of a single mode, generally the fundamental mode. 
Dynamic amplification of drifts, moments and shear forces due to higher mode effects 
cannot be accurately modelled with single-mode pushover analysis. Considerable research 
effort has been expended in recent years towards developing multi-mode pushover 
anaiysislc:3'P24l. In our view these have not yet reached maturity, and require excessive 
computational effort. This severely restricts the applicability of the method to design 
verification.

A final limitation is that with a uni-directional push, the hvsteretic characteristics of 
the structure cannot be included for straight design verification. Thus, a structure with 
non-linear elastic hysteretic characteristics will have the same pushover response of a 
bilinear elasto-plastic system with the same backbone response. In some computer 
pushover approacheslcll, however, cyclic pushover analyses can be carried out. These can 
be used to determine the energy dissipation characteristics of sub-assemblages of the 
structure, enabling them to be modelled with a reduced number of degrees of freedom in 
ITHA, or in the design process. This is of considerable value in soil-structure interaction 
problems. An application to the response of wharves is presented in Chapter 12.

In carrying out a pushover analysis, a decision must be made as to whether to control 
the response by an imposed force-vector or by an imposed displacement-vector. Both 
approaches have limitations. The force approach tends to become unstable as maximum 
resistance is approached, and cannot follow response when strength degrades. It also 
results in a force vector that is generally incompatible with the generated displacements, 
since in a single-mode pushover, the force vector should be proportional to the product 
of mass and displacement at each level. In some approacheslx10l, more than one shape of 
force vector is specified (typically corresponding to a linear or constant displacement with 
height), and the results from the worst case is taken. This implies considerable doubt as 
to the accuracy of the results.

The displacement approach is verv suitable for SDOF svstems, since it can follow 
response in the post-peak strength region. However, spurious local forces can develop 
when applied to MDOF structures, and the specification ot a displacement vector can 
inhibit soft-storey failure mechanisms. In both force-controlled and displacement- 
controlled cases, care must be taken in applying an appropriate torce or displacement 
vector that represents the expected modal response. Recently developed pushover
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algorithms, termed “adaptive pushovers” modify the applied force or displacement vector 
incrementally to model the changing deflection shape resulting from the structural 
analysis^23! , and should be used where possible.

It is pointed out that data preparation and interpretation for a pushover analysis is 
very similar to that required for ITHA, and with current computing capacity, the 
increased time to execute an ITHA compared with a pushover analysis is of little 
consequence, unless fibre elements are used. Considering the limitations of pushover 
analysis, outlined above, we see limited applications for the approach, at this stage of 
development of the method, in design verification studies, beyond the specific examples 
noted above. It should be noted however, that the increased complexity of fibre elements 
which creates problems in excessive time of analysis for ITHA, can enhance the accuracy 
of pushover analyses without involving excessive analysis time.



FRAME BUILDINGS

5.1 INTRODUCTION

This chapter builds on the basic material provided in Chapter 3 relating to the 
fundamentals of direct displacement-based seismic design (DDBD), to provide a rather 
complete procedure for the seismic design of buildings whose primary lateral force- 
resisting systems is comprised of frames. The relevant equations from Chapter 3 are first 
summarized, and extended, where appropriate. Information on elastically responding 
trame buildings is provided, since in many regions of low to moderate seismicity frame 
buildings can be expected to respond elastically to the design-level seismic intensity.

Simplified methods of analysis under the design seismic force-vector are presented, 
since it is shown that traditional elastic analyses are invalid for frames that respond 
inelastically. Details on the necessary strength margins of columns to satisfy capacity 
design requirements are considered in some detail. Design examples are used throughout 
to illustrate the complete design process, for both steel and concrete frame buildings.

5.2 REVIEW OF BASIC DDBD PROCESS FOR FRAME BUILDINGS

5.2.1 SDOF Representation of MDOF Frame

Chapter 3 introduced the fundamentals of DDBD with respect to Fig.3.1, which is 
reproduced here for convenience as Fig.5.1. The first stage of the design process is the 
representation of the multi-degree-of-freedom (MDOF) structure by an equivalent 
single-degree-of-freedom (SDOF) structure modelling the first inelastic mode of 
response (Fig.5.1 (a)). The following equations were developed:

(a) Design Storey Displacements: The design floor displacements of the frame are 
related to a normalised inelastic mode shape dj, where i  — 1 to n are the storeys, and to 
the displacement Ac. of the critical storey by the relationship
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(a) SDOF Simulation
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(b) Effective Stiffness Ke

D isplacem ent Ductility 

(c) Equivalent dam ping vs. ductility

Period (seconds)

(d) Design D isplacem ent Spectra

Fig.5.1 Fundamentals of Direct Displacement-Based Design

where the normalized inelastic mode shape depends on the height, H,, and roof height 
H„ according to the following relationships:

for n < 4: 8. = *L
H_

(5.2a)

for n >4:
' 3

H:
4 H

(5.2b)
« /
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(b) Equivalent SDOF Design Displacem ent: The equivalent design displacement is 
related to the storey displacements by the relationship: ^

a ,  = E M ) ' 2 > a )  .  . . • C -  ■ (5.3)
(=1 /=I

where m,- is the mass at height H-, associated with displacement A,-.

(c) Equivalent Mass:T\\e equivalent SDOF mass m e is given by:

m e = I M J / A I/ (5-4)
/=i

(d) E ffective H eight: The effective height He of the SDOF structure (see Fig.5.1(a)) is 
given by:

H e =  (5 -5)
;=1 (=1

(c) Design Displacem ent D uctility: The SDOF design displacement ductility factor 
is related to the equivalent yield displacement Aj, by:

jU = ~T- (5-6)
A ,

It was shown in Section 4.4.6 that the yield drift of a storey in a frame depended on 
geometry, and was independent of strength. The following expressions were developed:

for reinforced concrete frames: 0  =0.5£’>,.—— (5.7a)
K

for steel frames: 0.=O.65£ .—— (5.7b)
K

where L* and h* are the beam span between column centrelines, and overall beam depth 
respectively, and is the yield strength of the flexural reinforcement or structural steel. It
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is generally sufficiently accurate to assume a linear yield displacement profile for the 
purpose of estimating ductility demand, and hence the yield displacement is given by:

(f) Equivalent Viscous Damping: From Section 3.4.3, the equivalent viscous

Alternatively, the distributed ductility approach of Eq.(3.37) can be used.

(g) E ffective Period o f Substitute Structure: The effective period at peak 
displacement response is found from the displacement spectra set (Fig.5.1 (d)), entering 
with the design displacement and determining the period, Te, corresponding to the 
calculated equivalent viscous damping.

(h) E ffective Stiffness o f Substitute Structure: With reference to Fig.5.1 (b) and 
Section 3.2, the effective stiffness at maximum displacement response of the substitute 
structure, F/Ad is given by:

(i) Design Base Shear Force: Again with reference to Fig.5.1 (b) and Section 3.2, the 
design base shear force for the MDOF structure is found from the substitute structure:

5.2.2 Design Actions for MDOF Structure from SDOF Base Shear Force

(a) D istribution o f Base Shear Force to Floor Levels: The base shear force from 
Eq.(5.11) is distributed to the floor levels in proportion to the product of mass and 
displacement as:

(5.8)

damping of the substitute structure for frames can be conservatively related to the design 
displacement ductility demand (see Fig.5.1 (c)) as follows:

1
Reinforced Concrete Frames: ^ = 0 . 0 5  + 0.565- —----  (5.9a)(5.9a)

Steel Frames: £  = 0 .05+  0 .5 7 7 / ^ -
I  W

(5.9b)

K e = 4x 2me/Te2 (5.10)

F  =  VBase -  K eA (5.11)

F i ^ J ^ a V X K a )
i=\

(5.12)
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(b) Design Moments for Plastic Hinges: The building is then analysed under the 
force vector represented by Eq.(5.12) to determine the required flexural strength at the 
plastic hinge locations. As discussed in Section 3.7 it is unnecessarily conservative to add 
the full gravity-load moments to these~seismic moments. So doing, as well as increasing 
the cost of the structure would reduce the seismic response displacements to below the 
intended design level. The recommendation in Section 3.7 is to detail the beam plastic 
hinges for the lower of (i) the seismic moments, and (ii) the factored gravity-load 
moments. This is discussed further in Section 5.6.1.

Analysis of the building under the lateral force vector requires the adoption of 
member stiffness appropriate for the expected member ductility level, as discussed in 
Section 3.5.7. However, an alternative and simpler approach to determining the member 
forces is presented in Section 5.5.2.

5.2.3 Design Inelastic Displacement Mechanism for Frames

The desired mechanism of inelastic deformation for frames involves the formation of 
flexural plastic hinges at the ends of the beams, except, possibly, at roof level, combined 
with column-base plastic hinges, and column-top hinges if the roof-level beams do not 
hinge. This mechanism, shown in Fig.5.2(a) where beam hinges, rather than column 
hinges form at the roof level provides the greatest possible number of locations to 
dissipate seismic energy, and also results in plastic hinge rotations that are very nearly 
equal to the inelastic storey drift.

(a) Beam-Sway (b) Column-Sway

Fig.5.2 Mechanisms for Frame Inelastic Response
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Capacity design measures, outlined in Sections 3.10 and 4.7 are required to ensure that 
this, and only this, inelastic mechanism can develop. Column flexural strengths at 
locations other than the base or top must be set sufficiently high to ensure that column 
hinges rather than beam hinges do not form, since this could result in a column sway 
mechanism with high plastic rotation demand on the column hinges^1!, as illustrated in 
Fig.5.2(b). The two alternative mechanisms in Fig.5-2 have the same plastic drift Ap at the 
roof level, but it will be immediately seen that the plastic rotadon of the hinges in the 
column sway mechanism is approximately n times that of the beam-sway mechanism, 
where n is the number of storeys. It will also be appreciated that a single column failure 
could result in total building collapse, whereas failure of a single beam is unlikely to be 
critical. Column-sway (also known as soft-storey) mechanisms have been one of the most 
common forms of failure of frame buildings in earthquakeslP!l.

Similarly, since shear failure is brittle, resulting in strength loss and potential 
catastrophic failure, the shear strength of both beams and columns must be set 
sufficiently high to ensure that shear failure cannot occur. Capacity design measures for 
frames are discussed further in Section 5.8.

5.3. YIELD DISPLACEMENTS OF FRAMES 

5.3.1 Influence on Design Ductility Demand

Frames are inherently flexible structures. Consider Eq.(5.7a) which gives the yield 
drift of a reinforced concrete frame. If we take typical values for beam span and depth of 
L/, = 6 m (19.7 ft), and h/, =600 mm (23.6 in), and a reinforcement yield strength off ye — 
400 MPa, (58 ksi), implying a yield strain of £y = 0.002, then Eq.(5.7a) results in a yield 
drift of

0 V = 0 .5 x 0 .0 0 2 x —  = 0.01 (5.13)
r 0.6

Note that in many countries higher yield stresses are common, and hence yield drifts 
would be proportionately larger.

Most seismic design codes set drift limits corresponding to a damage-control limit 
state (see Section 3.3.2) in the range 0.02 to 0.025, to limit non-structural damage. Design 
ductility or behaviour factors for frames are often set as high as 5 to 8 (see Table 1.2). It 
is apparent, however, that if the yield drift is of the order of 0.01, then the maximum 
structural displacement ductility demand at the non-structural drift limit will be in the 
order of [I = 2 to 2.5, and hence the structural ductility limits will almost never govern. 
This will be apparent in examples later in this chapter.

5.3.2 Elastically Responding Frames

A second consequence of the high yield drift of frames is that tall frames can be
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expected to respond elastically if the design seismic intensity is low or moderate, since the 
vield displacement is likely to exceed the maximum displacement demand corresponding 
ro elastic (e.g. 5%) damping at the start of the constant-displacement plateau of the 
displacement spectrum (see Fig.5.1(d), e.g.). Aspects which will influence this are:

• Yield drift (i.e. frame dimensions and reinforcement yield strength)
• Magnitude of earthquake
• Distance from fault rupture
• Number of storeys.

The tentative information given in Section 2.2.2. (b) relating to prediction of 
displacement spectra can be used to gain some insight into the probability that a given 
building will respond elastically to an earthquake of specified magnitude occurring on a 
known fault. Since it is more common to express design seismicity in terms of peak 
ground acceleration (PGA), we reformulate the information of Chapter 2 in terms of 
PGA as follows:

We assume a typical elastic spectral acceleration shape for firm ground, with a 
constant velocity slope starting at TB = 0.5 seconds. Note that the assumption of a 
constant velocity slope, which is implicit in most seismic codes, is compatible with the 
linear displacement spectra of Fig.5.1. We also make the common assumption that the 
plateau acceleration is 2.5 times the effective peak ground acceleration PGA. With this 
information, and the relationship between corner period and magnitude given by Eq.(2.3) 
it is possible to directly relate the elastic acceleration spectrum and the displacement 
spectrum (see Fig.5.3), and calculate the maximum elastic response displacement. The 
ordinates of the acceleration spectrum for 0.5< T< Tc sec are:

a(T) = 2.5PGA-TB/T = l .25-PGA/T  (5.14)

In accordance with Eq.(2.3) the corner period Tc is taken as:

Tc = \ + 2.5(Mw - 5 .7 )  seconds (5.15)

Making the usual assumption of sinusoidal relationship between peak relative 
displacement and peak pseudo-acceleration, the corner elastic displacement is related to 
the PGA by:

T(2 Tr2 1.25 PGA
TC ~ . 2 ' a TC ~ . 2 T (5.16)4 K 4 71 1 c

Substituting for Tc from Eq.(5.15) and simplifying:

Arc = 0.031xPG /4(l + 2 .5 (M ^ - 5 .7 ) ) (5.17)
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(a) 5% Acceleration Spectrum (b) 5% Displacement Spectrum
Fig.5.3 Design Elastic Acceleration and Displacement Response Spectra (no

scale)

Note that the data used to generate the elastic displacement spectra in Section 2.2.2 
imply that PGA is inversely proportional to distance from the fault plane for distances 
greater than 10 km. As a consequence, high PGA’s are possible for moderate seismic 
magnitudes Mw, provided the distance is small enough.

Equation (5.17) can be plotted as a function of PGA and Mw to provide the 
maximum displacement that can be expected at the effective height of the substitute 
structure (Eq.(5.5)). This can be compared with the yield displacement given by Eqs (5.7) 
and (5.8) to determine for a given structure, PGA and Mw, whether response is likely to 
be elastic or ductile. A typical comparison is displayed in Fig.5.4 for a reinforced concrete 
frame building, based on the following structural assumptions:

• flexural reinforcement yield strength fye = 400 MPa (58ksi)
• Storey height constant at 3.5 m (11.5 ft)
• Beam aspect ratio Li/hi, = 10 (see Eq.(5.7))
• Effective height = 0.7H„ (Hn — total building height —3.5/2 m (11.5n ft))
• Yield displacement profile is linear.

These assumptions are the same as used to derive Eq.(5.13) and hence the yield drift is 
0y — 0.01. The yield displacement at the effective height is thus:

A y = 6 y. (0 .7x3.5n) = 0.01x0.7x3.5/? = 0.0245« (m) (5.18)

where n is the number of storeys.
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Fig.5.4 Comparison of Peak Elastic Spectra] Displacement for 5% Damping as a 
function of PGA and Moment Magnitude, with R.C. Frame Yield Displacements

In Fig.5.4, the relationship between peak spectral displacement, peak ground 
acceleration and moment magnitude given by Eq.(5.17) is plotted as a series of sloping 
Lines identified by PGA. The structural yield displacements for frames between 4 and 24 
storeys based on Eq.(5.18) are plotted as dashed lines. If the yield displacement exceeds 
the peak elastic spectral displacement, then the response is expected to be elastic.

The results indicate that if the design PGA is 0.2g, and the causative earthquake is Mw 
< 6.6, then all frames of 8 storeys or higher, with similar to, or more flexible than, the 
characteristics of those on which Eq.(5.18) is based, will respond elastically. Twenty-four 
story frames in a zone with PGA = 0.3g will respond elastically for all Mw < 8, and in a 
zone with PGA = 0.5g will still respond elastically unless Mw > 6.9.

These results should be taken as indicative only, since they depend on the structural 
assumptions, and also the assumptions used to derive the displacement spectra. For the 
taller structures it is also possible that inelastic response could be developed in higher 
modes than the fundamental mode of vibration, thus requiring the consideration of 
capacity-design effects. With these provisos, however, it will be seen that elastic response 
of taller structures is probable, particularly in regions, such as Europe, where design 
earthquake magnitudes tend to be moderate (i.e. Mw < 6.5). For such structures, 
simplified seismic design criteria would be appropriate.
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5.3.3 Yield Displacement of Irregular Frames

It has long been recognized that good seismic performance is more likely to be 
achieved when the structure is “regular”. Regular, in the context of frame buildings 
normally means that bay widths are equal, there are no vertical offsets, and the structure 
has no designed torsional eccentricity. Often the criteria of regularity' will not be met, and 
in DDBD two issues will need consideration: the estimation of the yield displacement (so 
that the design ductility, and hence the equivalent viscous damping can be determined), 
and the distribution of the design base shear to different elements of an irregular 
structure. In this section we consider the former of these two considerations.

VB,
A t >

VBI

A

' Lbi * * Lb2 *' -£*/ *

ZVKI IF , VB, ZVb,

ZVB2 ZVB2 
(a) Irregular Frame (b) Overturning Moment

Fig.5.5 Seismic Response of an Irregular Frame

The frame in Fig.5.5 is irregular in that it has a short central bay with longer outer 
bays. It is recalled that when the yield drift of frames was discussed in Section 4.4.6, it was 
noted that Eq.(5.7) was found to apply for exterior, interior, and two-way beam-column 
subassenp-blages. It thus follows that the yield drift of the different bays of Fig. 5.5 can be 
calculated, with sufficient accuracy, independently of each other. From Eq.(5.7) it is clear 
that the beams in the outer bays will have yield drifts that are greater than the yield drift 
of the central bay. This is illustrated in Fig.5.5(b), where the bay contribution to 
overturning moment is plotted against displacement at the effective height of the 
substitute structure. From Eq.(5.7(a)) the yield drifts are:

e,„ = 0 . 5 ^
' K

0v2 = 0.5£ ^  
h" b  2

(5.19)
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Thus if the beams in the different bays have the same depths, the yield drifts will be 
proportional to the span lengths. As is shown in Fig.5.5(b), the system yield displacement 
is found by combining the moment/displacement response of the individual bays to form 
an equivalent bilinear response. In this example, if M/ and M2 are the contributions to the 
overturning moment from an outer and inner bay respectively, then the total overturning 
moment and system yield displacement are:

M-OTM.sys —2 M l + M 2 (5.20a)

2M X6 A +  M 26 2 
2M ] +  M 2

Equation (5.20b) requires that the ratio of moment contribution to the overturning 
moment of the various bays, Mi/M2  needs to be known before the yield displacement, 
and hence the ductility and equivalent viscous damping can be determined. Note that the 
absolute values of Mi and M2 are not needed. As will be seen shortly, a rational decision 
will be to design both the short and long beams at a given level for the same moment 
capacity. For generality we assume different positive and negative moment capacities of 
M+ve and M.ve respectively. The seismic moments at full mechanism development are 
indicated in Fig.5.5(a) at the third floor. Beam seismic shears in the short and long spans 
will thus be in inverse proportion to the span lengths:

y _ M +ve + M^ve _ M +ve + M_ve -------------------- -
V B1 — r > V B2 ~ J

^ b \  b 2

For the development of a full seismic mechanism, the seismic axial forces induced in 
each of the columns by the beams of the outer and inner bays are Z Vgi and X Vb2 

respectively. Ignoring the column-base moments as a relatively small proportion of the 
total overturning capacity, the contributions of the outer and inner frames to the system 
overturning capacity are thus:

M, ■= t v t u -L„, = £ ( « „ „  <5-21»)
/-I /-I

n n
M 2 «  2>*2,/ • Lb2 = £ ( M +ve,,. + M_WJ) (5.2lb)

That is, the bays contribute equally to the overturning capacity, regardless of the beam 
length. This simplifies calculation of the effective yield displacement.
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Note that the decision to make the beam moment capacities of the inner and outer 
bays equal, though rational, is not essential: any ratio may be assumed, and the effective 
yield displacement calculated. It will be noted, however, that elastically calculated seismic 
moments will be higher in the short spans than the longer spans, while gravity load 
moments will be largest in the long spans, reinforcing the rationality of the above 
approach. It should also be noted that if elastically calculated seismic moments are much 
larger than gravity moments, as would be the case for tube frames in regions of high 
seismicity7, then conventional design would require the moment capacity of the short 
beams to be increased above that for the long span (refer to the relative stiffness in 
Fig.5.5(b)). This is another example of the irrationality of design based on initial stiffness 
since increasing the strength of the inner beams, either by increasing reinforcement 
content or beam depth (or both) would further increase the relative stiffness of these 
beams, initially attracting higher seismic moments.

Two examples of frame buildings with vertical irregularity provided by setbacks are 
shown in Fig.5.6. The symmetrical layout of Fig.5.6(a) requires no special consideration in 
design, unless the storey heights vary significantly, since the ratio of storey mass to 
stiffness will remain essentially the same up the height of the building as for a building 
without setbacks. The unsymmetrical layout of Fig.5.6(b) also has no influence on the 
design process in the direction displayed, unless there is also a setback in the direction 
perpendicular to the frame displayed. In the perpendicular direction, the eccentricity of 
the upper portion of the frame will result in a torsional response in the lower storeys of 
the building, which will need consideration using the techniques developed in Section 3.7.

(a) Symmetrical layout (b) Unsymmetrical Layout

Fig.5.6 Frame Buildings with Vertical Irregularity

Frames with irregular storey heights also require little special consideration in the 
DDBD approach to determine required base shear strength, and distribution of lateral 
forces to the different storey levels. However, the assumed displacement profile defined
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by Eq.(5.2) will be increasingly inaccurate as the variation in storey heights increases, and 
should be checked by analyses after a preliminary design is completed, using the 
techniques outlined in Section 4.9.

5.3.4 Design Example 5.1: Yield Displacement and Damping of an Irregular 
Frame

12
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5

. ll@ 3.5m

4.5m

4.5m |*- 7.5m-*| 4.5m \*—

Data: R.C. Irregular Building 
Bays: 4.5m, 7.5m, 4.5m (14.8, 24.6, 14.8 ft) 
First storey: 4.5m (14.8ft), others 3.5m 

(11.5ft)
Concrete: PCt2s -  30MPa (4.35ksi)
Reinforcement: fy = 450MPa (65.3ksi) 
Masses: Level 1: = 65 tonnes (143 kips)

Levels 2-11: = 60 tonnes (132 kips)
Level 12: = 70 tonnes (154 kips)

Fig.5.7 Reinforced Concrete Frame for Design Example 5.1

The twelve-storey reinforced concrete frame illustrated in Fig.5.7 is irregular in the bay 
lengths. It also has vertical irregularity, in that the first storey is significantly higher than 
the upper storeys, as is often the case. The building consists of four identical frames, and 
the masses contributing to inertial response of each frame are indicated in Fig.5.7. Roof 
mass exceeds that at lower floors due to equipment and water storage located at roof 
level. It is required to determine the design ductility level, and equivalent viscous 
damping, for a DDBD of the frame, based on a design drift limit of 0.025.

Solution: To determine the system ductility, and hence equivalent viscous damping, it is 
first necessary to determine the substitute structure displacement (Eq.(5.3)) and effective 
height (Eq.(5.5)). The necessary calculations are summarized in Table 5.1.
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Table 5.1 Calculations for Design Displacement, and Effective Height,
Design Example 5.1

Storey, i Height Mass, mi & Ai m;Ai miA;2 m;AiHi
Hi (m) (tonnes) (m)

(1) (2) (3) (4) (5) (6) (7) (8)
12 43.0 70 1.000 0.828 57.95 47.97 2491.7
11 39.5 60 0.943 0.781 46.86 36.60 1851.1
10 36.0 60 0.882 0.731 43.84 32.03 1578.2
9 32.5 60 0.817 0.677 40.59 27.47 1319.3
8 29.0 60 0.747 0.619 37.13 22.98 1076.8
7 25.5 60 0.673 0.557 33.45 18.65 853.0
6 22.0 60 0.595 0.492 29.55 14.55 650.1
5 18.5 60 0.512 0.424 25.43 10.78 470.4
4 15.0 60 0.424 0.351 21.09 7.41 316.3
3 11.5 60 0.333 0.275 16.53 4.55 190.1
2 8.0 60 0.236 0.196 11.75 2.30 94.0
1 4.5 65 0.136 0.112 7.31 0.82 32.9

Sum 371.47 226.11 10923.8

Displacem ent Profile: Column (4) in Table 5.1 lists the inelastic mode shape defined bv 
Eq.(5.2b). This shape implies that the maximum drift occurs between the ground and first 
floor. The design displacement at the first floor is thus A/ = 0.025x4.5 = 0.1125m. The 
design displacement profile, listed in column (5) is thus found from Eq.(5.1) as

A . = 8 ^  = 8, = 0.828£.
8, 0.136

Substitute Structure Design Displacem ent: Substituting from the sums of columns (7) 
and (6) into Eq.(5.3):

226.11= Z ( w/A')/Z ( wlAJ  = T3— - = 0.609w (24 in)
;=l ;=i J / 1 .4 /

Substitute Structure E ffective H eight: Substituting from the sums of columns (8) and
(6) into Eq.(5.5):

" " i (HP > 8  '
He = Y d{miAiHi)/Yd{m ,.A(.) = --------— = 29.4m (96.4ft, 168.4% of building

/=! i=i 371.47 ____
height)
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Yield Displacement} The specified reinforcement yield strength is f y — 450MPa 
(65.2Tcsi). In accordance with the recommendations of Section 4.2.5 the design vield 
strength is taken as f ye -  1.1f y -  495 MPa (71.8ksi). The yield strain is thus £y — f y/Es = 
495/200,000 = 0.002475.

Three different design options are considered. In the first, the beam depth in all bays 
is kept constant at 600mm (23.6in), and moment capacities of the outer and inner frames 
are made equal, as suggested in Section 5.3.3. Thus Mj = M2. In the second option, 
influenced by elastic considerations of seismic force distribution, the outer and inner 
beam depths are taken as ht = 750mm (29.5in), h2 = 600mm respectively, and Mi = 
\.67M2. In the final option, influenced by gravity moment distribution, outer and inner 
beam depths are taken as hi =500mm (19.7in), h2 = 600mm respectively, and Mj =
0.6 M2.

Option 1: h/ = h2 = 600 mm; Mi = M2: From Eq.(5.19): ,, ;

6  . = 0 .5x0 .002475— = 0.00928 0  , =0.5x0 .002475—  = 0.0155
"  0.6 0.6

Hence, from Eq.(5.20b), the equivalent system yield displacement is:

4  = 2M A i1 M A L h  = 2xa00928± M 55x294 = 0 334m
2 M, + M 2 3

The system displacement ductility is thus jU = 0.609/0.334 = 1.82 and from Eq.(5.9a) 
the equivalent viscous damping for DDBD is: j

A =0.05 + 0 .5 6 5 - f1-8 2 ~ 1l  = 0.131 (13.1%)
L \X2 n )

Option 2: hi = 750 mm; h2 = 600 mm; Mi = 1.67A&. From Eq.(5.19):

6 , = 0 .5x0 .002475— = 0.007425 d  , = 0 .5x0 .002475—  = 0.0155 
’ 0.75 ’ 0.6

From Eq.(5.20b), the system yield displacement is:

4  H = 2 x l .67 x 0.007425 + 0.0155 x 29 4 = (|27}m
2 M ,+ M 2 2x1.67 + 1

The system ductility is thus increased to/U = 0.609/0.273 = 2.23 , and from Eq.(5.9a),
the equivalent viscous damping is:
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= 0.05 + 0.565 • | | = 0.149 (14.9%)

Option 3 :hi — 500 mm; = 600 mm; Mi = 0.6M2. From Eq.(5.19):

6> -0 .5x0.002475- — = 0.01114 6> = 0.5x0.002475—  = 0.0155
0.5 12 0.6

From Eq.(5.20b), the system yield displacement is:

= 2M ,e„ + M A , H  _ 2x0.6x0.01114+0.0155. 2,  „  ^  „  3^  5 2ln)
'  2M] + M2 2x0 .6  +1

The system ductility is thus decreased to fi = 0.609/0.386 = 1.58 , and from Eq.(5.9a), 
the equivalent viscous damping is:

=0.05 + 0.565 = 0.116 (11.6%)

It is thus seen that changing the relative strengths of the beams in the outer and inner 
bays also changes their ductility and hence the effective viscous damping. From Eq.(3.21) 
it is thus seen that the system base shear will also be changed. If we adopt the EC8 
recommendation for relationship between damping and displacement reduction given by 
Eq.(2.8), then the required base shear strengths, from Eq.(3.24), for the three cases will 
be in proportion to

x i n
0.07

0.02 + £

assuming “normal” rather than near-field conditions. Using Option 1 as a base, this 
implies that the required strength for Options 2 and 3 will be 10.6% lower, and 10.9% 
higher respectively than Option 1. Note that an independent design, using the distributed 
ductility/damping approach of Section 3.5.4(a) gave almost identical results, confirming 
that the simplified approach described in this section may be used with some confidence.

The resulting relative strengths required of the outer and inner bays for the three cases 
are compared in Fig.5.8, referenced to the total overturning moment requirement for 
Option 1. It is seen that the required contribution to overturning moment from the outer 
bays is not greatly influenced by the changes in beam depth and relative strength of the 
outer and inner bays, but the required beam strength for the longer inner bay has a 
strength range of approximately ±50% of the Option 1 value.

Option 2 is the most economical in terms of total required strength, but this is
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achieved at the expense of a lower yield displacement. Damage will occur to the beams of 
the outer bays at a lower level of seismic intensity than for the other two opdons. It 
would appear that this would be the optimum choice for a site where the seismicity is 
characterized by infrequent large earthquakes, since serviceability requirements under 
moderate earthquakes are not likely to be critical. On the other hand, Option 3 would 
appear to be attractive for a location where moderate earthquakes are frequent, and hence 
where serviceability might govern design, since the onset of damage to the shorter outer 
bay beams would occur at a larger proportion of the design displacement. However, this 
would be achieved at the expense of a higher design base shear, and hence higher overall 
cost.

Displacement (m) Displacement (m) Displacement (m)
(a) Option 1 (b) Option 2 (c) Option 3

Fig.5.8 Comparative Overturning Moment Demands for Example 5.1

5.3.5 Yield Displacement and Damping when Beam Depth is Reduced with 
Height

A further complication may exist when the beam depth is reduced with height, to 
reflect the reduction in seismic moments in the upper level beams. Unless the beam 
depth reduction is unusually large, however, it will have little effect on the yield displace
ment at the effective height of the substitute structure, which is effectively controlled by 
the response of the lower level beams. Consequently it will generally be acceptable to 
base the yield displacement and equivalent viscous damping on the assumption that beam 
depth is constant up the height of the building, or to make an arbitrary small reduction to 
the equivalent viscous damping based on judgement. In cases where the beam-depth 
variation is too large to be ignored with comfort, the equivalent viscous damping can be 
calculated with greater accuracy from Eq.(5.22), where there are m locations of plastic 
hinges at each beam level, and 0 , is the design drift at level i  subsequently defined by 
Eq.(5.26). The damping at level /’ is based on the drift ductility at that level: // = djdyi, 
where the yield drift at level /is found from Eq.(5.7). Thus:
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n - (5-22)

I I  \ ° ,
i=\\k=\ J

Finally it is noted that when irregularity becomes extreme, it will be advisable to check 
the design using inelastic time-history analysis, as discussed in Section 4.9.

5.3.6 Yield Displacement of Steel Frames

Equation (5.7b) defines the yield drift of steel frames in terms of a known section 
depth, hb. Steel beams utilized in building construction typically conform to the W-series 
ASCE dassification(A2l. However, the beam depth is unlikely to be known at the start of 
the design process, even if the W-group of steel section has been decided. This is because 
each W-group consists of a range of beams with different strengths and weights, where 
the variation in strength and weight is achieved by varying the distance between the 
rollers defining the total section depth. Thus the internal profile between the insides ot 
the flanges is kept constant, while the flange thickness is increased, resulting in an 
increase in the section depth.

It would thus appear necessary to carry out an iterative process on the design, using 
successive estimates of the beam depth. An alternative process has been suggested by 
Sullivan et alfS3l, based on the following argument. It is noted that the nominal bilinear 
yield curvature of a section (see Section 4.2.6) can be expressed as

 ̂ m n m  m n
0  = — — L = — l-  (5.23)

y M v E I E I

where M y and M y are first yield moment and nominal flexural strength respectively. Now
since the flexural strength can be expressed as My = Zpfy where ZP is the plastic section 
modulus, Eq.(5.23) can be rewritten as

Z J y  _  Z 
E I  I  ~y(py = = T" ' £V (5-24)

Sullivan et aUS3l found that the ratio Zp II  is essentially constant for a given W-group 
of steel beams, with the values as listed in Table 5.2. The similarity between Eqs.(4.50) 
and (5.24) is obvious. Equating, we can obtain an “effective” depth for use in the drift 
equation (Eq.(5.7b)):

<b = 2.2- —  = ^ - £  hence hh = 0 A 5 -—  (5.25)
K  I  y b z P
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Table 5.2 Zp/1 Values for ASCE Bearn Section Groups(S3l

W-Shape Group Zp/I(\n 1) Z/I (m 1)
W14 0.140 5.52
W16 0.136 5.36
W18 0.119 4.67
W21 0.103 4.04
W24 0.087 3.44
W27 0.077 3.04
W30 0.066 2.58
W33 0.072 2.82

5.4 CONTROLLING HIGHER MODE DRIFT AMPLIFICATION

The design displacement profiles defined by Eq.(5.2) imply that the design storey 
drifts will be equal to, or less than the maximum value in the lowest storey of the building 
at all higher levels. Differentiating Eq.(5.2) with respect to H i/H n and normalizing to a 
value of 1.00 at the base of the frame, the vertical distribution of design drift can be 
expressed as

3 / 0 o = 1 . 0 0 - 0 . 5 ^ -  (5.26)
Hn

Thus the design drift at the top of the frame is expected to be 50% of the drift at the 
base. It should, however, be recognized that this is primarily the drift associated with 
first inelastic mode response. Drifts at higher levels of the building will be influenced by 
higher mode effects, and can be expected to exceed values predicted by Eq.(5.26).

Analysesl?17l have indicated that control of higher mode drifts is critically affected by 
two parameters: the design displacement profile (and hence the design drift associated 
with the inelastic first mode), and the vertical distribution of the design base shear force 
resulting from the DDBD process. Since these are inter-related, they are considered 
together in the following discussion.

Figure 5.9 compares displacement and drift envelopes found from inelastic time- 
history analyses for two different DDBDs of 16 storey frames. In the first case 
(Fig.5.9(a)), the design displacement profile was defined by Eq.(5.2b), and the resulting 
design base shear was distributed to the floor masses in proportion to Eq.(5.12), In the 
second case, the same design profile was adopted, but a modified form of Eq.(5.12) was 
used, where 10% of the base shear force was allocated to the roof level, and the 
remaining 90% was distributed in accordance with Eq.(5.12). The revised equation is 
thus:

Ft = F t + 0 .9Vb (5.27)
/=1
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where F, = 0.1 Vb at roof level, and F, = 0 at all other levels. This is similar to the 
approach adopted in several seismic design codes (e.g. [XI]).

The peak design drift was nominally the same for the two cases, at 0.02, though due to 
use of an early version of the damping/ductility reladonships in the first case (Fig.5.9(a)), 
the base shear was about 15% too high, reducing displacements below the design level. In 
both cases the designed structures were subjected to inelastic time-history analyses using 
five spectrum-compatible accelerograms. Full details of the analyses are available in 
Pettinga and Priestleyl1317].

Drifts D isplacem ent Profiles

D rift D isp lacem en t (m )

Fig.5.9(a) Maximum Storey Drifts and Displacement Profiles for a 16 Storey 
Frame, using Design Displacement Profile of Eq.(S.2b)

In the case without addidonal force at roof level (Fig.5.9(a)), it will be seen that higher 
mode effects increase the drifts in the upper storeys of the frame, not only above the 
design levels corresponding to the presumed first mode shape, but also significantly 
above the 2% design drift limit. The average displacement profile from the results of the 
five accelerograms agrees well with the shape of the design profile, but is low by about 
10%, for the reasons discussed above. For the case with redistributed base shear, 
resulting in additional lateral force at roof level (Fig.5.9(b)), and hence stronger beams in 
the upper levels, recorded drifts again exceed the design first mode values, particularly in
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the upper levels, but the excess over the 2% drift limit is only about 12%. Again the 
agreement between the design and recorded displacement profiles is good.

It should be noted that the designs for the structures represented in Figs.5.9 used a 
version of the damping/ductility relationships defined in Eq.5.9 that pre-dated the 
verification analyses described in Section 3.4.3, and did not include the drift reduction 
factor COq described below.

Drifts Displacem ent Profiles

D rift D isp lacem ent (m)

Fig.5.9(b) Maximum Storey Drifts and Displacement Profiles for a 16 
Storey Frame, using Design Displacement Profile of Eq.(5.2b) and Eq.(5.27)

Figure 5.9 indicates that higher-mode effects can also increase the drift at the base of 
the frame. Analyses of building frames between 4 and 20 storeys indicated that the 
significance of the higher modes on first-storey drift increased as the number of storeys 
increased. For shorter buildings the peak drifts resulting from time-history analyses 
tended to be up to 10% less than the design limit, while for the tallest frames peak drifts 
exceeded the design limit by up to 15%. The analyses also indicated that allocating 10% 
of the base shear to the roof controlled upper level drifts to within the design limit in all 
cases, though it was a little conservative for buildings below 10 storeys in height.

On the basis of these results it is recommended that a drift reduction factor be 
incorporated in design for taller buildings. It is apparent that this reduction could be 
expressed in terms of number of storeys, height, or effective period. However, the 
effective period will not be known at the start of the design process, and building height
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is more fundamentally connected to higher mode effects than is number of storeys. On 
the basis of the analyses reported in [PI 7], it is thus recommended that buildings be 
designed to peak displacements of:

A/,a, = &e ' A, (5.28a)
where:

mg = 1 .1 5 -0 .0 0 3 4 / / n <1.0 (i/„ in m); = 1.1 5 -0 .001// ,7 <1.0 {Hn in ft) (5.28b)

In Eq.(5.28a), the floor displacements Ai are those found from application of Eqs.(5.1) 
and (5.2).

In summary', to allow for drift amplification resulting from higher mode response, it is 
recommended that frame buildings be designed for the reduced displacements defined bv 
Eq.(5.28), and that the vertical distribution of base shear force conform with Eq.(5,27).

5.5 STRUCTURAL ANALYSIS UNDER LATERAL FORCE VECTOR

There are two possible methods for determining the required moment capacities at 
potential hinge locations for frames designed by DDBD. The first requires a 
conventional frame analysis, considering relative stiffnesses of members, while the second 
is based solely on equilibrium considerations. Each is considered in turn.

5.5.1 Analysis Based on Relative Stiffness of Members

This approach was briefly discussed in Section 3.5.7, and is examined in more detail 
here, with respect to the four-storey regular frame of Fig.5.10. To be consistent with the 
principles of DDBD the frame structure analysed should represent the relative stiffness 
of members at the peak displacement. Thus beams, which are expected to sustain 
ductility demands should have their stiffnesses reduced from the elastic cracked-section 
stiffness in proportion to the expected member displacement ductility demand. For frame 
members of normal proportions, it will be adequate to reduce the elastic stiffness of all 
beam members by the system displacement ductility level //a- However, as will be obvious 
from Eq.(5.26), which indicates that the first-mode design drifts, and hence member 
ductilities reduce with height, this will overestimate the relative stiffnesses of beams at 
lower levels and underestimate relative stiffnesses at higher levels. An improved solution 
will result if the member ductilities at different levels are proportional to the drift 
demands (assuming that the beams at different levels have constant depth). Thus the 
member ductility at the first floor beams will be taken as 1.33/^a, and at the roof level, as 
0.667//a.

The design philosophy of weak beams/strong columns will require that the columns 
between the first floor and the roof remain essentially elastic. Hence, the stiffness of 
these columns should be modelled by the cracked-section stiffness, without any reduction 
for ductility.
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Base Overturning Moment

OTM = Y dF ,-H i 

o t m  = t l ), + Y j m Ci

OTU  = - t ,„ „  + J > , cy

Fig.5.10 Seismic Moments from DDBD Lateral Forces

A problem occurs with the structural characterization of the columns between the 
ground and first floors. The design philosophy requires that plastic hinges be permitted to 
form at the ground floor level to complete the desired beam-sway mechanism (see 
Fig.5.2(a)), but that the first-storey columns remain elastic at the first floor level, to 
ensure that a soft-storev (column sway) mechanism of inelastic displacement cannot 
develop. It is thus not clear how the stiffness of the ground floor columns should be 
represented in the structural analysis.

The solution to this problem relies on the recognition that any structural analysis is 
approximate (compare the relative structural approximations involved in an initial 
stiffness and a secant-stiffness representation, both of which are valid at different levels 
of seismic response), and that the fundamental requirement is that equilibrium is 
maintained between internal and external forces. With this in mind, we realise that it is 
possible for the designer to select the moment capacities of the column-base hinges, 
provided that the resulting moments throughout the structure are in equilibrium with the 
applied forces. Since our design criterion is that column hinges do notyform at the 
underside of the IeveTTTiearhsT^ would appear logical to design in such a way that the 
pomFoT contraflexure in the columns occurs approximately at 60% of the storey height.
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The design moment at the column base will thus be 0.6 VcHi where Vc is the column 
shear and Hj is the storey height to the centre of the first floor beam. As will be clear 
from the representation of a typical interior column in Fig.5.11, where it is assumed that 
the beam depth at the first floor is approximately 0.15Hj, this implies that the maximum 
column moment at the base of the first floor beam under first-mode response is about 
0.325 VcH) t or about 54% of the column-base moment capacity. Assuming that column 
flexural strength is kept constant up the height of the first floor columns, this strength 
margin provides adequate protection against a soft-storey mechanism forming under 
higher mode response. Note, however, that beam elongation under ductile response may 
increase the moment at the top of the first-storey column at one end of a frame above 
this valued3’X11, and fully ductile detailing is necessary' here.

<b -fo
0.15 H,

1 1

-•{ 0 .6 VcHj\*~

Fig. 5.11 Moments in Ground Floor Columns Based on Contraflexure at O.6H1

We note that the column shear can be direcdy determined from the lateral forces, 
provided logical decisions are made about the distribution of storey shears between 
columns. Thus, with reference to the four-storey frame of Fig.5.10, the total base shear of

V Base =  F \ +  F 2 +  ^ 3  +  F 4 =  V C\ +  V C2 +  V C1 ( 5 -2 9 )

should be distributed between the columns in proportion to the beam moment input. If 
we design for equal positive and negative moment capacity of the beams at a given level, 
then the moment input from the beams to the central column will be twice that for the
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exterior columns. The corresponding distribution of the base shear between the columns 
will thus be

VC2 = 2VCI = 2VC3 = 0.5V£ (5.30)

The desired column-base moment capacities can then be defined before the structural 
analysis for required flexural strength of beam plastic hinges.

The structural analysis then proceeds with the first-storey columns modelled as having 
cracked-section stiffness, and pinned-base conditions. The base moments (e.g. M/ = 
0.6 VciHj) are then applied as forces to the column-base hinges, in addition to the applied 
lateral forces F / to F4 . The results of the analysis will then define the required beam 
moments to satisfy the lateral force distribution, and the preferred column-base 
moments.

Typically, a commercially available frame analysis computer program will be used for 
the analysis. However, as mentioned in Section 3.5.7, a major problem with the relative 
stiffness approach is that the member stiffnesses depend on the flexural strengths (see 
Section 4.4), which will not be known until after the structural analysis is completed. This 
implies that an iterative process will be needed to determine the required beam moment 
capacities, modifying the stiffnesses to reflect the required strengths from an earlier 
iteration of the analysis.

Note that the decision to constrain the position of contraflexure in the columns may 
appear arbitrary, but is in fact much less so than the possible designer’s choice between a 
fixed base and a pinned base design for the columns. The latter choice is not uncommon 
for steel building columns.

5.5.2 Analysis Based on Equilibrium Considerations

The final results from a frame analysis based on relative member stiffness will 
generally be modified somewhat in the design process to rationalize the design. For 
example, average negative beam moments at a given level may be adopted rather than the 
exact moment demands so that the same flexural reinforcement layout may be used at a 
number of sections. Considering the inevitable approximate nature of the structural 
analysis process, discussed in the previous sections, it is clear that alternative, simplified 
analysis procedures may be attractive. The following is based on simple equilibrium.

(a) Beam Moments: We again refer to the regular frame of Fig.5.10, and consider 
equilibrium at the foundation level. The lateral seismic forces induce column-base 
moments, and axial forces in the columns. The total overturning moment (OTM) 
induced by the lateral forces at the base of the building is

n
o t m  = Y , f ,h , (5.31)
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where n is the number of storeys. For a regular building, as shown in the example of 
Fig.5.10, seismic axial forces will be induced in the exterior columns by the seismic beam 
shears {Vgi). If the beam negative moment capacities at all critical sections at a given level 
are equal, and similarly, all beam positive moment capacities at that level are equal (but 
not necessarily equal to the negative moment capacities), for the interior column, the axial 
force component from the beam shears at opposite sides of the column will cancel, and 
no seismic axial force will be induced. The OTM induced by the external forces must be 
equilibrated by the internal forces. Thus

O T M = % M Q + T L t„„ (5.32)
7=1

where Mq are the column base moments (m columns) T= C are the seismic axial forces 
in the exterior columns, and Li,me is the distance between T and C. The tension force T 
(and the compression force C) is the sum of the beam shear forces, VBi up the building:

(53 3 )

Equations (5.31) to (5.33) can be combined to find the required sum of the beam 
shears in a bay:

n  (  n  m  ^

Y / k = T =  £ F,H , - 2 > 0. / I t„„ w  (5.34)
<=> V '=> ./-I )  yy  ^

Any distribution of total beam shear force up the building that satisfies Eq.(5^2) will 
result in a statically admissible equilibrium solution for the DDBD. Thus as with the 
choice of column-base moment capacity, it is also to some extent a designer’s choice how 
the total beam shear force is distributed. Once the individual beam shears have been 
decided in such a way that Eq.(5.34) is satisfied, the lateral force-induced beam design 
moments at the column centrelines are given by

M m + M Bi,= V Bi-LBl (5.35)

where Lsi is the beam span between column centrelines, and Mg,;/ and Mgi,r are the beam 
moments at the column centrelines at the left and right end of the beam, respectively. 
These will normally not be equal, even if equal top and bottom beam flexural 
reinforcement is provided, due to the influence of slab reinforcement increasing the beam 
negative moment capacity. The seismic design moments at the column faces will be 
reduced from this value dependent on the column width hc:

M Bi,des = M Bi -  VBjhc 12 (5.36)
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A possible choice in the distribution of the total seismic beam shear would be to give 
all beams up the height of the building equal moment capacity, and hence idenncal 
reinforcement details. Although this would satisfy equilibrium at the base of the building, 
it would violate it, severely, at higher levels, implying a single lateral inertia force at roof 
level. The consequence would be excessive variation in beam ductility demand up the 
height of the building, which would be reflected in local drifts exceeding the design limit. 
This is illustrated in Fig.5.12, where the 16 storey frame, results of which are shown in 
Fig.5.9(a) was redesigned for a linear displacement profile and uniform beam strengths up 
the height of the building.

Drifts D isp lacem ent Profiles

D rift D isp lacem en t (m )

Fig.5.12 Average Time-History Response of a 16 Storey Frame Designed with 
Uniform Beam Strength up Building Height(pi7l

The average displacement profile from time-history (TH) analysis is seen to differ 
markedly from the design profile, and drift at the lowest floor is almost twice the design 
level, while drift in the upper storeys is very low. Thus to ensure that drifts do not exceed 
the design limits it is important that the vertical distribution of beam shears follows the 
seismic demand. This can best be achieved by allocating the total beam shear from 
Eq.(5.34) to the beams in proportion to the storey shears in the level below the beam 
under consideration. This can be expressed as
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Vs ,
v b: = t  s-±-

IX,
(5.37)

where

(5.38)
k=i

are the storey shear forces and T is given by Eq.(5.34). The complete analysis procedure 
for regular frames is as follows:

• Determine the design base shear and floor inertia forces from DDBD principles 
(Eqs.(5.1) to (5.12)).

• Determine the OTM from the DDBD forces (Eq.(5.31)).
• Design (chose) the column-base moment capacities.
• Determine the column-base tension force Tfrom Eq.(5.34).
• Determine the storey shear forces from Eq.(5.38).
• Determine the vertical distribution of beam shears from Eq.(5.37).
• Calculate the column-face beam seismic moments from Eqs.(5.35) and (5.36).

As noted above, it will be common to design the beam flexural strengths with the 
negative capacity7 exceeding the positive capacity' to reflect the gravity load demand, and 
also the typical enhancement of beam negative moment capacity caused by slab flexural 
reinforcement.

Extension of this analysis procedure to the irregular frames discussed in Section 5.3.3 
is straightforward. Each bay is considered separately, with the total base shear force 
being allocated to the different bays in proportion to the chosen contribution to the 
OTM. Thus, with reference to the frame of Fig.5.5, the base shear forces Vcbi and Vcb2 

allocated to each of the exterior bays, and the interior bay respectively will be

V - v
r  C B 1 B

M,

2 M , + M 2
V = V
'  C B 2  '  B

M n
2 M , + M 2

(5.39)

The procedure for each bay then follows the last five bullets in the list above. 
Distribution of the total base shear between the columns will normally be in the ratio of 
1:2 for external/internal columns. The required beam shears Vgn for the outer bay will 
thus be given by

/=l

M,

2 M ] + M 2 y i= Q
J,=1 J

/ L, (5.40)
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where Li is the span length of the exterior bay. Similarly the sum of the beam shears Vg2\ 
for the interior bay will be given by

Af,

2 M , + M 2 O' t u (5.41)

Inelastic time-history analyses of frames designed in accordance with the above 
approach have indicated satisfactory performance in terms of drift magnitude and 
distribution (see Fig.5.9(b) e.g.).

(b) Column Moments: The analysis carried out for beam moments in accordance with 
the above equilibrium considerations also implies that column moments can be directly 
calculated. The total storey shear force given by Eq.(5.38) is divided between the 
columns, normally in the ratio of 1:2 for external/internal columns, as noted above. 
Then, since the moment input from the beams at each level is known from the above 
analysis, the column moments can be found, working up from the level 1 joints. This is
illustrated with respect to Fig.5.13, which represents an internal column between level 0
(ground floor) and level 2, and is an extension of Fig.5.11.

The point of contraflexure in the column between levels 0 and 1 has been chosen at 
0.6Hi, and the beam moments at levels 1 and 2 have been found as described in the 
previous section. The moment at the top (beam centreline) of column 01 will be

= 0.4FCO!-//, (5.42)

Beam moments at the Level 1 joint centroid are Mm,i and Mbi> for the beams to the 
left and right of the joint centroid respectively. Hence, for equilibrium of moments at the 
ioint centroid, the moment at the bottom of column 12 will be

Mcn,b ~ M B\j + M B] r — M CQll (5.43)

Since the shear force, Vcn in column 12 is known, as discussed above, the moment at 
the top of column 12 can also be directly calculated:

M C\2j ~ Vc\2 ' ^ 2  ~ Mc\2,b (5-44)

Note that in the above discussion, all moments have been considered positive values, in 
the sense indicated in Fig.5.13.

The procedure continues with consideration of equilibrium at the level 2 joint, 
working its way up the building until the top level is reached. It should be noted, 
however, that this procedure will result in column contraflexure points that are close to
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column mid-heights, and that the actual design values will be modified from the values 
calculated above to allow for beam flexural overstrength, higher mode effects, and biaxial 
actions (see Section 5.6.2 below). As such, a simpler design approach of assuming central 
points of contraflexure in each column is acceptable, thus resulting in equal column 
moments at top and bottom of each column equal to M a =0.5 VaHj is acceptable. It 
should be noted that it is the sum of moment capacities at top and bottom of a column 
rather than individual values at top or bottom that is important in guarding against 
formation of a column-sway mechanism.

Fig.5.13 Determination of Column Moments from Consideration of Joint
Equilibrium
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5.6 SECTION FLEXURAL DESIGN CONSIDERATIONS

5.6.1 Beam Flexural Design

Reference should be made to Sections 3.7.2, and 4.2.5. The former discusses the 
combination of seismic and gravity moments for beams, while the latter defines material 
strengths to be used in flexural design of plastic hinges. It is recommended that beams be 
designed for the larger of the factored gravity moments and seismic moments ignoring 
gravity moments. The rationale for not combining the gravity and seismic moments is 
that this combination increases the required section strength and reduces the response 
drift levels below the target values. Comparative time-history analyses of frames where 
the gravity moments are included or ignored in the analysis have indicated that the 
influence on drift is negligible!1’151. This is because the gravity moments increase the total 
moment at one end of the beam, and reduce it at the other end. Paulay and Priestley!1’1] 
discussing force-based design of frames recommend allowing redistribution of moments 
under combined gravity and seismic actions by up to 30% of the peak moment demand 
in the beams at a given level of the frame. This has a similar effect to the (simpler) 
suggestion made in Section 3.7.2, as can be seen from the following example.

We consider a typical interior beam of a frame of an office building. For simplicity of 
argument we assume that the beam is part of a one-wav frame, and that beam span and 
tributary, slab width are both 6m (19.7ft). The beam size is 600x400mm (23.6x15.7in), 
and the slab thickness, including topping is 150mm (5.9in). Thus the dead load supported 
by the beam is :

w D = 23.5(6x0.15+0.45x0.4) = 25.4 kN/m

Basic live load for an office building is taken as 2.5 kPa (451b/sq.ft). A live load 
reduction factor based on tributary area of 36m2 (388ft2) is found to be 0.85 for gravity
load calculations, with a further reduction factor of 0.4 for seismic load combinations.
Thus the following live loads apply:

Gravity: w>i = 6x0.85x2.5 = 12.75 kN/m (0.87kips/ft)
Seismic: wLE= 0.4x12.75 = 5.1 kN/m (0.35kips/ft)

Assuming full fixity of the beam ends, the gravity load moments at the column 
centrelines are thus:

Dead load: Mp = 25.4x62/12 = 76.2 kNm (674 kip.in)
Live load (gravity): Ml = 12.75x62/12 = 38.3 kNm (339 kip.in)
Live load (seismic): Mie— 5.1x62/12 =15.3 kNm (135 kip.in)

For “conventional” design incorporating moment-redistribution for the seismic load 
combination, assuming a flexural strength reduction factor of (/)= 0.9 for gravity loads
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only, the following strength requirements apply (Note load factors from the Appendix to 
A C I^  for gravity load are used for this comparison):

Mdes, > (1 AMd + 1,7 M i)/ f  (5.45a)
Md e s2  > (1.0Md + 1.0Mle +Me)x0.7 (5.45b)

where Me is the seismic moment. Note that Eq.(5.45b) incorporates the 30% reduction 
for redistribution which would require a corresponding increase (in value, not percentage) 
at other locations.

The recommendations provided in this text are that, in addition to the conventional 
gravity load design (we again assume that Eq.(5.45a) applies, including the strength 
reduction factor), the seismic design case is given by Eq.(5.45c):

Mdes} > Me (5.45c )

Substituting the calculated values for dead and live load we obtain:

Mdes, > 190.9 kNm (1689 kip.in)
Md e s2  > (76.2+15.2)x0.7 + 0.7ME = 64.1+0.7Afe kNm (567+0.7ME kip.in) 
Md e s3  > Me kNm

For conventional design permitting moment redistribution, the larger of the first two 
values will apply. Thus for low values of seismic moment, the gravity load combination 
will govern. For the approach suggested herein, the larger of the first and the third values 
will apply.

Figure 5.14 plots design moment against seismic moment for the two approaches. For 
low levels of seismic moment, Mdesi governs for both approaches. It is seen that the 
seismic moment starts to govern at a very similar level of seismic input with both 
approaches, and that except for a very small range of seismic input, the approach 
suggested herein is more conservative than the approach allowing moment redistribution. 
This adds support to the simple recommendation that gravity’ loads be ignored in the 
seismic load combination, and that design strength be based on the larger of gravity and 
seismic moments.

Section 4.2.5 discusses material properties for intended plastic hinge locations, and it 
is recommended that design values for seismic design exceed the specified, or 
characteristic material strengths is accordance with f ,ce = 1 •3fc\ fye = 1.1/v

As explained in Section 4.2.5, these values are recommended in recognition that 
material strengths will normally exceed specified strengths at the building age when 
seismic attack occurs, and that use of artificially low material strengths does not reduce 
the probability that inelastic response will occur at the design level of seismic input, nor 
does it improve safety. The main consequence of design to artificially low material 
strengths is an increase in cost, particularly for capacity-protected actions. In accordance
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Seism ic M om ent (kNm)

Fig.5.14 Beam Design Moment Incorporating Seismic Loading Based on 
Recommendations in this Text Compared with Conventional Design Permitting

Moment Redistribution of 30%.

with the recommendations of Section 4.2.5, strength enhancement of flexural 
reinforcement may be considered when determining required flexural reinforcement 
quantities, and the use of a flexural strength reduction factor for seismic actions of 
intended plastic hinges is viewed to be inappropriate.

Methods for flexural design of beams are covered in all standard texts on reinforced 
concrete design, and need no further elaboration here, though guidance relating to 
material properties and use of moment-curvature analysis is given in the 
recommendations of Section 4.2.6. Particular reference is made to [PI] for details on 
contribution of slab reinforcement to flexural strength, and other matters specifically 
related to seismic design of frames. It is noted, however, that the conventional 
distribution of flexural reinforcement in beams, where negative-moment reinforcement is 
concentrated near the top of the section, and positive-moment reinforcement is 
concentrated near the bottom of the section, as illustrated in Fig.5.15(a), can cause 
problems with congestion and concrete placement, particularly in two-way frames, where 
intersecting layers of reinforcement occur at the top of the joint region. If the same 
quantity of flexural reinforcement is distributed down the sides of the section, as shown 
in Fig.5.15(b), the flexural strength of the beam will be essentially the same as for the 
conventional distribution, as trial calculations will show, since a larger proportion of the 
total reinforcement will act in tension for a given sense of moment, compensating for the 
reduced lever arm from the centre of tension to the centre of compression in the section. 
Distributing the flexural reinforcement down the sides clearly reduces congestion
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problems, and also improves bond conditions for beam reinforcement through the joint, 
reduces joint shear stresses, and improves beam shear performance!1®1!.

i
•  •  •  •

< < i  ;
•  •  
•  •

•  •  •  •

•  •  
•  •  
•  •

•  •  •  • •  •

(a) Conventional (b) Vertically Distributed

Fig.5.15 Alternative Distributions of Beam Flexural Reinforcement for 
Reinforced Concrete Frameslwll

5.6.2 Column Flexural Design

As with beam design, design of columns is well covered in standard texts and needs 
little discussion here. However, a more conservative design approach than that for beams 
is appropriate since the columns should be required to remain essentially elastic, except at 
the column base, and possibly immediately below the roof beams. It should be noted that 
column moments need to be amplified above values corresponding to the design lateral 
seismic force to allow for:

• Potential overstrength capacity at beam plastic hinges resulting from material 
strengths exceeding the values specified for design.

• Dynamic amplification of column moments resulting from higher mode effects, 
which are not considered in the structural analysis carried out in accordance with 
Sections 5.5.1 or 5.5.2

• Biaxial effects for columns that form part of two-way frames.
It should also be noted that practice in the USA, requiring that the sum of column 

moment capacity in a given direction framing into a joint should exceed 1.2 times the 
sum of beam moment capacity in that direction, framing into the joint does not provide 
adequate protection against columns forming accidental plastic hinges, with potentially 
serious consequences.

(a) Beam Overstrength Capacity: The consequence of overstrength flexural capacity 
being developed at intended plastic hinge locations was discussed in Section 4.5. The 
maximum feasible flexural strength of beam hinges can be assessed by moment-curvature 
analysis, adopting high estimates of probable material strengths, and incorporating strain- 
hardening of flexural reinforcement and confinement of core concrete, as outlined in
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Section 4.5, or conservative default factors may be adopted for simplicity, as discussed in 
Section 4.5.2. Since the column is required to remain elastic, column dependable flexural 
strength should be required to satisfy Eq.(4.59).

(b) Higher Mode Effects .•These are discussed in some detail in Section 5.8.4.

(c) Biaxial Attack: When columns form part of a two-way seismic frame, biaxial input 
must be considered. There will normally be equal probability that the maximum seismic 
excitation will occur in any orientation (including diagonal) with respect to the principal 
axes, and this will be accompanied by simultaneous excitation, normally at a lesser 
intensity, in the orthogonal direction. Although the strength of a frame building in the 
diagonal direction will be larger than in the direction parallel to one of the principal axes, 
(see Section 5.7) it is probable that simultaneous development of beam plastic hinge 
mechanisms will occur in both principal frame directions, unless the design displacement 
ductility in the principal directions is very low. Consequently, since it is required that the 
columns remain essentially elastic when beam-hinge mechanisms form, the columns must 
be able to resist moments corresponding to simultaneous beam hinging in orthogonal 
directions.

Fig.5.16 Plan View of Moment Input to Interior Column of a Two-way Frame

This is illustrated for the interior column of a two-way frame in Fig.5.16, where the 
beam moment vector inputs are represented with double-headed arrows, using the right- 
hand rule. All moments are the values applicable at the joint centroid, and the suffixes P 
and N  indicate positive and negative beam moments respectively. The required sum of 
column diagonal moment capacities of columns in the storey above and below the level 
considered, measured at the joint centroid is given by:
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M C D  —  {M B 2 P  ^  B I N  ) (o.46a)

The most usual case for two-way frames will have the moment capacity of the beams 
in the orthogonal directions being equal, and the columns having square cross-sections. 
Experiments and analyses indicate that the moment capacity of symmetrically reinforced 
square columns in the diagonal direction is very similar to the capacity in the principal 
directions. Hence the required sum of column moment capacities in the principal 
directions, above and below the joint centroid can be determined as

y ,  ~ ^  M cn = V2 • (M R] P + M m N ) (5.46b)

For an interior column, as depicted in Fig.5.16, the seismic axial force will be close to 
zero, and hence the required column reinforcement can be determined based on the 
assumption of probable gravity loads. For an exterior column, however, seismic beam 
shears will generate significant axial forces, either tensile or compressive (see Fig.5.10, 
e.g.) which should be considered when determining the required column flexural 
reinforcement. It could be argued that permitting column hinging in the tension exterior 
column is justified, since this in itself will not imply development of a soft-storey 
mechanism, which would require all columns in a given frame to hinge. Although this 
might appear technically and economically justified, it should be noted that exterior 
columns are more susceptible to joint shear failure than are interior (either one-way or 
two-way) columns, and vertical joint shear resistance in these columns is normally 
provided by under-utilized capacity of the flexural reinforcement in the columns, assured 
by the capacity design procedure^. If the columns are permitted to hinge, then this 
excess capacity will not be available for joint shear resistance, and special vertical joint 
reinforcement will be needed.

Note that for diagonal attack the procedure for determining the required column 
capacities, outlined in Section 5.5.2(b) needs some modification. In Eqs.(5.42) and (5.44) 
the column shears Vcoi and V ci2 must be replaced with the corresponding column shears 
Vcdoi and V cdh  developed under diagonal attack. For a structure with equal beam 
strength and bay length in the orthogonal directions, Vcdoi = ^2V coi etc. The beam 
moment input to the joint, given in Eq.(5.43) as M b i , i  +  M g i , r  , must be replaced by the 
vectorial summation of the beam input moments, given by the expression on the right 
hand side of the inequality of Eq.(5.46(a)). It is also suggested that the base moment 
capacity of the columns be increased to 0.7 VcoiH j, where Vcoi is the principal-direction 
column shear.

It should be noted that the common force-based design approach of determining the 
required column biaxial moment capacity from consideration of simultaneous seismic 
input of 100% and 30% design intensity in orthogonal directions, using elastic modal 
analysis, with the elastic moment demands then reduced by the code-specified force- 
reduction factor (or behaviour factor, or ductility factor, as it is often known) will provide
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inadequate protection against formation of a soft-storey sway mechanism in the ground 
floor columns, since the procedure implies input beam moments of only 30% of capacity 
in one of the orthogonal directions. In fact, it is the displacement demand in the 
orthogonal direction that should be reduced to 30%, not the moment. If the design 
ductility demand exceeds 3.3, then the full moment capacity should be expected to be 
simultaneously developed in the (minor) principal direction, as well as the (major) 
principal direction. For diagonal attack, 100%/30% is non-conservative for fl >2.

Corner columns require special attention, since these can be subjected to high seismic 
axial tensions or compressions from the response of both orthogonal frames incident in 
the corner columns. There is comparatively little experimental information on the shear 
performance of corner columns when subjected to biaxial beam input and high variations 
in seismic axial force from tension to compression. However, it should be noted that the 
collapse of the newly-constructed Royal Palm Hotel in the 1993 Guam earthquake has 
been attributed to failure of the (admittedly poorly reinforced) joints of the corner 
columns, as shown in Fig. 5.17. A design option that should be considered for two-way 
frames is to provide separate exterior columns for the orthogonal frames, rather than a 
common corner column, as suggested in Fig. 5.18(b). Flexibility' of the floor slab between 
the orthogonal exterior columns provides continuity without excessive shear transfer. 
This has the merit of reducing the design moments, axial force variation, and joint shear 
force on these corner columns. In some cases of low to moderate seismicity, the 
architectural appearance of full two-way structural continuity into the corner column can 
be achieved with an alternate design where the seismic frame consists of less bays than 
the full number along the side of the building. The seismic frame is connected to the non- 
seismic columns, including the corner columns, by gravity beams without moment 
connection to the columns. In New Zealand, frames have been constructed with reduced 
beam depth adjacent to corner columns, and hence reduced moment input to the critical 
columns, to produce a similar reduction in corner column actions.

(d) Column-Base Flexural Design: Although it has been recommended above that the 
seismic axial force be considered when determining the required column reinforcement 
for capacity-protected exterior and corner columns, the same is not required when 
designing the intended column-base plastic hinge. If the simplified analysis procedure of 
Section 5.5.1 is adopted, then equal column-base design moments Me would result for 
the exterior tension and compression columns. If the axial force from the tension 
column was used to determine the required amount of column flexural reinforcement, 
then the moment capacity of the compression column would exceed the design moment 
significantly. This is illustrated by the dashed line for the column axial-force/moment 
interaction diagram shown in Fig.5.19. With this option, it is seen that the flexural 
capacity of the tension column (with reduced axial force G-E) is matched to the required 
capacity Me- The capacity of the compression column, with axial force G+E is Mj. The 
total resisting capacity of the structure, in terms of base overturning moment thus will 
exceed the demand corresponding to the design distribution of lateral forces.
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(a) Conventional Layout (b) Alternative Layout
with Corner Column No Corner column

Fig.5.18 Plan View of Two-Way Frame Layout Options

An alternative approach would be to determine the required column flexural 
reinforcement based on the design moment and the axial gravity load G alone. This 
option is represented by the solid line in the interaction diagram of Fig.5.19. The 
reinforcement content pa will be less than for the former alternative, and the moment
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capacities of the tension and compression columns will then be Mj and M2 respectively. 
Examination of Fig.5.19 indicates that the average moment capacity will be very- close to 
:he required value of Me- Thus a more efficient design has been achieved.

Fig.5.19 Axial Force/Moment Interaction Diagram for Exterior Columns

Note that this could have been recognized at the start of the design process, where 
rhe total base shear force was allocated between the columns, and the base moment 
capacities were chosen (see Section 5.5.2(b)). A lower shear force and base moment could 
have been allocated to the tension column, with a corresponding increase in the values 
tor the compression column. It will be noted that this is analytically a logical approach in 
[hat it recognizes that the tension column has lower elastic stiffness than the compression 
column (see Section 4.4.2), and hence attracts less seismic shear and moment. It is 
recommended that a moment of 0.3 77ic, where Tis the seismic tension force in the outer 
column, and hc is the column depth, be subtracted from the tension column and added to 
the compression column.

5.7 DIRECT DISPLACEMENT-BASED DESIGN OF FRAMES FOR 
DIAGONAL EXCITATION f

In the previous section the importance of designing columns of two-way frames for 
diagonal excitation was discussed. A related aspect that requires consideration is the 
control of drift when the excitation is in the diagonal direction. Implicit in the discussion 
thus far has been the assumption that design for specified drift or ductility limits in the 
principal directions will provide a design that also satisfies drift or ductility limits in the 
diagonal direction. We now show that to indeed be the case by considering a two-way 
frame building with equal strength and stiffness in the orthogonal directions.

Consider the building response illustrated in Fig.5.20. Figure 5.20(a) shows the yield 
and design displacements in the principal (X and Y) and diagonal (D) directions in plan 
view. Yield displacements are A,,* and in X and Y directions respectively. For
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simplicity we assume a square building with equal strengths and stiffnesses in the two 
principal directions, so Avx ~ Ay y — Ay P. If the building is displaced in the diagonal 
direction, yield will not occur until the displacements in the two principal directions are 
equal to their yield values, and hence the diagonal yield displacement is

(5.47)

Ayv

J k Ad

!̂)2

y^D i

yD
/  j ( M * )

------ ►

*base

V  base

AyX Ades Ax
(a) Design Displacements, 

Principal and Diagonal
(b) Force-Displacement 

Response

T„ TP 
(c) Displacement 

Spectra

Fig.5.20 Comparison of Displacement Response in Principal and Diagonal
Directions

The relationship between design displacements in the principal and diagonal directions 
will depend to some extent on whether strain or non-structural drift defines the design 
limit. In the first case, the diagonal limit displacement corresponds to achieving the limit 
strains in the principal directions, and hence the diagonal limit dis
placement is AD2 -  ^2Ades. If the design displacement is limited by non-structural drift, 
then it could be argued that the maximum displacement in the diagonal direction under 
diagonal attack should not exceed the displacement limit applying in the principal 
directions. This displacement is represented in Fig.5.20(a) by Ao/ where Ap/ = Ades. 
Clearly this is the more critical of the two cases, though it can be argued that a larger 
design displacement is appropriate in the diagonal direction, even if non-structural drift 
limits the design, since non-structural elements will normally be oriented parallel to one 
of the principal directions, and achieving the design drift in the diagonal direction will not 
correspond to critical non-structural displacement.

If the design response in the diagonal direction exceeds the diagonal yield 
displacement given by Eq.(5.47), then the strength of the frames will be developed in the 
principal directions. Resolving the strength of all frames in the X  and Y  directions into 
the diagonal direction, it is obvious that the diagonal base shear strength is V2Vhme where
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Vf,ase is the design strength in each of the principal directions.
The force-displacement response of the structure in principal (P) and diagonal (D) 

directions is represented in Fig.5.20(b), where it is assumed that the diagonal 
displacement response is either A0/ or AD2. As explained above, we consider only the 
more critical case of Apj = We first assume that the structure is designed in the 
principal directions, and then checked to determine whether or not response in the 
diagonal direction satisfies the displacement limit. It is seen that if the structure achieves 
the design displacement in the diagonal direction, the stiffness Keo is greater than the 
stiffness Kep in the principal directions. This would appear to imply that the displacement 
demand in the diagonal direction will be less than in the principal direction, since the 
effective period will be higher (Eq.5.10). However, the ductility demand in the diagonal 
direction will also be less than in the principal direction, since the yield displacement is 
larger (Eq.5.47) and hence the effective damping will be less, and displacement will 
increase. The two conditions — principal and diagonal — are represented in the 
displacement spectra of Fig. 5.20(c). Since the effects of reduced period and reduced 
damping are counteractive, it is not immediately clear whether displacement response will 
be larger or smaller in the diagonal direction.

For a given level of ductility', jl  in the principal direction, this can be resolved by an 
iterative analysis as follows, making the initial assumption that the diagonal response 
displacement is equal to the principal response displacement. Diagonal and principal 
stiffnesses will thus be related by

K eD ~ ^ 2  • K eP (5.48)

Since the effective period is given by Te = 27T̂ jme / K e , and the mass is the same
whether principal or diagonal attack is considered, the diagonal and principal effective 
periods will be related by

TeD=TeP/44 2 = 0 M \ T eP (5.49)

Diagonal and principal direction ductilites are related by

jUD ~HP/^ 2  (5.50)

Assuming a reinforced concrete building, the ratio of effective damping in diagonal 
and principal directions can be found from Eq.(5.9a) as

_ 0.05 + 0.565(//p - \ ) l n D7t 
0.05 + 0 . 5 6 5 ( ^ - 1 ) / / / ^ ' ^  ( j
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/2 (
/ \. v' <-> L iBased on Eq.(2.8), the displacement spectra applicable to diagonal and principal attack 

will thus be related, for a given period T, by

A dt
(0.07/(0.02 + 0  

(0.07/(0.02 + ^ ) ) ’
• A t0.5 ^ P T (5.53)

Combining the effects of Eqs.(5.49) and (5.53), the response displacement in the 
diagonal direction is related to the principal direction design displacement as

T A
D  r p  .  ^ d e s

I ep LlpT
(5.54)

If, as will normally be the case, the value of A/) from Eq.(5.54) is not equal to Ajes 
then the period and ductility given by Eqs.(5.49) and (5.50) respectively must be factored 
by the ratio R = V(A0/Arfes), and Eqs.(5.51) to (5.53) cycled until successive 
approximations for Ap are sufficiently close.

This procedure has been carried out for principal-direction ductilities between 1 and 
6, and the resulting ratios of diagonal to principal-direction response displacements are 
plotted in Fig.5.21. As expected j jie  diagonal-direction displacements are equal to 
principal-direction displacements for elastic, and near-elastic response (since stiffness and 
'dampmg"are^enH^J,_nBut at higher displacement ductilities, the diagohaTttlspEcement 
response is increasingly lower than the principal direction response.

M-Ap

Fig.5.21 Maximum-Displacement Ratio for Diagonal and Principal Direction 
Excitation for a Square Frame Building
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Note that the calculations summarized in Fig.5.21 are based on “normal” response 
spectra (see Section 2.2.3). For near-field response spectra showing significant forward 
directivity effects, the influence of damping will be less significant than shown here, as 
will be seen by substituting 0.25 for 0.5 in the power factors of Eq.(5.53), while the 
period influence will be unaffected. In this case the ratio of diagonal to principal direction 
displacements will be less than shown in Fig.5.21.

5.8 CAPACITY DESIGN FOR FRAMES

5.8.1 General Requirements

General requirements for capacity design are considered in Sections 3.9 and 4.5. The 
basic required strength is governed by the inequality defined in Eq.(3.57), reproduced 
here as Eq.(5.55) for convenience:

</>sS d > S r = 0 oGJSe (5.55)

where Sg is the value of the design action being papacitv ̂ protected,' corresponding to the 
design lateral force distribution found from the DDBD process, (Jp is the ratio of 
overstrength moment capacity to required capacity of the plastic hinges, CO is the 
amplification of the action being considered, due to higher mode effects, 5b is the design 
strength of the capacity protected action, and </>s is a strength-reduction factor relating the 
dependable and design strengths of the action. In frames, capacity design considerations 
will relate to beam flexural and shear strength, column flexural and shear strength, and 
possibly column axial load capacity. These are considered in turn.

5.8.2 Beam Flexure

It is normal, in seismic design of frames, to consider that there is no dynamic 
amplification of beam shears or moments, and thus only moment overstrength, 
represented in Eq.(5.55) by the (fP factor needs to be considered. Although this is correct 
for the beam moments induced as a result of seismic inertial response of the structure as 
a whole, there may be dynamic amplification of the gravity load moments as a result of 
amplification of vertical accelerations. There have been reports in earthquakes of objects 
on floors of multi-storey buildings being bodily thrown off the floor, implying vertical 
response accelerations exceeding lg. This is a phenomenon that has apparently received 
little research attention.

Figure 5.22 shows components of moments and shears for a typical beam of a seismic 
frame, where the units for both moment and shear are arbitrary. In Fig. 5.22(a), two 
gravity-load moment profiles are shown. F.G  corresponds to moments of factored 
gravity loads, and Ge is the moment profile for reduced gravity loads to be considered in 
the seismic load combinations. Seismic moments corresponding to the design lateral
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Fig.5.22 Design Moments and Shears for Beams

forces, and corresponding overstrength seismic moments are E  and E° respectively. In 
accordance with the recommendations of Section 5.6.1, flexural design of the beam 
plastic hinges is based on the larger of F.G  and E, and it is seen that the seismic case 
governs. For the regions between the beam plastic hinges, design moments are found 
from the combination of reduced gravity loads applicable for the seismic design 
combination, and overstrength moment capacity at the beam hinges. Since the beam 
moments cannot exceed the overstrength values at the plastic hinge locations, the design 
moments within the beam span Lb are found by adding the gravity moments
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corresponding to simple support to the seismic moments in the span. Thus, at a distance 
x  from the left support, the total moment is given by /

A' 2 x

M x = M°ej + (m °E i. -  M°ej )• j -  + ■ x -  (5.56)

where moments M°e,i and M°E,r are the moments at the left and right column centrelines, 
taking due account of signs, and distances x  and Lb are measured from the left column 
centreline. In Eq.(5.56) the gravity' load Wc is assumed constant along the span.

The midspan design moment from this combination will generally significantly exceed 
the gravity moments. This is apparent in the combination E ° + G e  in Fig.5.22(a), where 
the beam midspan moment exceeds the factored gravity moment by a substantial margin. 
This again raises the question of vertical response of the beam. Figure 5.22(a) also 
includes the combination E ° + G e ° ,  where the s_eismic^gravity moments are amplified by 
30% to account for elastic vertical response of the beam to vertical ground accelerations, 
which may be accentuated by wave propagation up the columns, particularly in the upper 
storeys of multi-storey buildings.

Finally, it should be recognized that subsequent to building response to an earthquake, 
softening of the beam plastic hinges may result in a redistribution of gravity moments, 
with a reduction at the beam ends, and a corresponding increase at the beam midspan. 
This case is represented in Fig.5.22(a) by the line F .G e, where the beam-end negative 
moments are reduced to 37.5% of the fixed-end values. For the example considered, the 
beam factored gravity midspan moment has increased to a value equal to the critical 
seismic combination, including effects of vertical excitation. This effect is not generally 
considered in design. Although the safety will not be affected, since the negative moment 
capacity should still be available at the beam ends, it may affect the serviceability 
following an earthquake.

As with force-based design, the beam plastic hinges will be designed for the moments 
at the column faces, not at the column centrelines. Aspects of beam flexural design are 
considered in Sections 5.6.1 and 4.2.5.

5.8.3 Beam Shear

Gravity and seismic beam shears, and their design combinations are illustrated in 
Fig.5.22(b), using the same nomenclature as for the beam moments. Seismic shears 
corresponding to beam plastic hinging are constant along the beam. When combined 
w'ith reduced gravity' shears applicable for seismic load combinations (E °+ G e), beam 
shears will frequently have the same sign along the beam length, as shown in Fig.5.22(b). 
As with beam flexural design, it will be prudent to consider the effects of beam vertical 
response on design shear force (see line E °+ G e°). This is more important for shear 
design than for flexural design. Using the same nomenclature as with Eq.(5.56), and again 
taking care with signs, the design shear force along the beam is given by



t/ (M°Er-M °E)  w; I o
Vx = -— —------- —  + - g—^--w°G-x (5.57)

Lb 2

Aspects of beam shear design are considered in Section 4.7.3.
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5.8.4 Column Flexure

(a) Existing Methods Accounting for Dynamic Amplification: Most seismic design 
codes include specific requirements for required flexural strength of columns. The 
seismic design requirements of the American Concrete Institute^ specify that the sum of 
the column design moment capacities (i.e. the dependable flexural strength based on 
nominal material properties and incorporating a flexural strength reduction factor) 
measured at the joint centroid shall be related to the sum of the beam design moment 
capacities at the joint centroid by the relationship

(5.58)

In U.S. design, the flexural strength reduction factor for columns is lower than for 
beams (typically (f)f = 0.7 for columns and 0.9 for beams), and hence the actual margin of 
strength between beam and column nominal capacities is in fact greater than the 20% 
implied by Eq.(5.58). In comparison with Eq.(5.55), it would appear that the US approach 
is probably adequate to account for flexural overstrength of the beam plastic hinges, but 
does not include consideration of dynamic amplification effects. The apparent basis for 
this approach is that required column flexural strengths will normally be based on multi
modal analysis, and hence higher mode effects, which are responsible for dynamic 
amplification effects are already considered, or if the simpler equivalent lateral force 
procedure is used, required column moment capacities will be higher than resulting from 
the multi-modal approach. This, however, ignores the fact that beam design moments will 
similarly be higher, and the protection against column hinging has therefore not been 
increased by the higher required strength.

In New Zealand, higher mode effects are directly included in the concrete design 
codeP6!, based on recommendations in [PI], Column shear is amplified from the values 
corresponding to the design lateral forces in direct accordance with Eq.(5.55), though the 
strength reduction factor relating to the flexural strength is taken as unity', on the basis 
that adequate conservatism is present in the values for overstrength and dynamic 
amplification factors. The dynamic moment amplification factor Cty is thus applied in the 
modified form:

M N> f o ) f M E (5.59)

where (Of is separately defined for one-way and two-way frames, as illustrated in Fig.5.23.
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Note that for two-way frames, (Of is applied to the column moment M e  resulting from 
design forces corresponding to one-way action. Note also that (Of is height dependent, 
and equal to 1.0 or 1.1 at base and top of the column for one-way and two-way frames 
respectively, since column base hinging is expected at the base, and permitted at the top. 
It will be noted that with the minimum value of </P = 1.47 appropriate for the New 
Zealand code, the minimum required column moment capacity will be 2.48 or 2.64 times 
the moment corresponding to lateral design forces, for one-way and two-way designs 
respectively. It should also be noted that the moment amplification is independent of the 
level of design ductility demand.

Fig.5.23 Column Dynamic Moment Amplification Factor for Flexure in N.Z.
Designlpil.

In Eurocode EC8F°1 higher mode effects for column moments are directly considered 
by combination of the modal moments by either SRSS or CQC combination rules.

(b) Results o f Inelastic Time-History Analyses: Pettinga and Pricstleyl1’1" report 
results of dynamic amplification of column moments in one-way frames of 2-storevs to 
20-storeys in height, designed by DDBD principles for displacement ductilities of about 
2.7. These results indicated that the EC8 elastic modal superposition approach was 
generally non-conservative, while the New Zealand approach was generally significantly 
over-conservative. The analyses were carried out for different levels of seismic intensity, 
corresponding to 50%, 100% and 200% of the design intensity. It was found that 
although the base-shear strength of the buildings remained the same as the intensity was 
changed, the dynamic amplification of the column moments increased with intensity,
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except at the column base, where moment was controlled by the moment capacity. 
Results for four-storey to sixteen-storey frames are shown in Fig.5.24.

In Fig.5.24, the column moments are the sum of all column moments in the different 
columns at a given level, and the absolute maximum values, without sign, have been 
plotted. Lines TH I = 0.5, 1.0 and 2.0 represent the average results from five spectrum- 
compatible accelerograms at intensities of 50%, 100% and 200% of the design intensity. 
Note that the DDBD design moments for the columns, shown by dashed lines in 
Fig.5.24, were calculated in accordance with the suggestion of Section 5.5.2(b) that the 
input moment-sum from beam plastic hinging be equally divided between the columns 
above and below the joint. The analyses do not include material overstrength, except for 
the component resulting from strain-hardening, which is a small component of the total. 
Strain-hardening of column-base reinforcement is responsible for the small amount of 
moment increase with intensity, at the column base. Note that in the lower third of the 
building height, column moments at the top of each storey are significantly higher than at 
the bottom of the same storey, and that the difference increases as the seismic intensity 
increases. This is partly a result of anchoring the column-base moment in the bottom 
storey at the plastic hinge capacity. It is clear from these results that dynamic 
amplification of column moments is dependent on the ductility demand, since this (for a 
given design) increases approximately proportionately with the intensity of excitation. It is 
also apparent from examination of the plots that the amplification factor of 1.6 suggested 
in [PI] for the central part of the column height is excessive at the design intensity, but 
quite reasonable at 200% of the design intensity.

(c) Design Recommendations: The data in Fig.5.24 lead to the following revised 
approach for determining the required column flexural strength:

(pf M N> f ( O f M E (5.60)

• In Eq.(5.60) the overstrength factor (f? is calculated in accordance with the 
recommendations of Section 4.5

• The dynamic amplification factor (Of is height and ductility dependent as shown 
in Fig.5.25, where from the first storey to the 3/4 point of structure height

(Of  c =1.15 + 0.17>{jU° - l )  (5.61a)

and at the top of the structure, where hinging at the column top is acceptable,

(Dj-j = 1.00 (5.61b)
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Fig.5.24 Column Moment Envelopes from Time-History Analyses at Different
Seismic Intensities, Compared with Design Envelopeslpl7l
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In Eq.(5.61) the ductility is the reduced ductility corresponding to the average 
overstrength capacity of the beam hinges:

JL
f

>1 (5.62a)

where fJ. is the design ductility level at expected strength.
• The dependable column flexural strength is based on nominal material strengths 

and a strength reduction factor of (/)f= 0.9.
• For two-way frames, the moment Mg corresponding to design lateral force levels 

includes biaxial effects, as discussed in Section 5.6.2(c), and the amplification 
factor is found from Eq.(5.61), with the overstrength diagonal ductility demand 
given by

>1 (5.62b)

£

Fig.5.25 Dynamic Amplification of Frame Column Moments, to Eq.(5.61)

Equation (5.61) gives a good average estimation of the average dynamic amplification 
factor at a given level for four-storey to twelve-storey frames, but is a little conservative 
for taller frames, as will be seen in Section 5.9. It should be noted that it does not totally 
envelope the moment demands, since time-history' analyses have found it unnecessarily
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conservative to ensure that no incipient plastic hinging can develop in columns. It will be 
recognized, however, that the suggested approach is more conservative than all except 
existing New Zealand provisions for column design.

5.8.5 Column Shear

(a) Existing Methods Accounting for Dynamic Amplification: Seismic design codes 
generally include more restrictive provisions for the capacity-design shear forces in 
columns, in recognition of the potentially catastrophic consequences of column shear 
failure. The U.S. IBC codeP-4! is perhaps the least conservative, as its provisions are 
related only to flexural overstrength issues. Dynamic amplification of column shears is 
not directly addressed. The basic requirement is that the design shear force shall be at 
least as high as the lower of the shear corresponding to overstrength beam moment input 
(based on a yield strength of 1.25fy, and no flexural strength reduction factor), and the 
shear corresponding to development of probable moment capacity (at 1.25fy) at the top 
and bottom of the column.

New Zealand practice again follows recommendations in [PI], which were based on 
earlier time-history analyses. Apart from in the first-storey columns, the maximum 
column shear is amplified for overstrength and higher-mode effects in accordance with 
Eq.(5.55), where

For one-way frames, C0S = \ 3  (5.63a)

For two-way frames, C0S = 1.6 (5.63b)

For first storey columns, hinging is expected at the base, and may also occur below the 
first-floor beams as a result of beam extensionlF3l , even when protected by the design 
approach suggested in Section 5.5.2(b). Consequently the column shear in the critical 
first floor column is calculated assuming overstrength hinging at both locations:

M°  + M°
Kou = J (5-64)

c

where Hc is the clear column height to the soffit of the Level 1 beam.
Eurocode EC8IX3I specifies that column shear force shall be determined by modal 

superposition. Problems with modal superposition for shear forces are discussed in some 
detail in Chapters 6 and 7. It is sufficient to note here that elastic modal superposition is 
non-conservative for ductile structures because it incorrectly assumes that the higher 
mode shears can be reduced by the ductility, or behaviour factor applicable to the first 
mode response.

(b) Results o f Inelastic Time-History Analyses: The analyses reported in [PI 7] and
described above, also provide information on dynamic amplification of column shear.
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Results of the analyses at levels of seismic intensity between 50% and 200% of design 
intensity are shown in Fig.5.26 for four-storey to sixteen-storey buildings. Results for 
two-storey and twenty-storey followed similar trends and are reported in [PI 7], As with 
the column moments, the design shear envelope corresponding to the DDBD lateral 
forces is included as a dashed line, and values plotted correspond to the sum of all 
columns in the frame at a given level. Material overstrength was not modelled in the 
analyses, except for the fraction resulting from strain-hardening of reinforcement.

Results follow similar trends to, and are compatible with those noted for column 
moments, in that column shear force increases with increasing seismic intensity. As 
discussed above, this can be interpreted to imply that dynamic shear amplification 
increases with ductility, since ductility increases with intensity for a given structure. This 
influence is not included in existing design methods. It will also be seen that the shape of 
the time-history envelopes is generally similar to the design-force envelope, though a 
constant offset of shear demand above design-force envelope with height would seem 
more appropriate, particularly for the lower structures, than a constant multiplier as 
recommended in [PI].

(c) Design Recommendations: Based on the above observations, the following form 
of the dynamic amplification factor for column shear is proposed:

M ° + M l
<PSVN > f V E + 0. \MVEMise < (5.65)

He

The following comments relate to Eq.(5.65):
• The overstrength factor </f is calculated in accordance with the recommendations 

of Section 4.2.5.
• The shear demands VE correspond to the design lateral force distribution found 

from the DDBD process. VE,base is the value of Vg at the base of the column.
• The system ductility jU is not reduced by $  since this factor cancels with the 

same amplification of Vg-
• The upper limit of column shear corresponds to development of plastic hinging, 

at overstrength capacity at the top and bottom of the column, separated by the 
clear column height, Hc.

• The approach suggested provides a good estimate of the shear demand up the 
height of two-storey to eight-storey frames. For taller frames, the shear force at 
roof level predicted by Eq.(5.65) becomes increasingly conservative, but is likely 
to be controlled by the upper limit. Generally, prescriptive confinement 
requirements will govern transverse reinforcement design in the upper levels.

As discussed in Section 5.6.2(c), and 5.8.5(a), maximum feasible column shears will be 
increased in two-way frames under biaxial attack. The shear force may be found from the 
vectorial addition of the principal direction shears. The following considerations apply:
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Fig.5.26 Column Shear Envelopes from Time-History Analyses for Different
Seismic Intensities Compared With DDBD Envelope[pi7l
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• Shear strength of square columns is essentially the same in principal and 
diagonal directions.

• Maximum diagonal ductility demand is less than the principal direction 
demand by a factor of V2 ( see Section 5.7)

Thus, for square columns of two-way frames, the required nominal shear strength in a 
principal direction, is given by

0 SV ^  > - l 2 ( f V CJ (5.66)

where the suffices / and 2 relate to actions for one-way and two-way response 
respectively.

5.9 DESIGN VERIFICATION

Much of the design recommendations in the previous section have resulted from an 
extensive analytical study described in detail elsewheref15’7!, though the dynamic 
amplification factors for shear and moment are new. In this section we briefly compare 
design predictions with the average results from time-history analyses reported in [PI 7].

5.9.1 Displacement Response

The full analytical study investigated 2, 4, 8, 12, 16 and 20 storey regular frames. We 
limit comparison to 4, 8, 12 and 16 storeys, in the interests of brevity. Results for the 2- 
storey were similar to the 4-storey, and results for the 20-storey were similar to the 16- 
storev frame.

Figure 5.27 compares the average time-history response for an intensity ratio of 1=1.0 
with the design profile in terms of displacement envelopes. Also shown is the average 
time-history response for intensity ratios of 1=0.5 and 2.0, for comparative purposes. In 
all cases the drift envelopes (see [PI 7]) had peak values within 10% of the design limit of 
0.02. For the shorter frames the maximum drift was not greatly affected by higher mode 
effects, and peak drifts occurred at the first storey. For the 16 and 20-storey frames, 
higher mode drift amplification was substantial, and maximum drifts occurred at about 
80% of the frame heights.

Comparison of the design displacement profile and the 1=1.0 time history results 
indicates excellent agreement in all cases.

5.9.2 Column Moments

Figure 5.28 compares the sum of column moments at a level with the predictions 
based on dynamic amplification in accordance with Eq.(5.61) and Fig.5.25. Note that the 
time-history analyses were carried out using the design expected values for the material
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Fig.5.27 Design Displacement Profiles Compared with Average Time-History
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Fig.5.28 Capacity Storey-Moment Envelopes Compared with Time-History 
Results (D = DDBD; TH= time history results; CD = Eq.(5.61))
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strengths, and hence the material overstrength factor was taken as (/? = 1.0. In fact some 
strain hardening beyond that accounted for in design occurred for intensity ratio 1=2, and 
a slightly higher amplification of the design moments would be appropriate.

Note that the moments plotted in Fig.5.28 are the sum of the moments in all columns 
at a given level, and are plotted without sign. The design moment envelope is identified 
bv “D”. Generally peak moments at one end of a column do not occur at the same time 
instant as peak moments at the other end of the column. It is seen that the simple 
modifier suggested in Eq.(5.61) provides a good envelope for all the three frames 
depicted, at all three levels of intensity (and hence of ductility). It will be noted that in a 
tew cases maximum column moments from the time-history analyses exceed the capacity 
design envelope (identified by CD in the figures) by a small amount. This should not be 
of concern, since the resulting ductility demand on the columns will be very low. It is felt 
that providing an absolute envelope to the time-history results is not economically 
justified, given the substantial ductility capacity of modern well-confined columns.

5.9.3 Column Shears

Column storey-shears (i.e. the sum of shears in all columns in a given storey) from 
time-history analyses at different seismic intensities are compared in Fig.5.29 with the 
shear envelopes defined by Eq.(5.65). Note that the upper limit provided in Eq.(5.65) by 
the shear associated with column hinge formation at top and bottom of a column has not 
been considered in the time-history analysis, nor in the capacity design envelope.

As with the column storey-moments, the capacity design shears envelope the time- 
history results except in a very few cases. The degree of conservatism is not high, though 
it could perhaps be considered excessive for the 1 = 2, 20-storey case in the upper half of 
the frame. At the design intensity level (I = 1.0) the agreement between the time history' 
and capacity design envelopes given by the simple design approach is very satis factor)'.

An alternative formulation of capacity design effects for column moments and shears 
which involves specific consideration of higher mode contributions has been proposed in 
[PI 7], This approach is more cumbersome to use, and does not give significantly 
improved agreement. If more accurate estimation of capacity design column moments 
and shears is required, it is recommended that inelastic time-history analysis of the 
structure be carried, based on the principles outlined in Section 4.9.

5.9.4 Column Axial Forces

In determining the reinforcement requirements for flexure and shear in the columns, 
the axial forces also need to be known. These can be found from the gravity loads, plus 
the axial forces contributed by the beam seismic shear forces. Note that for corner 
columns, the beam shears from both orthogonal directions must be considered, 
potentially doubling the seismic contribution to column axial force. If the resulting axial 
forces, particularly the uplift force on the corner tension column are too high, redesign 
may be appropriate, as suggested in Section 5.6.2(c), to reduce the column axial force
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Fig.5.29 Capacity Storey-Shear Envelopes Compared with Time-History Results 
(D = DDBD; TH = time history results; CD = Eq.(5.65))



Chapter 5. Fram e Buildings 279

levels. In most cases for buildings of less than 12 storeys the column axial forces need not 
be explicitly calculated, provided reinforcement contents for the tension and compression 
outer columns are averaged, using the gravity loads on the columns as the appropriate 
axial forces, as recommended in Section 5.6.2(d), for all levels of the building, not just the 
column bases. j

5.10 DESIGN EXAMPLE 5.2: Member Design Forcesj for an Irregular Two-Way 
Reinforced Concrete Frame

We continue with Design Example 5.1 (Section 5.3.4) to determine required base 
shear strength, and beam and column design moments and shear forces. The following 
additional data are required. The building has a square plan, and the layout of frames in 
the two principal directions is identical. Hence the lateral resistance is provided by two- 
way frame action. The building is in a high seismicity region, with peak ground 
acceleration of 0.7g, and a maximum causative earthquake of M l.5 at a distance of about 
14km. The design elastic 5% damping displacement spectrum is shown by the solid line 
in Fig.5.30, with a comer period of 5.5sec, and a corresponding response displacement 
of 1400mm (refer to Section 2.2.2(b)). It is required to determine the design moments 
and shears for the frame members, for Option 1 (see Design Example 5.1) which 
assumed equal moment capacities of beams in the short and long bays.

Fig.5.30 Displacement Spectra for Design Example 5.2

Solution: From Example 5.1 we recall that for Option 1, the design displacement, 
ductility and damping were A,/ = 0.609m (24.0 in), fl = 1.82 and %= 13.1% respectively. 
A check for drift amplification in accordance with Eq.(5.28b) indicates a value of (Of 
1.004, which is ignored as being sufficient!)' close to unity.
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Design Base Shear Force: The steps to determine the frame design base shear force are 
listed below. Relevant data from Table 5.1 are included in the first three columns of Table
5.3.

From Eq.(5.4) the substitute structure equivalent mass is (refer Table 5.3,Col.(3))

m = ^](w ,A ,.)/Arf = 371.5/0.609 -  610 tonnes (1345 kips)

The reduction factor to be applied to the 5% damping displacement spectrum for 
13.1% damping is given by Eq.(2.8) as

Re = [ — — — T  = °-680 * ^0.02 + 0.131 J

Thus the corner displacement at T = 5.5 sec for £ = 13.1% damping is 0.680x1.4 
=0.953m. The corresponding displacement spectrum is shown in Fig.5.30 as a dotted 
line. By proportion, the effective period of the substitute structure is

T  ^  0 -6 0 9T„ = 5.5 ----------= 3.51 sec
0.953

Table 5.3 Calculations for Example 5.2 (lkN = 0.225 kips, 1 m =39.4 in)

Level, i 

(1)

Height 
Hj (m) 

(2)

m;Ai

(4)

Fi
(kN)
(9)

Vs,
(kN)
(10)

OTM
(kNm)

(11)

V.beaml
(kN)
(12)

M.beaml*
(kNm)

(13)
12 43.0 57.95 286.1 286.1 0.0 69.4 138.8
11 39.5 46.86 135.1 421.3 1001.4 102.1 204.3
10 36.0 43.84 126.4 547.6 2475.7 132.8 265.6
9 32.5 40.59 117.1 664.6 4392.3 161.1 322.3
8 29.0 37.13 107.1 771.7 6718.6 187.1 374.2
7 25.5 33.45 96.5 868.2 9419.6 210.5 421.0
6 22.0 29.55 85.2 953.4 12458.2 231.2 462.3
5 18.5 25.43 73.3 1026.7 15794.9 248.9 497.9
4 15.0 21.09 60.8 1087.5 19388.2 263.7 527.3
3 11.5 16.53 47.7 1135.1 23194.4 275.3 550.4
2 8.0 11.75 33.9 1169.0 27167.2 283.4 566.8
1 4.5 7.31 21.1 1190.1 31258.6 288.5 577.1
0 0 0 0.0 1190.1 36613.9 0.0 0.0

Sum 371.47 1415.0 10121.1 2454.0
* At column face
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The substitute structure stiffness is found from Eq.(5.10):

Ke = 4n 2mJT^ = 4 x 2 X610/3.512 = 1955kN/m

Hence, from Eq.(5.11), the design base shear force is

F  = VBase = KeAd =1955x0.609 = 1190kN (16.5% of weight).

Distribution o f Base shear to Floor Levels: The modified form of Eq.(5.12) allowing
for an additional force at roof level, given in Eq.(5.27) is used to determine the floor
forces:

n
=(Fl ) + 0.9VBase-(mjAj )/'^j miAi where ^ ,= 0 .1 F gase at the roof, and

/=i
zero elsewhere. Hence

F, =(119) + 1071x(w,A,)/371.5

Values for F, are tabulated in Col.(9) of Table 5.3.

Storey Shear Force and Overturning Moments: Storey shear forces are found by 
summing the floor forces above the storey considered. These are listed in Col.(10) of 
Table 5.3. Storey overturning moments at the floor levels are also found from the lateral 
forces as

o ™ , = £ f ; (// ,-// ,)

The overturning moments at each level are tabulated as Col.(l 1) in Table 5.3. The base 
overturning moment for the frame is OTMsase = 36,614 kNm.

Column Base Moments: In Section 5.5.1 it was recommended that the point of 
contraflexure in the ground floor columns be set at 0.6Hi for one-way frames. For two- 
way frames, Section 5.6.2(c) suggested this be modified to 0.7Hi. In this design we adopt 
a compromise, at 0.65Hi. Note that we use this value for determining one-way response. 
The actual point of contraflexure for biaxial response will be lower.

The total resisting moment provided at the column base will thus be

Z  M ci = VBc.e x 0 -6 5 H  i = 1 1 9 0 x 0 . 6 5 x 4 . 5  =  3481*Mn

This is less than 10% of the total base OTM.
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Beam Seismic Shears in an End Bay Corresponding to Design Lateral Forces: We
adopt the analysis procedure based on equilibrium considerations, outlined in Section 
5.5.2. For irregular frames, the sum of the beam shear forces in the end and inner bays is 
given by Eqs.(5.40) and (5.41) respectively. With the assumption of equal beam strengths 
in the outer and inner bays, the moments Mj and M2 in these equations are equal (see 
Section 5.3.3). Hence, for the outer bays:

M,
2 M, + M ,

f n m \ 1
~YJ Mcj y = -(36614-3481)/4.5 = 2454kN

/=! j= i J 3

As recommended in Section 5.5.2(a) this tension force is distributed to the beams of 
the end bay in proportion to the storey shears immediately below the beam considered 
(Eq.(5.37)):

V
VBi = T- SJ = 24 5 4 x^ / 1 0 1 2 1  hr

2 X ,

The resulting beam seismic shears are tabulated in Col. (12) of Table 5.3.

Beam Seismic Moments in an End Bay: Design seismic moments for the end bay
corresponding to the design lateral forces are calculated at the column faces. Assuming 
the columns are 500x500 mm (20x20in) the clear span between columns in the end bay is 
4.0 m (13.1ft), and the average of positive and negative seismic moments will be

M „,= V u ( L , - h c)l 2 = 2VU

These moments are tabulated in Col.(13) of Table 5.3. As noted, these are the average 
of positive and negative moments. The designer can chose to increase the negative 
moment capacity at the expense of the positive moment to reflect gravity moment 
demand, and also to utilize slab reinforcement. For detailed consideration of beam 
design, the reader is directed to [PI].

At this stage, the beam seismic moments would be compared with the factored gravity 
moments (see Sections 3.7.2 and 5.6.1), and the larger adopted for design. In this case we 
assume that the seismic demands govern. A quick check is carried out to determine 
whether the beam depth of 600 mm (24 in) is suitable. At the roof, and first floor levels, 
the beam moments are 139 kNm and 577 kNm respectively. The lever arm of internal 
stress resultants will be approximately 500mm, and the required reinforcement tension 
forces will thus be

Roof. A J y = 139/0.5 = 211.5kN
First floor. A f  =577/0.5 = 1154kN



Chapter 5. Fram e Buildings 283

The expected reinforcement yield stress is 1.1x450 — 495MPa (71.8 ksi) (see Example 
5.1), and hence the required steel areas are

Roof. As = 0.2775/495w2 = 561 mm2 (0.87 in2)

First floor. A, = 1.154 / 495/772 = 2332mm1 (3.62 in2)
Assuming beam widths of 250mm (9.8in) at the roof level and 300mm (11.8in) at first

floor, with an effective depth of 550mm, these correspond to reinforcement ratios of
0.0041 and 0.0141 respectively, which are acceptable. The roof level value is a little below 
the normal code minimum of about 0.5%, but would probably be increased to satisfy 
gravity load design.

The procedure outlined above should also be carried out for the inner bay, particularly 
if it had been decided to use different moment capacities. Even with the same nominal 
beam moment capacities at the column centrelines, it is found that the moments at the 
column faces are 5% larger for the longer span, and hence govern design. The designer 
may opt to just design both bays for the larger moment in the inner bay, or redistribute 
some of the inner bay moment to the outer bay, and design both bays for the average

:;tce not listed.
l j -ti/ i  - v \ j i 6 '  v c J i  CO.’S '

Beam Design Shear Forces: ^  Beam design shear forces are assessed at flexural 
overstrength of beam plastic hinges, as discussed in Section 5.8.3. The overstrengthjpay 
result from material strengths (particularly reinforcement yield strength) exceeding the 
desigfr\ralues7TEra3n7hardening, and the provision of more reinforcing steel area than is 
needecTto sa5sTy_tFe "moment demands of Table 5.3, Col.(13). This should ideally be 
assessed for eacTTTieam, but in the interests of brevity, here we assume a constant 
overstrength factor of (p° = 1.35. Gravity loads on the beams appropriate to the seismic 
load case, including an allowance of 30% for vertical dynamic amplification are, in this 
example, = 43.8A7V /m (3.0 kips/ft). Beam moments in Table 5.3, Col.(13) apply at the
column faces, and the moment demands at opposite ends of the beam are equal and 
opposite. Hence Eq.(5.57) is modified to read

__ +  t  =  2 ^ 1 3 5 ^ ,  +  4 ^ 8 x 4  _ ^  +  ^ ^

demand. The additional calculations are repetitive, and are hen^ u
O l/('f ( 'tj f  (Hi J-i/i !

where Mg is the moment given in Table 5.2,Col.(13), Lc is the clear beam span between 
column faces, and x  is now measured from the beam face. The maximum value of Vx 
occurs at the column face (■* —0) and is listed in Table 5.4, Col.(14).

Column Design Moments: Analysis for column flexure follows the suggestions at 
the end of Section 5.5.2(b), where beam moment input to a joint is_shared equally 
between the columns above and below the joint. Since the structure is comprised of two- 
way frames, concurrent yielding of beams must be anticipated, as discussed in Section
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5.6.2(c). Column moments for a comer column corresponding to design-level seismic 
forces (i.e., Col.(9), Table 5.3) are thus given by

,>-v'

£ M c “ £ M c0 = V 2 ( m J  a

where the beam moments, Maj are the beam moments at the joint centroid, which are 
12.5% higher than the column-face moments listed in Col.(13) in Table 5.3. With an 
equal division of input moment above and below the joint, the column moment, at the 
joint centroid is thus Me = Mcd = Mgy/V2. For a fully interior column, the moments will 
be twice this. Note that at the roof level, there is no column above the joint, and hence 
the column capacity below the joint must balance the entire beam input.

■ .—^  -

Table 5.4 Capacity Design Calculations for Outer Bay for Example 5.2

Level, i V°B M a>f (Of Md^es Mc2,des Vci.des Vc2,des
(kN) (kNm) (kNm) (kNm)

(1) (14) (15) (16) (17) (18) (19) (20)
12 181.2 220.8 1.00 298.0 596.0 259.3 518.6
11 225.3 162.5 1.05 240.6 481.2 302.3 604.6
10 266.7 211.2 1.10 365.9 731.8 342.5 685.0
9 305.0 256.3 1.15 398.0 796.0 379.7 759.4
8 340.1 297.6 1.15 462.1 924.2 413.8 827.5
7 371.6 334.8 1.15 519.8 1039.6 444.5 888.9
6 399.5 367.7 1.15 570.9 1141.7 471.5 943.2
5 423.5 395.9 1.15 614.8 1229.5 494.9 989.8
4 443.4 419.4 1.15 651.2 1302.3 514.3 1028.5
3 459.0 437.8 1.15 679.7 1359.4 529.4 1058.8
2 470.1 450.9 1.15 669.5 1339.0 540.2 1080.3
1 477.0 459.0 1.15 650.6 1301.3 546.9 1093.8
0 1.00 580.3 1160.6

"Corner column moments for diagonal response, based on these assumptions, and 
corresponding to the design-level forces, are listed in Table 5.4, Col.(15). These must 
now be amplified to account for material overstrength and dynamic amplification effects. 
As noted above, a beam overstrength factor of </)° = 1.35 is assumed. In accordance with 
Section 5.8.4(c), the diagonal ductility demand to be used in Eq.(5.61) is given by 
Eq.(5.62(b)}0_as

^ / " X
M \  1.8

/ M =
4 l - f "  1.414x1.35

= 0.943 <1.0

\ 0
tyy>

\ \ >



Chapter 5. Fram e Buildings 285

Hence a value of 1.0 is adopted. From Eq.(5.61) the dynamic amplification factors over 
the central half, and at the top of the building are 1.15, and 1.00 respectively. The 
distribution with height follows Fig.5.25, and is tabulated in Table 5.4, Col.(16). Design 
corner column moments are thus given by

M  C \,des = 1 - 3 5  x a f x M C [ J

- pY\
where M cijare listed in Table 5.4 Col.(15). The resulting moments are tabulated in Table
5.4, Col.(17). Note that these are the required dependable moment capacities at the joint 
centreline, and will be reduced at the critical sectionsjij^topjind bottom of the beam.

Tnterior column'moments are simply twice these values, and are listed in Col.(18) of 
Table 5.4. Note that side columns (as distinct from corner columns) on an exterior frame 
will have input moment from three beams, and the moment-demand will hence be 
intermediate between the corner and interior columns. Analyses for this are 
straightforward, but are not included in this example.

Column Design Shear Forces: Column design shear forces are determined in
accordance with Section 5.8.5(c). Equation (5.65) applies. Since the ductility demand in 
the diagonal direction, at flexural overstrength is taken as 1.0, Eq.(5.65) simplifies to

r -  M ° + M °
<Ps VKil > 7 2 (1 .3 5 ^ ,  +0. 1Fe » , -  ‘

C

In this example, storey shears are divided between the exterior and interior columns 
in the proportion 1:2. Hence, under one-way action, the exterior and interior columns 
carry' 1 /6th and 1 /3rd of the frame shear respectively. Values for required dependable 
shear strength for corner and interior columns are thus found from the above equation, 
with Ve,i given by the appropriate fraction of the storey shear (Col.(10), Table 5.3). These 
are tabulated in Cols.(19 and 20) in Table 5.4. The shears have not been checked against 
the upper limit, set by the overstrength column moment capacities, as these depend on 
the individual details of the column flexural designs, which have not been assessed here. 
However, rough calculations indicate that the shears thus determined will be very similar 
to the values tabulated.

5.11 PRECAST PRESTRESSED FRAMES

5.11.1 Seismic Behaviour of Prestressed Frames with Bonded Tendons

Precast frames can conveniently be separated into two categories: those which emulate 
cast in situ reinforced concrete frames, and hence need no special consideration beyond 
that already presented, and those which utilize ductile connections between the precast 
members, and have different hysteretic characteristics than in situ construction. Recent
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research in precast frame construction has concentrated on prestressed beams utilizing 
unbonded tendonslpi8-p19l. Although prestressed concrete has not generally been favoured 
for seismic resistance, tests on both in and precastlC4l beam-column sub
assemblages with fully grouted tendons have developed ductility comparable to 
monolithic reinforced concrete. However, after moderate ductility levels had been 
achieved, these subassemblages suffered excessive stiffness degradation at low 
displacements. This reduction was caused by a reduction in effective prestress clamping 
force through the column, resulting from inelastic strain of the prestressing tendon at the 
critical section. This behaviour is shown in idealized form in Fig. 5.31(a) which refers to 
a typical prestressing steel stress-strain curve.

Displacement (in)

(a) Prestress loss due to inelastic response (b) Force-displacement hysteretic response

Fig.5.31 Seismic Response of a Beam-to-Column Unit Prestressed with Bonded
Tendons!04!

In Fig.5.31 (a), fs; is the initial steel stress after prestress losses. During low-level 
seismic response, fluctuations of the steel stress will be within the elastic range, and no 
loss of prestress will result. At a ductility level of (say) j l  =2, represented by point 2 in 
Fig.5.31 (a), the maximum prestressing steel response is expected to be on the inelastic 
portion of the stress-strain curve. On unloading, the steel follows a linear descending 
branch essentially parallel to the initial elastic portion. Hence, when the structure returns 
to zero deformation, the effective steel stress is reduced to fS2-

On unloading from higher ductility levels, involving larger inelastic strains as 
indicated by point 3 in Fig.5.31 (a), the entire prestress may be lost. This is clearly 
undesirable, particularly for precast connections where the surfaces between the beam 
and column are planar, rather than a rough naturally forming crack as may be the case for 
monolithic reinforced concrete construction. Prestress shear-friction, which would be 
relied on to transmit gravity shear forces from the beam to the column would then be 
ineffective.
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The result of this behaviour is excessive pinching of the force-deflection hysteresis 
loops, as indicated in the typical response of a prestressed subassemblage, shown in 
Fig.5.31 (b)lC4l. Response at low ductility levels is satisfactory, and peak lateral strength is 
maintained at high displacement ductilities. After displacing to these high levels, however, 
lateral stiffness is almost completely lost at low displacement levels. The test results 
shown in Fig.5.31(b) refer to a test unit without additional gravity load on the beams. If 
the gravity loads been modelled in this test, the performance would have been even less 
desirable.

5.11.2 Prestressed Frames with Unbonded Tendons

(a) Performance Advantages: The use of unbonded, or partially unbonded tendons, 
where the tendon is unbonded through the joint and for some distance on either side, as 
indicated in Fig.5.32(a) has been suggested as a means for improving performancelp20l. 
The following advantages were proposed:

• If the length of debonding is sufficient, the required ultimate displacement could 
be achieved without exceeding the limit of proportionality of the prestressing 
steel. Consequently there would be no loss of prestress on unloading from the 
design level of displacement. Shear friction on the beam-to-column interfaces 
would be maintained at all response levels, and support of gravity loads would 
not be jeopardized.

• Design of the beam-to-column joint region would be simplified, since the joint 
shear forces would largely be transferred by a diagonal strut, as shown in 
Fig.5.32(b). This is a consequence of the prestress forces on either side of the 
joint being equal for each tendon, because the tendons are debonded through the 
joint. Thus, reduced levels of special joint reinforcement would be needed.

• The response would be essentially elastic, though nonlinear, as indicated in Fig. 
5.32(c). Although it is recognized that this would have possibly undesirable 
consequences for energy absorption, it has the merit that, following response to 
the design level earthquake, the structure would return to its original position 
without residual displacement, and the initial stiffness would be restored.

(b) Lateral Force-Displacement Characteristics: Force-displacement characteristics 
of a typical debonded precast beam-to-column prestressed concrete subassemblage are 
indicated in Fig.5.33(b), based on the forces and relative displacements measured at the 
top of the beam-to-column subassemblage, as shown in Fig.5.33(a).

Assuming no tension capacity across the beam-to-column interface, nonlinearity of 
response will initiate at point 1 (Fig.5.33(b)) when pre-compression at the extreme fibre 
is lost, and a crack starts to propagate. Assuming further that the prestress centroid is at 
mid-height, the corresponding moment is

Mcl. = T,hb/6 (5.67)
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(a) B eam /colum n connection

(c) Idealized force-deform ation characteristic

Fig.5.32 Beam-to-Column Connection with Debonded Tendons

for a rectangular section, where 7} is the initial total prestress force, and hb is the beam 
depth. For the dimensions shown in Fig.5.32(a), the corresponding lateral force .Fwill be:

2M  Ln
F  = ^  (5.68)

(L „ -h ,)L c

where hc is the column depth and Lc is the column height between contraflexure points.
The corresponding displacement can be found from simple linear elastic analysis based 

on uncracked section properties.
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(a) Subassemblage Configuration (b) Non-linear Elastic Response

Fig.5.33 Force-Displacement Response for a Debonded Prestressed 
Beam-to-Column Subassemblage

When the crack has propagated to the centroidal axis, corresponding to point 2 in 
Fig.5.33(b), the moment will be:

M2 ~T,hbl 3 (5.69)

Deviation from the initial elastic stiffness between points 1 and 2 will be minimal, 
unless the average prestress level is fairly high f pc > 0.25A ).

Beyond point 2 the precise force-displacement relationship is less simple to determine, 
since steel and concrete strains are not linearly related. However, since the aim will be to 
develop a bilinear approximation to the force-displacement response (see Fig. 5.32(c)), it 
is sufficient to compute the conditions at maximum displacement. In terms of design 
requirements, this may be taken as corresponding to the limit of proportionality of the 
prestressing steel. At this point, the tendon force, and also the tendon elastic extension 
above the initial condition are known. Assuming confined conditions for the concrete in 
the plastic hinge region the corresponding moment capacity M3 can thus be found from 
standard section analysis. Further, assuming that the opening of the crack at the beam- 
column interface is directly related to the tendon extension by simple geometry, the 
displacement at point 3 can be shownP20! to be:

A - A  M 3 
3 2 ,  ,M.,

(0.5 hc + x) 
(0.5 hb-c)

(5.70)

where f sip is the steel stress at the limit of proportionality, x  is the unbonded length of 
tendon on one side of the joint (see Fig. 5.32(a)), and c is the depth from the extreme 
compression fibre to the neutral axis in the beam plastic hinge region (found from the
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known confined concrete stress-strain parameters). Note that in all designs and 
experiments to date using unbonded tendons, the unbonded length x  has been taken as 
half the beam span length. That is, the tendon has been fully debonded along its length, 
except at the anchorage. More complete details are provided in [P20],

Large-scale testing of interior and exterior beam-to-column subassemblageslpi8l has 
shown the expected benefits of low residual displacement, high retained elastic stiffness, 
and reduced need for transverse reinforcement. They have also shown that damage levels 
are very much less than are obtained with equivalent reinforced concrete structures. 
Figure 5.34 shows condition of an interior joint at the design drift of 2%, and an exterior 
joint at 4%, twice the design drift. In both cases only superficial damage had occurred. 
Cracks in the joint region fully closed when lateral force was removed.

(a) Interior Joint at 2% drift (b) Exterior Joint at 4% drift
Fig.5.34 Damage to Beam-to-Column Precast Units with Unbonded

Tendons [pi8l

5.11.3 Hybrid Precast Beams

(a) Conceptual Issues: A disadvantage with beams using unbonded tendons is that 
there is little additional damping provided by the inelastic response, and the response is,
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as noted above essentially non-linear elastic. The implication is that displacements will be 
larger than with equivalent reinforced concrete structures, or, conversely, that the DDBD 
process will result in a higher required design force for a specified drift limit. Behaviour 
can, however, be improved by adopting a hybrid design, as illustrated in Fig.5.35.

Fig.5.35 Hybrid Beam-to-Column Connection used in the UCSD 5-Storey
Precast Building TestlN1l

This detail, which was one of several connection details tested in the 5-storey precast 
building tesdN1'pl9J carried out at the University of California, San Diego in 1999 uses a 
combination of central unbonded post-tensioning and conventional mild-steel 
reinforcement grouted into corrugated ducts in the beams and column at the connection. 
The mild-steel reinforcement yields sequentially in tension and compression under cyclic 
loading, dissipating energy, and adding to the flexural strength of the connection, but the 
clamping force of the unbonded tendon is sufficient to yield the reinforcement in 
compression when the lateral load is removed, hence removing any residual displacement. 
The resulting hysteresis loop is flag-shaped (see Section 4.9.2(f) and Fig.5.36).

Figure 5.36 illustrates the moment-rotation characteristics for a typical hybrid design, 
with a central prestressing tendon of area Ap, and mild steel reinforcement areas of As at 
top and bottom of the section, separated by a distance d ’ (see Fig.5.36(a)).

The response of the section based purely on the prestressing force is depicted in 
Fig.5.36(b) by the solid line. The moment capacity Mp is found as described above, based 
on conventional section analysis. Since the elastic portion of the moment-rotation 
response is governed by the uncracked stiffness of the beam section, the addition of mild
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steel reinforcement has negligible effect on the initial elastic branch of the response, but 
the moment capacity is increased by the reinforcement couple Ms — Asfyd \ as a 
consequence of the reinforcement yielding in tension at the top, and compression at the 
bottom of the section (or vice versa, depending on the sign of the moment). The total 
moment-rotation response is depicted by the upper dashed line in Fig.5.36. When the 
loading direction is reversed, the yielded reinforcement must yield in the opposite sense 
(i.e. tension to compression, and compression to tension) before open cracks can close. 
The response on unloading is thus given by the lower dashed line on the right side of Fig. 
5.36(b). To ensure that the advantages of low residual displacement are obtained, it is 
necessary that Ms < Mp.

11
A P

- r  -As

(a) Beam Reinforcement (b) Moment-Rotadon Relationship

Fig. 5.36 Moment-Rotation Response of a Hybrid Beam-Column Connection

(b) Yield Displacement o f Hybrid Frames: The increased stiffness of the prestressed 
beams, compared with equivalent conventionally reinforced sections reduces the yield 
drift, and hence increases the displacement ductility capacity of hybrid frames, for a given 
design drift. Beam flexural and shear displacements, and joint shear deformation will all 
be significantly less, but column flexural and shear deformations will be unaffected. Based 
on these considerations, yield drifts are estimated to be about 40-50% of those for a 
conventional concrete frame reinforced with mild steel of yield strength 400 MPa. 
Conservatively using the upper limit, the yield drift can thus be written as

6V = 0.0005—  (5.71)
K

Since hybrid designs will normally be incorporated in building designs as perimeter 
frames, with interior frames designed for gravity support only, beam span-to-depth ratios
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will tend to be less than for two-way reinforced concrete frames, and yield drifts will be 
further reduced. In conventional force-based design this would imply increased design 
forces as a result of the reduced natural period. In DDBD, the reduced yield 
displacement results in increased ductility demand, and hence increased damping. As a 
consequence, the design force level is reduced.

(c) Equivalent Viscous Damping o f Hybrid Frames: Example 3.2 (Section 3.4.3(d)) 
presents a method for determining the equivalent viscous damping for a flag-shaped 
hysteresis rule where the height of the flag is /? = 0.75X.FJ,, (Fr is the yield force) and the 
post-yield stiffness is r=  0. This can be generalized for other values of /?and r, giving the 
hysteretic component of the area-based viscous damping as

1)
2xFmA m f ix ( l  + r ( ju - l ) )

C  = (5-72)

Note that in relation to the formulation given in the previous section (Fig.5.36) the 
flag height may be expressed as

o  2  M s
— f r - (5J3)M  s +  M  p

The damping calculated from Eq.(5.72) is multiplied by the correction factor from 
Fig.3.15, and added to the elastic damping component from Table 3.2 or Fig.3.13.

5.11.4 Design Example 5.3: DDBD of a Hybrid Prestressed Frame Building 
including P-A Effects.

Figure 5.37 shows details of a six-storey frame building of 25 X  25m (82 X  82ft) plan. 
The seismic bracing system consists of peripheral frames of precast hybrid beams and 
columns with internal non-seismic frames designed to carry gravity loads, and with 
sufficient displacement capacity to tolerate the seismic design drifts. As suggested in 
Fig.5.18(b), problems with corner columns, which are exacerbated in frames containing 
prestressed beams because of the need for intersecting anchorages, are avoided by 
terminating the beams before the corners, and linking to the orthogonal peripheral frame 
with either slabs, or non-seismic beams. Dimensions, material properties and floor 
weights are included in Fig.5.37.

The building is to be designed for a maximum drift of 0.025 when subjected to the 
design intensity represented by the displacement spectrum of Fig.5.38, and P-A effects 
are to be considered in the design.
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Level 6 ~f  
3.5m

Level 5 —|— 
3.5m  

Level 4 —|— 
3.5m  

Level 3 —|— 
3.5m  

Level 2 —|— 
3.5m

Level 1"

Level 0

4.0m

I
r

3.5m  j*— 6.0m - 6.0m- 5.0m — *| 3. 5m

Precast Prestressed Fram es: 
B eam s 1000x300 mm  
C olum ns 750x500 mm  
M aterial properties:

Pc = 40 M Pa
/„ „n = 1750 M Pa
I  = 400 M Pa

D esign D rift Lim it = 0.025 
PG A = 0.5g.

Floor W eights: 400 tonnes 
at each level

Fig.5.37 Structure for Example 5.3 (lm = 3.28ft; IMPa =145psi; It = 2.205kips)

Fig.5.38 Design Displacement Spectra for Example 5.3 (lm = 3.28ft,
lMPa=145psi)

Solution: The initial data for calculating the substitute structure properties are listed in 
Table 5.5. Note that the storey height at level 1 is taken to the mid-height of the beam, 
and hence is 3.5m, not 4.0m. The design displacements at the various levels are found 
from Eq.(5.1) as
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£
0.025x3.5

0.4113
v 0.213

where the inelastic mode shape is found from Eq.(5.2) with H„ — 21.0m (68.9ft).

Table 5.5 Substitute Structure data for Example 5.3 (lm=3.28ft, lt=2.205kips)

Level, i 

(1)

Height 
H; (m) 

(2)

Mass mi 
(tonnes)

(3)

5i

(4)

Ai
(m)
(5)

miAi

(6)

miAj2

(7)

miAiHi

(8)
6 21.0 320.00 1.000 0.411 131.5 54.05 2762
5 17.5 400.00 0.880 0.362 144.6 52.28 2531
4 14.0 400.00 0.741 0.304 121.8 37.07 1705
3 10.5 400.00 0.583 0.240 95.9 22.99 1007
2 7.0 400.00 0.407 0.167 67.0 11.21 469
1 3.5 400.00 0.213 0.088 35.0 3.06 123

Sum 595.8 180.67 8596

Design Displacement: From Eq.(5.3), and Table 5.5, Cols (6) and (7):

Arf = £  (m,A2:)/ £  (m,A ,) = 180.7 / 595.8 = 0.303m (11.9in)

Effective Height: From Eq.(5.5) and Table 5.5, Cols (6) and (8):

He = £  (miAiHi) / (m,.A ,) = 8595.6/595.8 = 14.4m (69% of building height).
/=! ;=l

Yield Displacement: From Eq.(5.71), the yield drift for a hybrid frame is estimated as 

e, = 0.0005—  = 0.0005x6.00/1.00 = 0.003
K

We assume a linear yield displacement profile with height, and hence the yield 
displacement at the effective height is

A v =0.003x14.4 = 0.0432w (1.70in)

System Ductility: From Eq.(5.6) the system ductility is thus
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Note that this design ductility is much higher than has been used in earlier design 
examples with conventionally reinforced concrete beams, as a consequence of the low 
yield displacement and the low aspect ratios of the peripheral beams.

Equivalent Viscous Damping: We chose to design the hybrid beams such that the 
mild steel reinforcement provides 40% of the total beam moment capacity, and hence we 
have Mp — 0.6 M j and Ms — 0.4 Mj. Consequently, /?= 0.8 (see Eq.(5.73)). We assume 
a reasonable post-yield stiffness ratio of r  = 0.04. From Eq.(5.72), the area-based 
equivalent viscous damping is

_ p ( j i - \ )  _  0.8(7.0-1.0)
ys> jU7r{\ + r{ jU -\ ))  7.0^(l + 0.04(7.0-1.0))

From Section 3.4.3(c), this damping value needs correction in accordance with Fig. 
3.15. We conservatively take the value for (J, = 6.0 to be appropriate, resulting in a 
reduction factor of R = 0.937. We assume 5% tangent stiffness elastic damping, which 
needs to be converted to secant stiffness in accordance with Table 3.2, which, for a flag
shaped loop results in (j) = - 0.43. The effective equivalent viscous damping is thus given 
by Eq.3.15, as

+ R4„ysl= 7 -043 x 0.05 + 0.937 x 0.176 = 0.187

The reduction factor for the corner displacement corresponding to a damping factor 
of 18.7% is given by Eq.(2.8) as

f  V '5 / \ 0.5

R( =
0.07

0.02 + 0.187
°-07 ' = 0.582

The corner displacement corresponding to 18.7% damping, and T—4 sec is thus 
0.582x0.75=0.437m. This is shown by the dashed line in Fig. 5.38.

Equivalent Mass: From Eq.(5.4) and Table 5.5, the substitute structure equivalent mass 
is

n
me =595.8/0.303 = 1966 tonnes (82% of total mass)

Effective Period: The effective period at design displacement response is found from 
the dashed line of Fig.5.38, by proportion as

Te = 4.0 x (0 .303/0.437) = 2.77sec.
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Effective Stiffness: From Eq.(5.10), the effective stiffness of the substitute structure is

K e — An2me /T2 = An2 X1966/2.772 =10121 kN / m

Design Base Shear: From Eq.(5.11), the design base shear is

Xso.se. = K'A j = 10121x0.303 = 3067kN (690 kips)
v , , \ .. ■ x

This is the total base shear, and is carried by the two peripheral frames on opposite
sides of the building. The t\ase shear per frame is thu& 1534kN. (345 kips)

Vertical Distribution o f Base Shear: Since the building has () nly6Tt (vrcys and is rather 
stiff, it is unlikely that higher mode effects will influence the ductility demands 
significantly in the upper floors. As a consequence the base shear is distributed to the 
floor levels in accordance with Eq.(5.12). That is, the 10% of base shear additionally 
allocated to the roof level recommended in Eq.(5.27) is not applied:

F  = ^ K A , ) / Z k A , )  = 1534(m,A,)/595.8
/=i

These floor forces are listed as Column (9) in Table 5.6.

Table 5.6 Design Forces (per frame) for Example 5.3 (lkN =0.225kips; lm =39.4in)

Level, i 

(1)

Height
Hj (m) 

(2)

Fi
(kN)
(9)

Vs;
(kN)
(10)

OTM
(kNm)

(11)

Fi,(P-A)
(kN)
(12)

OTMpA
(kNm)

(13)

Vbeam
(kN)
(14)

Mbcam*
(kNm)

(15)
6 21.0 338.6 338.6 0.0 365.0 0.0 60.6 163.7
5 17.5 372.3 710.9 1185.2 401.3 1277.6 127.3 343.8
4 14.0 313.5 1024.5 3673.3 338.0 3959.8 183.5 495.4
3 10.5 246.9 1271.3 7258.9 266.1 7825.1 227.7 614.8
2 7.0 172.5 1443.8 11708.6 185.9 12621.9 258.6 698.2
1 3.5 90.1 1533.9 16761.8 97.1 18069.2 274.7 741.8

Sum 1533.9 6323.0 22130.6 1653.6 23856.8
* At column face

Story Shear Force and Overturning Moments: Storey shear forces are found by 
summing the floor forces above the storey considered. These are listed in Col.(10) of 
Table 5.6. Storey overturning moments at the floor levels are also found from the lateral 
forces as

j= i

The overturning moments at each storey are tabulated as Col.(11) in Table 5.6. The
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base overturning moment for the frame is OTMsase — 22131 kNm (196000 kip.in).

Check o f P-A Effects: It is appropriate to check the P-A moments at this stage, and 
adjust the design forces, if necessary. The recommendations of Section 3.6.3 are that P-A 
effects be included when the stability index defined by Eq.(3.41) exceeds 0.1. Substituting 
in Eq.(3.41) with = OTMg, Amax — A  ̂=0.303, and

P=  (5x400+320)x9.8 = 22700 kN: /

^ = ^ = 22j 00x 0303 = 0 ] 5 5 > 0 1

M N 2x22130

Note that in the above equation the 2 in the denominator is because there are two 
frames resisting the seismic lateral forces, and the total OTM is thus 44260 kNm. The 
stability index is 55% above the 0.1 limit, and it could be argued that for hybrid frames, 
with their low residual displacements, P-A effects could be ignored. However, for 
completeness they are included in the following. According to Eq.(3.48), taking C — 0.5 
for reinforced concrete:

F = VBase = KeAd + C ^ -  = 10,121 x 0.303 + 0.5 22’7QQxQ-303 = 3305kN
BaSL c d He  l4A

Again, this is divided between the two parallel peripheral frames, and the required base 
shear strength per frame is thus increased to 1653 kN. This is a 7.8% increase. The 
revised lateral design forces and overturning moments are listed in Table 5.6 as Columns 
(12) and (13)

Column-Base Moments: Since the lateral force system is comprised of one-way
frames, the point of contraflexure in the ground-floor columns is taken as 60% of the 
storey height. The total column-base moment, shared between the four columns of a 
frame is thus ’LMq = 0.6x3.5x1653 = 3471kNm. We divide this between the outer and 
inner columns in the ratio 1:2, giving Mqi = Me,4 = 579kNm, Me,2 = Me,3 = 1157kNm.

Beam Shears Corresponding to Design Lateral Forces:
From Eq.(5.34) the sum of the beam seismic shear forces up the height of the frame is

n ( n m ^
Y / m=T= Y ,F'H.~ Y .Mcj /Ls = (23857 —347l)/18 = 1133AJV
;=i  ̂ ;=i j=\ )

Note that Lb — 18m is the distance between the two outer columns of the seismic frame. 
Hence, distributing this total to the beams as recommended in Eq.(5.37):
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VSiVBi = T-— —— = 1133KS/ / 6323

i=i
These seismic beam shears are listed in Table 5.6 as Col.(14). Note that these will 
subsequently be amplified for flexural overstrength, and to include gravity shears. Note 
tiiat the column storey shears of Table 5.6, Col.(10) should also be increased by 7.8%, to 
account for P-A effects, but since it is the ratio of these to the sum of the storey shears, 
which is of course unaffected by the increase, the corrected column storey shears are not 
Listed. It will, however, be necessary' to implement the increase when column capacity- 
clesign shears are computed.

Beam Seismic Moments: Since the seismic frames are peripheral, and precast, gravity 
loads will be small in comparison with seismic moments, and slab reinforcement will not 
directly add to the flexural strength (though this will depend on the connection details 
between the slabs and beams. If precast prestressed floor systems with cast in situ 
connections to dowel reinforcement in the precast beams are provided, the moment 
enhancement can be very significant!78!). It is elected to have equal negative and positive 
moment capacity at the column faces. Assuming that the columns are 600x600 mm 
23.6x23.6 in), the beam seismic moments at the column faces are given by Eq.(5.36) as

M B,.des = VB, {LB- h c )/2 = VBJ (6.0 -  0.6)/ 2 = 2.1VBj

The resulting beam design moments are listed in Table 5.6 as Column (15). As noted 
above, 60% of the required moment capacity will be provided by central prestressing, and 
40% by mild steel reinforcement. Details of the design process are elementary, and are 
not included here.

Beam Design Shear Forces: Beam flexural design using post-tensioning is likely to 
result in lower overstrength factors than with conventionally reinforced sections, since 
the range of ultimate tensile strength of the prestressing steel is typically low. We design 
the sections using advanced models for steel and concrete stress-strain curves (see 
Section 4.2), and assess possible overstrength for the fraction of moment capacity 
provided by the prestressing as 10%, and for the fraction provided by the mild steel 
couple as 20%. Assuming a perfect match between required and provided steel areas, the 
overstrength factor can thus be assessed as (/¥ = 0.6x1.1+0.4x1.2 = 1.14. We adopt a 
value of 1.15.

Gravity loads on beams for the seismic load case, including a 20% vertical dynamic 
amplification factor are 8kPa (0.167kips/sq.ft). With a 3m tributary width, the distributed 
load on the peripheral beams is thus 24 kN/m. (1.64kips/ft). Modifying Eq.(5.57) by 
using the clear span, Lc between column faces:
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„ 2 f M B w"xLc 0 2x1.15M . 24x5.4 nVr =  — -----  +  — -------- -- -  w° x  ------------- -  + -------------- 24x =  0.426MR +  64.8 -  24x
Lc 2 c 5.4 2 B

The maximum value of Vx occurs at the column face, and is listed in Table 5.7. Col.(16) 

Table 5.7 Capacity Design Calculations for Example 5.3

Level, i 

(1)

V°B
(kN)
(16)

COf

(17)
(kNm)

(18)

C , i n t

(kNm)
(19)

Vc,ext
(kN)
(20)

Vc,im
(kN)
(21)

6 134.5 1.000 209.2 418.4 258.8 517.6
5 211.3 1.406 308.8 617.6 331.2 662.4
4 275.8 1.812 572.9 1145.9 392.2 784.4
3 326.7 1.812 711.0 1422.1 440.2 880.5
2 362.2 1.812 807.5 1614.9 473.7 947.6
1 380.8 1.812 857.9 1715.8 491.3 982.6
0 1 694.3 1388.6 491.3 982.6

Column Design Moments: Analysis for column flexure follows the suggestions at the 
end of Section 5.5.2(b), where beam moment input to a joint is shared equally between 
the columns above and below the joint. With the overstrength factor of <j? = 1.15, as 
calculated above, the overstrength ductility demand, from Eq.(5.62a) is

^ jj_ =2 A = 6 m
0° 1.15

The dynamic amplifications factors for the region from the first floor to the 3/t point 
of height, and at roof level, are found from substitution into Eqs.(5.61a) and (5.61b) 
respectively as

C0fc = 1.15 + 0.13(//°- l )  = l. 15 + 0.13x5.09 = 1.812 and

Of, =1.0

The full list of dynamic amplification factors for column moment, following the 
distribution of Fig.5.25, are provided in Table 5.7 as Col.(17). Column design moments 
at the joint centreline are thus found from Eq.(5.60):

<pf M N > (j)°(Of M E = 1 .15cof M E
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■.'.here Me are the column moments corresponding to the design lateral forces. In 
accordance with the recommendations of Section 5.5.2(c) the beam moments at the joint 
centroid are equally distributed to the columns above and below the joint. Note again that 
:_ne beam moments listed in Table 5.6 Col.(15) apply at the column faces, and have to be 
increased by 11.1% to obtain the joint centre beam moments. The above equation for 
required dependable column moment capacity at the joint centre can thus be rewritten as

Q f M N >  f c o f M E = 1 . 1 5 c o f M E =  1.15a>f  ( l . 11 /  2 )

vhere the input beam moment is the sum of moments from beams on opposite sides of 
:he joint, and the denominator, 2, represents the equal subdivision of moment input to 
:he columns above and below the joint. As with Example 5.2, the exception occurs at the 
roof, where all the moment is taken by the top of the upper level column. Resulting 
design moments at the joint centroid for the exterior and interior columns are listed in 
Table 5.7 as Col.(18) and (19) respectively. Note that, as is commonly the case with high 
ductility levels, the column reinforcement at level 1 may need to be significantly higher 
:han at the column base, though it must be remembered that the design moments occur 
at the level of the top or bottom of the beam, and will be thus be lower than the values 
usted for levels 1 to 6 by an amount equal to 0.5 V°hi,, where F ’ is the overstrength shear, 
calculated in accordance with the next section..

Column Design Shear Forces: Column design shear forces are determined in 
accordance with Section 5.8.5(c). Equation (5.65) applies. We divide the total storey 
column shear between the interior and exterior columns in the proportion 1:2, and hence 
the exterior column shears are given by

* » * .  * +O. I^^) /«-O. I5r ,+fclx7Kt t e ) / « s 4 £ S £ t

The resulting shear forces for exterior and interior columns, based only on 
amplification of the design shears, are listed in Table 5.7 as Cols.(20) and (21). These 
values would need to be checked against the shear corresponding to development of 
overstrength moment capacity at top and bottom of the column, as indicated at the right 
of the above equation.

5.12 MASONRY INFILLED FRAMES

5.12.1 Structural Options

Masonry infill in frames is common in Europe, Asia, and Central and South America. 
.Although it is less common in North American, New Zealand and Japanese design, it is 
still sometimes used in these countries to provide fire resistance between buildings on 
boundary frames. However, if the interaction between the frame and the infill is not
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properly considered in design and construction, the consequences can be disastrous when 
subjected to high intensity seismic action. Examples of structural failures of infilled 
frames in earthquakes are common.

There are two different approaches to construction with masonry infill. One approach 
is to place flexible material between the frame and the infill so that the two elements 
(frame and infill) can deform independently under the design seismic intensity, without 
contact, except at the base of the infill. This requires special reinforcement in the infill, 
and some means of providing out-of-plane supportlpil  The alternative approach is to 
build the infill hard up against the frame, and to account for the structural interaction in 
the design. Generally when infill is built hard up against the frame, the infill is 
unreinforced, and susceptible to damage and failure at comparatively low drift angles. The 
philosophy adopted in countries where such construction is permitted is that failure of 
the infill is non-structural, and can be repaired after the earthquake.

5.12.2 Structural Action of Infill

(a) Full-height infill (b) Partial height infill
Fig.5.39 Masonry Infill in Structural Frames

The description of structural action in this section is based on the assumption of 
typically weak infill, using hollow tile bricks, as is common in European and South 
American countries. In the initial stages of seismic response, infill which is constructed in 
contact with the frame on all boundaries, as suggested in Fig.5.39(a), acts as a diagonal 
brace to resist frame action. High compression stresses develop in the infill at the ends of 
the brace, indicated in Fig.5.39(a) by the diagonal arrows, and separation between infill 
and frame occurs at the other two corners. Because of the high in-plane stiffness of the 
infill, forces induced in the frame members are modified to be primarily axial rather than
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:_r>:ural. Stiffness of the frame members (assuming reinforced concrete) is close to the 
_r.cracked value, though the axial stiffness of the column placed in tension by the truss 
. :~on of response (the left column in Fig.5.39(a)) may be significantly reduced by 
j'.vcking. Overall stiffness of the building is very much higher than that corresponding to 
cure frame action, and initial periods of response are low.

At comparatively low drift angles — typically 0.003 to 0.005 - initial failure of the infill 
:curs, generally by crushing of the infill at the contact corners and severe diagonal 

racking parallel to the strut. Sliding shear failures may also initiate along horizontal bed 
:nts. Subsequent to this, the structural action modifies from a truss or braced-frame 

::non to that of a pure frame action, with the infill playing no further structural part in 
V-l response. This transition is normally complete by a drift of about 0.01.

W here the infill is part height, as indicated in the ground floor of Fig.5.39(b), the 
-rv^er end of the infill brace bears against the column. In the region of column above the 

shown shaded in Fig. 5.39(b), the structural shear will be resisted by column flexure 
. cr a short length, with a potential for soft-storey shear failure developing, particularly if 

:r_e infill has significant strength.
Perhaps the most dangerous condition occurs when the infill is not distributed evenly 

: '.ind the structural plan. It has been estimated that in the 1985 Mexico city earthquake, 
rr.ore than 40% of the building failures occurred to buildings on corner sites, where fire- 
rrsistant infill was placed only on the two boundaries next to the adjacent buildings, 
creating severe torsional eccentricitylp,l. This situation must be avoided at all costs.

5.12.3 DDBD of Infilled Frames

A two-stage design process will be necessary when structural infill is used in 
; instruction. The design philosophy will require that under a serviceability level 
earthquake, infill failure does not occur, while under the damage-control earthquake, 
:rame response is acceptable. Normally this will mean restricting drifts under the 
serviceability earthquake to 0.005, and under the full design earthquake to 0.02 or 0.025, 
cependent on the code drift limit.

The logical procedure will be to design for the damage-control limit state using 
DDBD, on the assumption that the infill has no structural significance. The frame is then 
retailed to provide the required strength. An elastic analysis is then carried out with the 
infill modelled in place, using realistic estimates of the infill stiffness. The frame member 
stiffness should be assumed to be larger than that appropriate for yield. The following 
steps are taken in the check:

• Determine elastic period Tei and elastic fundamental mode shape Se/ by 
structural analysis.

• From the elastic displacement response spectrum (5%) for the serviceability- 
level earthquake, determine the fundamental mode response displacement Af/.

• From the elastic mode shape and the mass distribution, determine the effective 
height from Eq.(5.5), substituting the mode shape 8f/,/ for the displacements A;:
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(5.73)

• From the mode shape and the response displacement, Aei determine the 
displacements at the storey heights:

• Determine the storey drifts from the displacement profile, and compare with the 
specified drift limit.

Information on the modelling of frame-infill interaction is available in a number of 
publications (e.g. [PI, C l2])

5.13 STEEL FRAMES

5.13.1 Structural Options

Steel frames for buildings are generally divided into three basic categories: Moment 
resisting frames, Concentric Braced Frames, where there is no eccentricity of connection, 
and the elastic response may be described by truss action, and Eccentric braced frames, 
where eccentricity of connection is deliberately induced to provide a displacement 
mechanism which involves a mix of truss and flexural action. Examples of each are 
shown in Fig.5.40. Normally bracing will not be provided in all bays of a multi-bay frame.

The key elements of displacement-based design of steel moment frames have been 
addressed earlier in this chapter, and there is no conceptual difficulty in designing such 
structures. However, in the case of both concentric braced frames (CBFs) and eccentric 
braced frames (EBFs), issues related to target displacement profile, yield drift, and 
equivalent damping must be addressed. These three items will be the focus of the 
remainder of the brief discussion in this section. It is also important to note that both 
CBFs and EBFs require special attention to detailing with regard to selection of bracing 
and link members to ensure ductile response. The reader is referred elsewhere [B9] for a 
thorough discussion on detailing of such systems as that discussion is outside the scope 
of this text.

Although ductility capacity may be high, design displacements will generally be 
significandy lower than with moment-resisting frames. As a consequence, design base- 
shear levels will in general be significandy higher than with moment-resisting frames, 
which will generally be designed for code drift limits.

(5.74)

where is the value of the mode shape at the effective height He.
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I 1
(a) Moment Resisting Frame

Fig. 5.40 Steel Frames for Seismic Resistance
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5.13.2 Concentric Braced Frames

(a) Conceptual Issues: CBFs, examples of which are shown in Fig. 5.40b, contain 
diagonal bracing elements subjected to tension and compression. The braces are 
subjected to large axial forces and minimal bending actions, and may consist of a variety 
of cross section types [B9J. Historically, CBFs were first utilized for lateral force 
resistance under wind loading, where the structural system is required to remain elastic. In 
such cases, the high elastic stiffness (compared to moment frames) could be used 
advantageously in design. When adapting CBFs for seismic resistance, inelastic 
considerations dominate. It is possible to design tall CBFs for elastic response in regions 
of low seismicity. However, when inelastic response is required this will normally be 
effected by permitting yield of the diagonal members, while ensuring the beams and 
columns remain elastic. Successful implementation of this concept requires careful 
detailing of bracing members and bracing connections, including checks of member 
slenderness and flange width to web thickness ratios. The most common type of CBF 
used in seismic design is the so-called X-Braced frame, illustrated in the right-hand 
example in Fig.5.40(b). Other variants of the CBFs shown in Fig. 5.40b have been 
proposed, such as the zipper framelK7l which results in distribution of non-linear action 
over several braces in the frame.

Considering the X-braced frame concept, it will be immediately apparent that lateral 
response will induce axial tension in one of the braces in each storey and axial 
compression in the other. Although the tension brace will be ductile, it will be difficult to 
avoid inelastic buckling in the compression brace. Note that once the brace has yielded in 
tension, its elastic buckling force will also reduce due to the Bauschinger effect, which 
reduces the apparent elastic modulus of elasticity. The result is that response of the 
structure tends to be characterized by cyclic tensile yield and compression bucking of 
each brace. After a complete cycle of inelastic response both braces are likely to have 
residual lateral buckling displacements, with a severe reduction in the hysteretic energy of 
response.

It will also be apparent that soft-storey mechanisms can develop. If the brace or 
braces in one storey yield or buckle before those in the other storeys, the potential for a 
soft-storey response is real.

The cautionary comments made above for X-braced frames apply even more strongly 
to the options with single braces in each storey.

Note that CBFs with single braces in each storey can perform in a satisfactory manner 
when the brace includes a ductile damper designed to yield at a force level lower than the 
dependable elastic strength (tension or compression) of the brace. Designs of this type 
are separately considered in Section 11.3.3(c).

(b) Yield Displacement: The yield displacement of a CBF is governed by the 
conditions to cause yielding of the bracing elements. From geometry, and assuming that 
strains in the beams and columns are negligible with respect to strains in the brace, the
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vield drift ratio is given by Eq. (5.75)lMI,Jl where Lf,av is the length of the frame bav, and Hs 
is the storey height.

% = <5 J 5 >

(c) Target Displacement Pattern: While there have been extensive studies on the 
dvnamic response of CBFs, there does not appear to be a focused study on inelastic 
displacements patterns and the parameters that effect them. Nonetheless, several 
researcherslM15' Ml6- T1J have conducted studies that have involved varying levels of 
dynamic analysis of CBFs where displacement patterns have been reported. Buildings 
from 5 to 15 storeys have been considered in these studies on X-braced CBFs. From the 
results, there seems to be a clear trend that supports the use of Eq. (5.2a) which assumes 
a linear displacement pattern. For CBFs, Eq. (5.2a) should be used regardless of the 
number of storeys in the frame.

The system displacement ductility capacity adopted for CBFs should recognize the 
comments made in the previous section. Where possible, this should be based on 
calculations and experimental evidence of the performance of the braces under cyclic 
tensile yield and buckling. In any case we recommend a maximum design drift 
significantly lower than code drift limits, say 0.015.

(cl) Equivalent Viscous Damping: The force-displacement hysteretic responses of 
CBFs will be highly dependent on the type of CBF. For the purposes of new design, it is 
assumed that the CBF will be detailed such that it will dissipate energy in a reliable 
manner, without reduction by buckling response. As noted above, this implies that 
ductility is kept to moderate levels. As such, Eq.(3.17c) may be adopted. It is important to 
note that in the case of assessment of existing CBFs which may be non-ductile, it is 
recommended that revised damping expressions using Fig. 3.15 be developed.

5.13.3 Eccentric Braced Frames

(a) Conceptual Issues: The EBF, examples of which are shown in Fig. 5.40c, utilizes 
the advantages provided by both the CBF and moment frames while addressing the 
shortcomings of each configuration. The unique component of the EBF is that each 
brace in the frame is connected to a beam segment which is termed a ‘link’ |B9]. Ductility 
of the frame is provided through either flexural or shear yielding of the link (depending 
on the link moment to shear ratio), while protecting all other members of the frame 
against inelastic action through the use of capacity' design principles. The resulting system 
has high initial elastic stiffness as well as stable hysteretic response with significant energy 
dissipation and high ductility' capacity. The configuration shown in the central option of 
Fig.5.40(c) is the most commonly adopted for architectural reasons: it is the easiest to 
provide a centrally located access door.
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The displacement capacity will be largely dependent on the length of the link; longer 
links providing larger plastic drift capacity (but with lesser influence on the yield drift, as 
established below). Longer links will, however, require a deeper member size to provide 
the necessary flexural strength to resist the seismic shear forces induced in the links.

Since all plastic action will take place in the links, a soft-storey mechanism is not 
feasible. For this reason, EBFs are to be preferred to CBFs.

(b) Yield Displacement: Equation (5.76) represents a geometric relationship between 
frame bay length, L/,ay, link length, Z,/, link rotation, y> and storey drift ratio, 6  derived by 
Popov and EngelhardtlP3Tl

This is based on the assumption of infinitely rigid frame and brace members, and 
hence should be interpreted as an additional elastic drift to be added to the drift 
corresponding to elongation of the brace given by Eq.(5.75)

Evaluation of the EBF storey yield drift ratio will depend on whether the link 
behaviour is dominated by flexure or shear. Bruneau et al.P12! provide Eqs. 5.77 and 5.78 
to determine whether a link may be considered to be dominated by flexure or shear.

For flexural links (Eq.(5.77)), the yield curvature of a link may be approximated from 
Eq. 5.24 as:

'b a y

(5.76)

2.5M'
Ll > ----------  (for flexural links)

^p
(5.77)

\.6Mp
Lt < ---------- (for shear links)

^p
(5.78)

where
(5.79)

F, =0.55 htt j y (5.80)

and hi = link depth, tw is link web width and Zp is the section plastic modulus.

(5.81)

where I  is the section moment of inertia of the link. As the link is in double bending, the 
link yield rotation may be calculated using Eq. 4.52 to give Eq. 5.82.

<P yL l
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where

C, =1 + 2 ^  
' L

is a flexibility coefficient to account for elastic rotation at the ends of the link.
Substituting Eq.(5.81) into Eq.(5.82) and the resulting expression into Eq.(5.76), and 

accounting for the drift due to brace elongation results in Eq.(5.83) which represents the 
storey yield drift ratio for an EBF with flexural links:

8 , f = e r + C: (5.83)

For links dominated by shear behaviour (Eq. 5.78), the link yield rotation may be 
obtained from Eq.(5.84) where is the link shear yield displacement given by Eq.(5.85). 
In Eq.(5.85), Vp is obtained from Eq.(5.80) and Ks, the link shear stiffness, is given by 
Eq.(5.86).

£
7  = - r  (5-84)

(5-85)
K s

„  12 E l
K s = — r~  (5.86)

Li

Substituting Eqs.(5.86) and (5.80) into Eq.(5.85), the result into Eq.(5.84) and then 
into Eq.(5.76) produces Eq.(5.87) which represents the storey yield drift ratio for an EBF 
with shear dominated links.

L, 0.55 h,tw£vL]
0 v , = £ v- ^  + -----------------------------------------------------------------------------(5.87)

•' y Hs \2I-Lbay

In the case where the link deformation consists of flexure and shear, it is 
recommended that both Eq.(5.83) and (5.87) be included in relative proportion to 
Eqs.(5.77) and (5.78). For example, if the link length is equal to 2 .0 5 M p / ] / p  (exactly in the 
middle between Eqs. 5.77 and 5.78), the yield drift ratio should be obtained as 0.50yj  + 
o.5 ey>s.
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(b) Target Displacement Pattern: Until further studies are available, it is
recommended that the displacement profiles given by Eq.(5.2) be adopted. As the 
behaviour of EBFs is somewhere between that of CBFs and moment frames, and given 
the absence of additional data on displacement patterns, precision greater than that 
implied by Eq.(5.2) is not warranted. The critical plastic drift may be found from the 
rotation capacity of the link, in shear or flexure, as appropriate, using Eq.(5.76). Note that 
since frame drifts are significandy lower than link drifts (a ratio of 1:6 is typical), it may be 
difficult to obtain high dependable frame plastic drift ratios with EBFs.

(cl) Equivalent Viscous Damping: Examination of typical force-displacement 
hysteretic responses of EBFs [P31] indicates that the level of energy dissipation is similar 
to that of a moment frame. As a result, it is recommended that the Eq.(3.17c) be applied, 
using the ductility implied by the calculated drift ductility demand for design of EBFs.

5.14 DESIGN EXAMPLE 5.4: Design Verification of Design Example 5.1/5.2

The design of the twelve-storey reinforced concrete frame of Design Example 5.1/5.2 
is now subjected to design verification with inelastic time-history analysis (ITHA) using 
the program “SeismoStruct” provided in the CD with this book. The structure was 
modelled as a 2-D structure, using inelastic fibre elements with appropriate stress-strain 
relationships for the concrete and reinforcing steel (see Section 4.2) to model the beams 
and the columns of the structure. Since in fibre analysis it is necessary' to explicitly model 
element reinforcement, the latter was computed using the results provided in Section 5.10 
(beam reinforcement in storeys 2 to 11 was computed considering the design moments 
indicated in Table 5.3). Given that fibre element formulations account for the actual non
linear response characteristics of reinforced concrete members, even in the so-called 
“elastic” phase of response, a reduced value of 2.5% tangent-stiffness proportional elastic 
damping was introduced.

Seven ITHA were carried out, each of which using a different spectrum-compatible 
artificial record generated with SIMQKEIG61. Results, in terms of storey response 
displacements and overturning moments are compared with the design profiles in 
Fig.5.41. The design profile is indicated through a solid line, whilst the average of the 
seven dynamic analyses is shown as a dashed line. It will be noted that the agreement 
between the design and analyses profiles is very good.

Input and output data files for the analyses carried out in this example are included on 
the CD provided with this book, together with an overview of modelling configuration 
and assumptions, and a summary of the most relevant results
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6
STRUCTURAL WALL BUILDINGS

6.1 INTRODUCTION: SOME CHARACTERISTICS OF WALL BUILDINGS

Buildings where the primary or only lateral-force resisting mechanism consists of walls 
are frequently called “shear wall” buildings. As has been pointed out elsewhere!131!, this 
has unfortunate connotations, as it implies that response is shear-dominated, whereas the 
desired response is ductile flexural action, with shear controlled by capacity design 
measures. Consequently we follow the lead of [PI] and use the terminology of this 
chapter’s tide.

The performance of structural wall buildings in recent earthquakes has generally been 
eood, and complete collapse under even extreme seismic excitation is rare. Exceptions 
have occurred primarily as a result of foundation inadequacies. A detailed and complete 
discussion of the advantages and seismic performance of structural wall buildings is 
available in [PI], and only a brief summary will be provided herein.

6.1.1 Section Shapes

:n :

U :p:
(a) '(b)' (c) (d) (e)

Fig.6.1 Common Section Shapes for Structural Walls

The choice of possible section shapes for structural walls is limitless, though simple 
and symmetrical shapes are to be preferred. Some of the more common shapes are 
illustrated in Fig. 6.1. For the rectangular section of Fig.6.1(a), flexural reinforcement may

313
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be uniformly distributed along the length, or concentrated in end regions, with only 
nominal reinforcement distributed in the central region. Uniformly distributed 
reinforcement has the advantage of imparting improved shear resistance, particularly 
against sliding shear on the wall base, but results in a lower first-yield moment than will 
occur when much of the flexural reinforcement is concentrated at the ends. The flexural 
strength, however, will be little affected by the distribution of reinforcement, provided 
the total area is constant. A similar conclusion was noted for distribution of beam 
reinforcement, in Section 5.6.1.

The secdon of Fig.6.1(b) has boundary elements of increased width at each end of a 
rectangular wall secdon. This shape is often used when beams frame into the ends of the 
wall secdon, as suggested by the dotted lines. When the wall extends over the full length 
of one end of a building, there may also be intermediate boundary elements to 
accommodate beams of internal frames extending perpendicular to the wall, on one side. 
It should be noted that the structural system implied by this, of end walls providing 
seismic resistance in one direction, and frames in the perpendicular, and longer direction 
can result in undesirable seismic response. Under diagonal attack, the boundary element, 
which is essentially a column, at one end of the wall may be subjected to compression 
stresses close to the concrete compression strength from the cantilever action of the wall, 
while being deformed laterally by frame action in the orthogonal direction. The high 
compression stress in the boundary element reduces its moment capacity in the frame 
direction, and flexural yielding of the boundary element may result. Local P-A effects can 
become critical. The combined wall and frame action on this boundary element at levels 1 
and 2 can result in instability and collapse of the end region of the wall, as was observed 
with several apartment buildings after the 1995 Kobe earthquake.

Fig.6.1(c) shows a T-section wall, which is common in buildings with internal central 
corridors, such as hotels and apartment buildings. In these cases the flanges form part of 
the corridor wall between doorways, and the web divides different hotel rooms or 
apartments. The behaviour of T-section walls in the direction parallel to the web is 
characterized by different strength and stiffness in the two possible loading directions, 
with the wall generally being stiffer and stronger when the flange is in tension than when 
it is in compression. The yield curvatures in the opposite directions, may also differ (see 
Section 4.4.3(c)). Frequently buildings will contain identical, but anti-symmetrical T- 
section walls when rooms are symmetrically placed on either side of a central corridor. 
This simplifies the structural characterization, since the average values for strength and 
stiffness for flange in tension and flange in compression can be adopted, and total system 
strength and stiffness will be the same in both directions.

Finally the C-section wall of Fig.6.1(d) is common when walls enclose a service core 
of lifts, stairs and possibly toilets, and is often combined with a symmetrically opposed C- 
section, as suggested by the section shown in dotted outline. These sections will often be 
connected by coupling beams, shown in Fig.6.1(e) as dashed lines, resulting in coupled- 
wall behaviour, discussed later in this chapter, in Section 6.8. As with the T-section walls 
of Fig.6.1(c) strengths and stiffness of a C-section wall differ depending on the direction
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of response, and when loaded parallel to the web, torsional response must be expected 
unless a balancing symmetrically opposed element is present, as suggested in Fig.6.1(e).

6.1.2 Wall Elevations

(a) Cantilever Wall (b) Wall with Openings (c) Coupled Wall 
Fig.6.2 Categories of Structural Walls

The three main categories of structural walls are illustrated in Fig.6.2. Only two are 
suitable for seismic resistance. The cantilever wall of Fig.6.2(a) is the simplest, and the 
most straightforward in terms of predicting seismic performance. Provided proper 
.mention is paid to dynamic amplification of moment and shear, inelastic action occurs in 
a flexural plastic hinge forming above the base of the wall, and extending some distance 
up the wall, as indicated by the shaded area. Above this region, the wall remains elastic.

The second category, shown in Fig.6.2(b) is a wall with openings, where the openings 
are insufficient to provide frame-like action. In the example shown, the piers between 
openings are smaller than the beams above and below the openings. With the 
oroportions shown it is very difficult to avoid inelastic action occurring by flexural 
yielding or shear failure in the piers, generally below the first floor, as indicated by the 
shaded areas. This form of construction is unsuitable for seismic resistance unless 
response can be assured to be elastic, or near-elastic (displacement ductility demand less 
:han 1.5).

Coupled walls, shown in Fig.6.2(c), are designed to form flexural plastic hinges at the 
■.vail bases and in the coupling beams. These provide an efficient mechanism for resisting 
seismic forces, with reduced displacements. These are separately considered in Section

6.1.3 Foundations for Structural Walls

Foundations for structural walls are generally rather massive to enable the overturning 
noment to be resisted by gravity effects. This is illustrated in Fig.6.3, where the
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overstrength shear V° acts at an effective height of He above the wall base. The 
overturning moment at the base of the wall is approximated by

M*w =V°He ~ ( A j ;+ W w) - l J  2 (6 .1)

where Ww is the weight, including self weight, supported by the wall at the base. Ast is the 
total area of flexural reinforcement in the wall, with overstrength yield stress of The 
criterion for stability of the wall on its foundation under ductile overstrength response is 
given by

Mr = (Ww+Wf )- (LF-a ) !2 >  M°F = V°(He + hF) (6 .2)

where any passive resistance of soil on the face of the footing is neglected, and L f is the 
footing length, Wp is the foodng weight, and a is the length of the foodng in 
compression at uldmate soil bearing strength, p^u given by

a  -
Ww+WF 
P b ,u  ' B p

(6.3)

and where Bp is the footing width.

He

H f

Lu -

i

.v °

As,

-Ww

-WF

Fig. 6.3 Overturning Resistance of a Cantilever Wall

Equation (6.2) applies for a spread foodng. The size of the foodng can be reduced by 
supporting the footing on piles with tension capacity. The modification to Eq.(6.2) for 
the case where some overturning resistance is provided by tension piles follows the same
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principles as outlined above, and is not developed further herein. Overturning resistance, 
Mr for walls is discussed further in Section 6.5.

6.1.4 Inertia Force Transfer into Walls

Since there will generally be much fewer walls in a structural wall building than 
columns in a frame building, floor inertia forces to be transferred into the walls can be 
large. To ensure satisfactory force transfer, special consideration must be given to internal 
force transfer within the floor diaphragm, and pardcularly to force transfer between the 
floor diaphragm and the wall. This is normally effected by shear-friction action. It should 
be noted that floor diaphragm inertia forces are strongly influenced by higher mode 
actional, and may be many dmes higher than the level predicted by the design 
distribution of storey force corresponding to the inelasdc first-mode response, as used in 
the DDBD procedure. Higher-mode effects are discussed in detail in Secdon 6.6.

6.2 REVIEW OF BASIC DDBD PROCESS FOR CANTILEVER WALL 
BUILDINGS

The fundamentals of DDBD were introduced in Chapter 3, with reference to Fig.3.1 
and were summarized in Secdon 5.2.1 for frames. Most of the equadons are idendcal for 
wall buildings, and hence are not repeated here. Equivalent SDOF design displacement is 
given by Eq.(5.3), for equivalent mass by Eq.(5.4), for effective height by Eq.(5.5), for 
design ductility by Eq.(5.6), for effective stiffness of the SDOF structure by Eq.(5.10) 
and for design base shear by Eq.(5.11). The base shear is distributed to the floor levels in 
accordance with Eq.(5.12). Differences primarily relate to the deflection profiles and 
damping values to be adopted for design. These are discussed further here related to 
cantilever walls. Coupled walls are separately considered in Section 6.8.

6.2.1 Design Storey Displacements

(a) Yield Displacement: In Fig.3.18, the curvature profile up the wall was represented 
by a straight line from the yield value at the base to zero at the top of the wall. This may 
appear incompatible with the moment distribution corresponding to distributed lateral 
seismic forces, which results in a curved moment pattern, and since curvature is 
essentially proportional to moment, the curvature distribution should similarly be curved. 
Further, in the upper regions of the wall, the moments may be less than the cracking 
moment, and gross-section curvatures will be much less than cracked-section curvatures. 
This is illustrated in Fig.6.4, where the “design forces” curvature profile at yield 
corresponds to an inverted triangle distribution of lateral forces, and may be compared 
with the suggested linear distribution. In both cases, curvatures have been put in 
dimensionless form, dividing by the yield curvature at the wall base. Also shown in 
Fig.6.4 is the curvature distribution where the wall is considered to be uncracked for the
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upper 50% of wall height, and where the uncracked-section curvature is 25% of the 
cracked-section curvature for the same moment.

Approximating the design-level displaced shape as linear with height, and assuming 
uniform mass with height, the effective height, given by Eq.(3.35) is approximately 70 
75% of the wall height Hn. We assume a value of 70%, shown in Fig.6.4 by the solid 
horizontal line. The yield displacement is thus given by

°-7w» ^ l  ( '  ’

A ,=  \</>h{0.1H n-h )-d h  S '  ^  \ %A)
0

Dimensionless Curvature 
Fig.6.4 Cantilever Wall Curvatures at Yield

Carrying out the integration for the three curvature profiles described thus far, the 
displacement at the effective height corresponding to the linear profile is only 14.9% and 
16.8% larger than the displacement corresponding to the curvatures derived from the 
design moments, with and without cracking in the upper portion respectively.

Although this difference is small, the real difference will be smaller, in most cases. 
This is because diagonal tension results in inclined flexure-shear cracking in the wall. The 
influence of this is to cause reinforcerHent tension strains, and hence curvatures, to be 
higher at a given level than that corresponding to the moment. This effect is known as 
tension shift^J. With typical transverse reinforcement details, the curvature profile is 
displaced vertically by a distance equal to 7^/2, from the value calculated for the applied 
moment. Taking a reasonably slender wall, with a height-to-length ratio (H„/lw) = 5, this 
implies shifting the curvature profile up by 10% of the wall height. This profile is also 
plotted in Fig.6.4. Integrating this curvature profile results in a displacement at the 
effective height of 0.7Hn that is 2.7% larger than that resulting from the suggested linear 
curvature profile. If the upper 50% of the wall is assumed to be uncracked, the agreement
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is almost exact. It is thus seen that for typical conditions th_e_Jinear curvature profile 
provides a reasonable prediction of th?yIeI(Jdisplacement at the effective height.

Recalling that the yield curvature for a reinforced concrete wall of rectangular section, 
given by Eq.(4.57c) is approximately (fo, =2£y/lWy the height-dependent yield displacement 
profile can thus be determined from Eq.(6.4), with a linear curvature profile. This has 
already been reported as Eq.(3.31), repeated here for convenience as Eq.(6.5):

A = — H 2 
/ V

H,
3 H

(6.5)

(b) Plastic Displacement: In Sections 3.5.2(b), and 4.2.8 it was noted that it is a 
reasonable approximation that the plasdc rotation be considered to be concentrated at 
the end of the member. Equation (4.31) defines the equivalent plastic hinge length over 
which the plastic curvature 0p is considered constant as Lp = kLc +Lsp, where Lc is the 
distance from the critical section to the point of contraflexure, and LSp is the length of 
strain penetration into the foundation, given by Eq.(4.30). In fact the centre of plastic 
rotation should strictly be concentrated at the centre of the plastic hinge. With reference 
to the cantilever wall of Fig.6.5, it will be seen that the centre of plastic rotation is located 
at a height of (0.5LP-  LSP) above the base.

Fig.6.5 Plastic Deformation of a Cantilever Wall

The plastic displacement, measured at the effective height He should thus be

A p -</>pLp(He -(0 .5 L p - L sp) ) - d p(He - ( 0 .5 L p -L Sp)) (6.6a)
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In fact the error of using the simpler expression:

A p = (j)PLpHe = 6PHe (6.6b)

will in most practical cases be negligible and within the accuracy of calculating Lp.
For wall structures, the plastic hinge length is more likely to be influenced by tension 

shift effects than is the case with beams or columns. Hence there should be an additional 
term in the plastic hinge equation relating to the wall length IW/. An addidonal component 
of 0.2lw has been suggested^1!. As definitive data are not available, we conservatively 
recommend 0.1 It should also be noted that in calculating the plastic hinge length He 
should be substituted for Lc, since it is the slope of the moment gradient at the critical 
section that dictates the spread of plasticity up the wall. The recommended form of the 
equation for plastic hinge length for walls is thus

where (/̂  is the maximum design curvature, at the wall base, corresponding to the limit 
state considered. As noted in Section 3.5.2(b) this may correspond to limit concrete 
compression strain or reinforcement tension strain, or may be constrained by code drift 
limits. For cantilever walls the maximum drift will occur at roof level (see Fig.3.18). If the 
drift limit for the limit state considered is 6c , then the maximum permissible rotation at 
the wall-base plastic hinge will be the lesser of

where 6yn — £yHn/lw is the yield drift at the top of the wall.

(c) Lim it State Curvatures and Moment Capacities: Figure 6.7 shows the variation 
of serviceability limit state and damage-control limit state curvatures and moments for 
cantilever walls with rectangular section shape, and flexural reinforcement uniformly 
distributed along the wall length in two layers, one adjacent to each side. The end detail of 
the wall on which the analyses were based is shown in Fig.6.6. Serviceability limit 
curvatures have been based on the lower of the curvatures corresponding to £c — 0.004 
and £s = 0.015, as recommended in Section 4.2.5. Damage-control curvatures are based 
on the lower of the curvatures corresponding to £c — 0.018 and £s -  0.06. The concrete

Lp — k - He + 0. \lw + Lsp (6.7)

where, in accordance with Eq.(4.31), k -  0.2(fu/fy -  1)<0.08. 
In Eq.(6.6) the plastic curvature is found from

(6.8)
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limit strain was based on recommendations of Section 4.2.5 using the following 
information: Wall width 250mm (9.8in), transverse reinforcement 10mm (0.393 in) at 
100mm (3.94in) centres across the wall in the end region, with 10mm bars along each 
side. Transverse reinforcement at s = 100mm (3.94in) vertically (see Fig.6.6).

T
5=100

_L

E levation

5=250

Z .

\  10 d ia  

, 25 d ia

£

/

Fig.6.6 Wall-End Detail for Serviceability and Damage-Control Analyses

Area ratios of confinement in both directions are equal at

Pa, = Pa,
78.5

sh 100x100
= 0.00785

Adopting a confinement effectiveness coefficient of Ce — 0.5 for walls, as recommended 
in Section 4.2.2, the effective volumetric confinement ratio is thus, from Eq.(4.7)

A  =  A. + pav =2(0.5x0.00785) = 0.00785

From Eq.(4.21), taking the confined compression strength as \AfCy and the strain 
capacity of the transverse reinforcement as 0.12, the ultimate compression strain is

£ =0.004t l . 4 ^ ^ . 0 . 0 0 4  + 1.4000785><450><(,12= 0.0l 8 
/  1.4x30J  cc

The strain limit for the longitudinal reinforcement is based on 0.6£su as recommended in 
Secdon 4.2.4(c), where the steel strain at maximum stress is 0.10. The results in Fig.6.7 
were calculated based on expected concrete cylinder compression strength of Pce = 30 
MPa (4.35ksi), and reinforcement yield strength of fye ~ 450 MPa (65ksi), with an 
ultimate/yield strength ratio of f/ fy = 1*3. However, as the data are expressed in 
dimensionless form, the results will be applicable to other concrete and reinforcement 
strengths within reasonable variadon (say 20MPa 45MPa; 300MPa</j,^<550MPa),
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provided the ultimate steel strain is 0.10. Modifications for other ultimate strains are
discussed below.

0 0.05 0.1 0.15
Axial Load Ratio (P/f?cAg)

(a) Serviceability Curvature

Axial Load Ratio (P/f'cAg) 

(c) Damage Control Curvature

Axial Load Ratio (P/f'cAg)
(b) Serviceability Moment Capacity

Axial Load Ratio (P/f’cAg) 

(d)Damage Control Moment Capacity

Fig.6.7 Curvatures and Moment Capacity for Rectangular Walls with Uniformly
Distributed Reinforcement
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Analyses were carried out for axial load ratios in the range 0£/,//’ĉ < 0.15, and 
flexural reinforcement ratios in the range 0.005 </?/< 0.02. These ranges cover the 
common ratios of axial load and reinforcement found in practice with cantilever walls.

Serviceability and damage-control limit curvatures are shown in Figs.6.7(a) and (c) 
respectively, and have been made dimensionless by multiplying the analysis results by the 
wall length. They thus apply for walls of any length if the values from Figs.6.7(a) and (c)
are divided by the actual wall length. The plots for serviceability and damage-control
curvature display similar characteristics, though the values are quite different. In both 
cases the curvatures for low reinforcement ratios tend to be governed by the steel tension 
strain limit, and increase with axial load ratio. For high reinforcement ratios the 
compression strain limit governs, and limit curvatures decrease with axial load ratio. For 
intermediate reinforcement ratios the curvatures initially increase (governed by steel 
tension strain), then decrease, as the concrete compression strain limit is reached.

It will be observed that despite the above behaviour, the variation in limit curvatures is 
small, and average values provide an adequate estimate, within ±10% of the data for all 
except high axial load combined with high reinforcement ratio. Constant average values, 
denoted D in Figs.6.7(a) and (c), and lines corresponding to D ±10% are also plotted for 
comparison. The average values are:

serviceability curvature: (f)s ■ lw = 0.0175 (6.10a)

damage-control curvature: </)dc - lw =■ 0.012  (6.10b)

In both cases the limit curvatures are dominated by the steel strain tensile limit. It will 
be noted that the serviceability and limit state average curvatures are almost in exact 
proportion to the limit steel strains. Hence the limit curvatures can be re-written as

where £sjs is the steel limit state strain. Equation (6.10c) can be used with adequate 
accuracy for both serviceability and damage-control limit states for values of limit state 
tension strains in the range 0.015: €s,is —0.08. However, for high values of the steel limit 
strain, extra confinement reinforcement should be provided to ensure compression strain 
limits do not govern.

Figures 6.7(b) and (d) plot variation in limit state design moment for serviceability and 
damage-control limit states respectively, in dimensionless form, dividing the analysis 
results by f ybdw . Traditionally dimensionless moment capacity has been related to 
concrete compression strength, rather than steel yield strength as has been used here, but 
the moments, for the axial load ratios relevant to walls are almost independent of 
concrete strength, and almost directly proportional to steel yield strength. The values in 
Figs.6.7(b) and (d) can thus be used for the normal range of steel yield strength and 
concrete compression strength.

Since the limit curvatures of Eq.(6.10) are directly related to maximum permissible 
tension strains, they will also apply, with reasonable accuracy, to flanged wall sections,

limit curvature: (6.10c)
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such as IT and [J sections, provided the flange is in compression. With the flange in 
tension behaviour will be similar to rectangular walls with high reinforcement ratios and 
limit curvatures may be reduced below the values given by Eq.(6.10).

It should be noted that extreme fibre compression strains can be reduced by 
concentrating the flexural reinforcement at the wall ends, rather than distributing it 
uniformly along the wall length as suggested in this section. This has been advocated 
elsewhere^, and is required by some codes (e.g. X6) when the flexural reinforcement 
ratio exceeds 0.005. This will, however, result in a reduction in the serviceability and 
damage-control curvatures, since these are governed by steel strain, rather than concrete 
strain limits, and the neutral axis depth will decrease when reinforcement is concentrated 
at the wall ends. Since distributed flexural reinforcement provides better control of sliding 
shear deformation, and reduces the potential for damage at wall ends resulting from 

^-Jiuckling of reinforcement coupled with wall sliding, it is our view that distributed flexural 
steel is to be preferred.

(d) Design Displacement Profiles: The design displacement profile is thus given from 
the combination of the yield displacement profile from Eq.(6.5) and the plastic 
displacements corresponding to Eq.(6.6):

A. = A . + A . =' y pi j
E M U . Hy

3
+ d pH i (6.11)

The displacement profile corresponding to the limit-state curvatures is found 
substituting 6p ~ [(/>ls —(/>y )Lp where <p,s is given by Eq.(6.10), (j)y = 2£y /l w (Eq.(4.57c))

and Lp is found from Eq.(6.7).
When the drift angle at roof level (Eq.(3.30) exceeds the code drift limit 0C, the plastic 

rotation used in Eq.(6.11) is 6p — (6c — £yHn //w) .
Having determined the design displacement profile, the SDOF design displacement at 

the effective height is found from Eq.(3.26) in the usual fashion. When the structural 
system includes walls of different lengths and strengths acting in the same direction, the 
design displacement profiles for the different walls may differ slightly up the wall for 
equal displacements at the effective height. Since the longer and stronger walls will 
dominate the response, it will normally be their displacement profile that is adopted for 
design, particularly if limit-state curvatures control the design. Although a more accurate 
approach would be to adopt an average of the displacement profiles chosen to have equal 
displacements at the effective height, and weighted by wall flexural strength, the 
additional computational effort will rarely be warranted.

Note that the different displacement profiles of walls of different lengths can imply 
diaphragm forces of significant magnitude, and significant modification of wall shear 
forces if the diaphragms are considered infinitely stiff in-plane. However, when flexibility 
of diaphragms, of connections between diaphragms and walls, and shear flexibility of
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walls with diagonal cracking are considered, these compatibility-induced forces are greatly 
reduced, and may normally be ignored in design^11!.

6.3 WALL YIELD DISPLACEMENTS: SIGNIFICANCE TO DESIGN

6.3.1 Influence on Design Ductility Limits

In section 5.3 it was pointed out that elastic displacements of frames found from 
realistic modelling of flexural stiffness were such that design displacement ductility 
factors implied by codes were frequently unrealistically high. It is of interest to examine 
the ductility available with structural walls at typical code drift limits. From Eq.(3.29), 
assuming the linear curvature profile of Fig.6.4 for the reasons discussed in Section 6.2.1, 
the roof-level drift corresponding to the yield curvature is

0yn=£yHn :£A (6.12)

where Ar is the wall aspect ratio, measured at roof level. Thus if the wall aspect ratio 
exceeds

A = 0 j £ „ (6.13)

the drift limit will require that the wall responds elastically. Taking a yield strength of the 
flexural reinforcement as 450 MPa (65.3 ksi), implying £y — 0.00225, and assuming a code 
drift limit of 0.02, it will be seen that slender walls with aspect ratios greater than about 9 
must be designed to respond elastically. There will some conservatism in these numbers, 
since curvatures in the upper part of the wall may be significantly lower than the linear 
profile of Fig.6.4. Although this does not affect the calculated displacements significantly, 
it may have a larger effect on roof drift. Paulay1 recommends a factor of 0.7 be applied to 
the drift of Eq.(6.12). Note, however, that drifts in the upper levels may be significantly 
increased by higher mode effects, which will tend to compensate for conservatism in 
calculated first-mode roof-level drift.

The maximum available design ductility of walls with aspect ratios lower than that 
defined by Eq.(6.13) can be found as follows: Equation (6.5) defining the yield profile can 
be manipulated into the following form:

A ,= £ yA,.Hn
H,

3 H
(6.14)

n J

Assuming equal floor mass at all heights, the effective SDOF yield displacement can 
be found from Eq.(6.14) and Eq.(3.26) as

T.Paulay: pers. comm.
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Aye~0A5£yArH„ (6.15)

The corresponding effective height at yield, from Eq.(3.35) is He ~ 0 J lH n. The 
plastic displacement at this effective height, corresponding to a roof-level drift of 9C is 
found from a plastic rotation of [dc -6yn), where 6yn is given by Eq.(6.12), as

Ape = 0.77//„(<9c - A rs v) (6.16)

The available displacement ductility corresponding to the code drift limit is thus, from 
Eqs.(6.15) and (6.16):

Ms* =1 + —  * l  + 1 .7 1 ^c A'£y)
y e £A

(6.17)

It will be noted that Eq.(6.17) is independent of the wall height, and depends only on 
wall aspect ratio and flexural reinforcement yield strain. The displacement ductilities 
implied by Eq.(6.17) are plotted against wall aspect ratio for code drift limits of 0.02 and 
0.025 in Fig.6.8(a), based on a yield strength of 450 MPa (65.3 ksi), corresponding to £v 
=0.00225. If Eq.(6.17) is modified for Paulay’s suggestion that 6n = 0 .7 £yAr the curves 
of Fig.6.8(b) results. The conclusions are not materially different.
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(b) Yield D rift = 0.7erA r(a) Yield D rift = £yAr

Fig.6.8 Maximum Design Ductilities for Cantilever Walls (£y=0.00225) Based on
Specified Drift Limits

Typical codified displacement ductilities for walls are in the range 4<//<6. 
Examination of Fig.6.8 indicates that design ductilities of this order will only be feasible 
for walls with aspect ratios less than 4. It should also be noted that the advantages often
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claimed for the use of high strength flexural reinforcement would appear to be illusory. 
Higher yield strengths are claimed to reduce the area of flexural reinforcement required. 
However, examination of Eq.(6.17) indicates that with higher yield strength, and hence 
higher yield strain, the maximum design ductility demand corresponding to the code drift 
limit will reduce compared with the value available for lower yield strength. The steel area 
required will thus be almost independent of yield strength, when code drift limits apply. 
The same conclusion applies to other structural forms.

6.3.2 Elastically Responding Walls

In the previous section it was shown that cantilever walls of high aspect ratio would 
be required to respond elastically to satisfy code drift limits. It is also clear that tall slender 
walls may have system yield displacements that exceed the maximum elastic response 
displacement corresponding to the plateau following the corner period (see Section 2.2.2). 
In Section 5.3.2 it was shown that the plateau displacement could be related to moment 
magnitude of the earthquake, and local intensity expressed by the peak ground 
acceleration, following recommendations for spectral shape included in Section 2.2.2. The 
same seismological data used to generate Fig.5.4 are now used to examine elastic response 
of cantilever walls.

Q
2

Aspect Ratio (Ar-H nf  /^) 

(a) SDOF Yield Displacement

Moment Magnitude 

(b) Plateau Displacements

Fig.6.9 Wall Yield Displacements for By = 0.00225 Compared with Plateau
Displacements

Fig.6.9(a) plots system yield displacement for walls of different aspect ratio and height, 
based on Eq.(6.15) for a yield stress of 450MPa (65.3 ksi). These can be compared with 
the plateau displacements presented in Fig.6.9(b). An example of the use of this figure is 
shown by the dashed line in both figures. For a 16 storey wall with uniform storey heights 
of 3 m, (9.84 ft) and a wall length of 8 m (26.2 ft), the total height is 48 m (157.4 ft) and 
the aspect ratio is 6. Figure 6.9(a) is entered at Ar =6, and the system yield displacement 
of 0.292 m (11.5 in) is transferred across to the seismological data of Fig.6.9(b). From this
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it is seen that for a causative earthquake of Mw — 6.5, the wall will be expected to 
respond elastically if the design PGA is less than 0.3g.

6.3.3 Multiple In-Plane Walls

Aspects related to displacements and damping when several walls of different length
are in the same plane or in parallel planes have been discussed in Section 3.5.4, and
illustrated in the design example of Section 3.5.5. Aspects to be considered are the 
different ductility demands, and hence different equivalent viscous damping values for 
each wall, the distribution of strength between wails, and the global (system) damping. It 
was pointed out that the distribution of strength between walls is purely a designer's 
choice, uninfluenced by considerations of initial elastic stiffness, and that a common, 
logical choice will be to use equal flexural reinforcement ratios in all walls, leading to the 
base shear force being distributed to walls in inverse proportion to the square of the wall
length. See also comments in Section 6.2.1(d).

6.4 TORSIONAL RESPONSE OF CANTILEVER WALL BUILDINGS

6.4.1 Elastic Torsional Response

A brief summary of consideration of torsional effects in DDBD was presented in 
Section 3.8. However, since the topic has special relevance to structural wall buildings, as 
a result of the potential for torsional eccentricity with building plans containing walls of 
different lengths, the topic is treated in greater detail in this chapter.

We start with consideration of elastic torsional response, which though not directly 
relevant to inelastic structural response, will be referenced and modified to develop an 
appropriate design approach. Until recently, torsion has been treated as an elastic pheno
menon. In the elastic approach shears resulting from distribution of the elastic base shear 
force between different lateral-force resisting elements are modified to include shear 
forces induced by twist of the building resulting from eccentricity between the centre of 
mass and the centre of elastic stiffness of the building. Typically this eccentricity is 
augmented to include “accidental” eccentricity resulting from uncertainties in distribution 
of mass, and in material properties, which hence result in uncertainty in the positions of 
the centre of mass and the centre of stiffness.

The approach is illustrated by reference to the plan representation of the wall building 
shown in Fig. 6.10, which has plan dimensions Lx and Lz (Y is the building vertical axis). 
Walls 1 and 2, of different lengths, resist seismic actions parallel to the Z axis, and walls 3 
and 4, also of different lengths, resist seismic actions parallel to the X axis. The centre of 
mass, C m  is assumed to be at the centre of the floor plan. The origin of the axes, taken at 
C m  is thus also in this case at the centre of the floor plan.

The centre of rigidity, or stiffness C r  is displaced from the centre of mass by distances 
enx and crz in the X and Z directions respectively. Note that since stiffness of structural 
elements depends on strength, as established in Section 4.4, the actual stiffness
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eccentricities will not be known until section strengths have been allocated. For clarity, 
only eRx is shown in Fig.6.10.

Defining the stiffness (force/displacement at the height considered) of walls 1 and 2 in 
the Z direction as kzi and kz2 respectively, and generalizing to the case of n walls parallel 
to the Z axis, the coordinates of the centre of rigidity are

e RX ^  k z i x i I I X  ’ e RZ ~  k X iz i /^  k Xj (6.18)
1 1  i i

where Xj and Z\ are the coordinates of wail L It is assumed that the walls have negligible
out of-plane stiffness. The rotational stiffness J r is found by determining the moment
required to cause unit rotation about the centre of stiffness:

JR  = ^ k z i  (X/ _  e RX ) "*" H  ̂ Xi (Zi ~~ e RZ ) (6-19)
1 1

The base shear Vgase,z acting in the Z direction is traditionally distributed between the 
walls based on translational and rotational considerations. The shear in wall / due to 
direct translation is: __

! Vm  = ■ 4 s -  \  (6.20»)

while the shear due to rotation, resulting from the elastic torsional moment
~  ^Base,Ze RX lS
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v - V  e ■ kzi X̂i r6 20b'lV Z Z a  V B a s e , Z ^ R X  j  [O .A V D )

J  R

If a base shear Vsasefx  acts concurrently in the X direction, then additional shear is 
induced in wall i  by the addidonal torque VBasetX.eRz'.

V - V  ■ e ■ ^Zi ̂  ~ 6rx ̂  (6 20c)V ZXOi Y B a s e , X  ^ R Z  j  [O .Z .UL)

J  R

The total shear carried by the elasdc wall is thus

V* ~ ^zn + Vzza ẑxei (6.20d)

There are a number of criticisms that can be levelled at this classical approach to 
torsional response of structures. First, as with all aspects of force-based design, it relies 
on initial estimates of element stiffness, to determine both the centre of stiffness, and the 
torsional stiffness. As has been repeatedly pointed out, element stiffness is proportional 
to strength, and hence significant errors can be expected unless an iterative design 
approach is used to modify element stiffness after initial estimates of strength have been 
obtained. Typically, this is not done, and also, typically, member stiffnesses are 
significantly in error in conventional force-based design.

More importantly, the stiffness approach does not account for changes in 
performance once one or more of the walls yield, after which stiffness considerations 
become largely irrelevant, nor does it take into account the ver\\significant role of 
torsional mass inertia in modifying the torsional rotation implied by Eqs.(6.20b) and 
(6.20c). As a consequence, the elastic representation of torsional effects cannot be used 
to predict the torsional response of ductile systems. This has been recognised for some 
time, and early considerations of ductile response of systems including torsional 
effects^1’P12'P131 distinguished between so-called torsionally restrained and torsionally 
unrestrained systems. The distinction between these categories is clarified in Fig.6.11.

For seismic action parallel to the Z axis, the two transverse walls in Fig.6.11 (a), which 
are in line with the centre of mass C m can play no part in resisting any torsional moment. 
Thus if one or both of the walls (1 and 2) parallel to the Z axis yield, the torsional 
stiffness will drop to a very low value, dependent primarily on the post-yield stiffness of 
the yielding walls. Consequendy, in early studies based only on static torsional 
mechanisms, it was expected that if one wall yielded before the other, the centre of 
stiffness would shift to coincide with the remaining elastic wall, and essentially 
unrestrained rotation would result. The system is thus classified as torsionally 
unrestrained, and earlier texts (e.g.[PI]) advised against such systems.
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(a) Torsionally unrestrained (b) Torsionally restrained

Fig.6.11 Different Wall Layout for Building Plan

The structure of Fig.6.11(b) has boundary elements on all four sides, and thus if walls 
1 and/or 2 yield under seismic force parallel to the Z axis, the structure retains torsional 
stiffness, albeit reduced from the initial elastic value, as a result of the lever arm between 
the two transverse walls. The system is thus termed torsionally restrained, and was initially 
felt to be structurally more desirable than unrestrained systems.

Recent research by Castillo and PaulayfC6l, followed and extended by BeyerlB4J, have 
shown that torsional inertia plays an important role in modifying structural response of 
both unrestrained and restrained systems, but is difficult to quantify accurately, since peak 
translational and torsional response do not occur simultaneously. Both studies carried out 
extensive inelasdc time-history analyses to investigate ductile response including torsional 
effects. The initial studies by Castillo and Paulay investigated 2D plan simulations of wail 
buildings. Beyer extended these studies, and also carried out a number of full 3D analyses. 
The following two sections present a brief summary of their findings.

6.4.2 Torsionally Unrestrained Systems

The studies of torsionally unrestrained (TU) systems by Castillo and PaulaytC6J 
showed that the modification to response resulting from torsional mass inertia was 
considerable. Considerations of static equilibrium would indicate that if we assume that 
the centre of mass C m  is at the centre of the building plan, and further assume that wall 2  

in the TU system of Fig.6.12 is weaker, as well as less stiff than wall 1, then it will yield 
prior to wall 1, since the ratio of forces developed in the two walls is defined by geometry. 
Thus, again assuming that C m  is at the centre of the building plan, the forces in the two 
walls must be equal. For example, assume that the nominal strengths of the walls are 
related by Vnj—1.4Vn2\ then when wall 2 yields, wall 1 will have an equal force, 
corresponding to 0.714 V ĵ. Since the force in wall 2 will increase only slightly (due to 
post-yield stiffness of the force-displacement response) as the structure responds in the 
inelastic range, the force in wall 1 would never be expected to reach yield, and all system 
ductility would result from inelastic response of the weaker wall 2. This would imply an
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expected ductility demand on wall 2 close to twice the system ductility demand, measured 
at the centre of mass. The corresponding displacement profile is shown in Fig.6.12 by 
the dashed line A.

Lx

Vi

Vj+V2 

Cy
▼I

X l

i Cmo
Vgase

V2

Fig.6.12 Displacement Response of a TU System

The inelastic time-history analyses of Castillo et al showed that this behaviour did 
indeed occur, but only if the torsional mass inertia was set to zero. When realistic values 
for torsional inertia were included in the analyses, it was found that the stronger wall 
would always yield, provided system ductility demand was significant, and would be 
subjected to considerable ductility demands. In fact the stronger wall would normally 
yield before the weaker wall, provided that the stronger wall was also stiffer than the 
weaker wall, as will usually be the case. The corresponding displacement profile is shown 
in Fig.6.12 by the solid line B. However, this line is a little misleading, as the peak 
displacements for walls 1 and 2 do not necessarily occur at the same time, nor does the 
peak rotational response occur simultaneously with either peak displacement.

Castillo et al recommended that minimum required strengths for elements of TU 
;and also of TR) systems should be based on considerations of static equilibrium. Thus, 
with reference to Fig. 6.12 the minimum nominal strength of walls 1 and 2 would be 
related to the total design base shear VBase by:

V  > )V . ^ x  ~  * 1 ) . y  > 7 /  (6 2 11
AM — B a s e  j  ’  V N 2 — VB a s e  j
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Excess strength, above that required by Eq.(6.21), for either wall would result in 
strength eccentricity ey, (see Figs. 6.10 and 6.12) where

V2 rev =  2---- 1 x (6.22)
V,+V2 A 1

Normally excess strength would result from the longer wall needing less than the 
specified minimum reinforcement ratio to provide the required flexural strength 
corresponding to Vj, and hence actual strength would exceed required strength. Note 
that in accordance with capacity design principles the flexural strength will be matched to 
the moment corresponding to the required shear strength (see section 4.6). Castillo et 
al[C6l found that excess flexural strength in either wall did not adversely affect the 
performance of TU systems. For the normal case where the longer wall (wall 1) had 
excess strength, the displacement demand on both the centre of mass and the longer wall 
was, as expected, found to be reduced by the strength eccentricity resulting from excess 
strength. The displacement demand on the shorter, more flexible wall (wall 2) was found 
to be almost independent of the excess strength (and hence of the strength eccentricity) 
when the excess strength occurred in wall 1 only. Excess strength in wail 1 could thus be 
used to reduce the displacement demand on wall 1, without adversely affecting wall 2. 
Note however, that strength eccentricity is expected to increase torsional displacements 
as will be demonstrated shortly.

It will be noted that it may not be immediately clear which of the walls will govern the 
design. Normally, with different wall lengths as suggested in Fig.6.12, the ductility 
demand on the longer wail will be higher than on the shorter wail, which is contrary to 
expectations based on static equilibrium. Hence if material strains govern design, the 
longer wall will be critical. On the other hand, the shorter wall will be subjected to larger 
displacement demands, and hence if drift governs design, the shorter wall will be the 
critical element.

The conclusions of Castillo et aKC6l for TU walls can be summarized as follows:
• Nominal strength of any element should be not less than that required by static 

equilibrium considering zero strength eccentricity, for the chosen base shear 
force, regardless of the stiffness eccentricity.

• Strength eccentricity does not adversely affect the performance of TU systems, 
provided it only results from excess strength of one or more elements.

• If these guidelines are met, the displacements will not be greater than those 
estimated for zero strength eccentricity.

• The results are rather insensitive to the magnitude of torsional inertia, provided it 
is within reasonable bounds. (Castillo et al investigated variations of ±20% from 
a uniform mass distribution. Higher values, which are more probable than lower 
values, reduced twist).
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6.4.3 Torsionally Restrained Systems

Fig.6.13 Torsionally Restrained Building with Strength and Stiffness Eccentricity 
for Z direction response (after Beyerl64))

Castillo et aUC6J and Beyerl™) both studied torsionally restrained (TR) systems, and, 
with a few exceptions, obtained generally similar results. The following comments are 
based on the more extensive studies by Beyer. These included 2D plan simulations of 
eight-storey buildings, and 3D studies of 2, 4, and 8 storey buildings with strength and 
stiffness eccentricities. Analyses were carried out with a suite of five artificial 
accelerograms spectrum-matched to a displacement spectrum linear with period to a 
period of 5 seconds. It was found that the spectral reduction values for levels of damping 
higher than 5% agreed closely with the “old” EC8 equation given by Eq.(2.8). Beyer's 2D 
analyses were based on a floor plan of 25m X 15m as shown in Fig.6.13, with the lengths 
of walls 1 and 2 being 8m and 4m respectively. The two transverse walls (3 and 4) each 
had lengths of 5m, and similar total system strengths were provided in both X and Z 
directions. A base-level design was chosen to provide an average drift of 0.02, with zero 
strength eccentricity, using displacement-based design procedures. Thus the strength 
provided to each wall in the Z direction was the same for the base-level design, despite 
the different wall lengths. Since the yield displacement for the walls would be in inverse 
proportion to wail length (see Section 4.4.3), this resulted in wall 1 having twice the elastic 
stiffness of wall 2. Thus, though the strength eccentricity for the base-level structure was 
ev -  0, the stiffness eccentricity was eR = 0.167Lx. A series of analyses was carried out 
increasing the strength of the long wall relative to that of the short wall by ratios of 
1.0<A<1.8 where fo=-V)/V2, increasing both the strength and stiffness eccentricity. This 
was effected in two ways. In the first, the strength of wall 1 was increased while keeping 
the strength of wall 2 constant. The total system strength thus increased by a maximum
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of 40%. In the second case, the strength of wall 2 (the short wall) was reduced as wall 1 
strength was increased such that the total system strength remained constant. In both 
cases, the sdffness and strength eccentricities, with kzj—2Akz2, are found from Eqs.(6.18) 
and (6.22) as:

0 .5(1-2/1) r 0 .5(1- A )  7
eRx ~ \ + 2X ^  an<̂ 6yx ~ (1 + /1) ^  (6-23)

Results of the analyses, averaged over the 5 accelerograms, are summarized in 
Fig.6.14. It will be noted that despite the zero strength eccentricity at /i=1.0, some 
torsional response is evident, as a result of the sdffness eccentricity, with displacements 
of the short and long walls being about 10% larger and smaller respectively than the 
centre-of-mass displacement. As the strength of the long wall increases, resulting in total 
system overstrength (Fig.6.14(a)), displacements of the centre-of-mass decrease, but the 
displacement of the short wall remains almost constant.

Wall Strength Ratio (V1/V2) 
(a) Total Strength Increases

Wall Strength Ratio (V1/V2) 
(b) Constant Total Strength

Fig.6.14 Displacements of TR Wall Building with Strength and Stiffness 
Eccentricity (after BeyerlB4l)

When the total system strength is kept constant by reducing the strength of the short 
wall as the long wall strength increases, the centre-of-mass displacement remains 
essentially constant, while short and long wall displacements increase and decrease 
respectively. Apart from local variations which can be attributed to inevitable scatter 
resulting from the time-history analyses, the displacements appear to vary linearly with 
the wall 1 overstrength factor. Note that at X -  1.8, corresponding to stiffness and 
strength eccentricities of 0.28Z* and 0.1 43Zv respectively, the displacements of the walls 
differ by about ±40% from the centre of mass displacement.



336 Priestley, Calvi and Kovvalsky. D isplacem ent-Based Seism ic D esign o f Structures

From the analyses of BeyerlB4l and Castillo et alLC6l the following conclusions can be 
drawn:

• Displacements of the centre-of-mass can be reliably estimated from a SDOF 
model based on the DDBD principles elaborated in this text. That is, the 
torsional response does not affect the centre-of-mass displacement.

• As with TU systems, increasing the strength of an element above that required to 
satisfy displacement demands in the structure will not result in increased 
displacements in other structural elements, provided the strength of those 
elements are not reduced.

• The results are largely insensitive to the value of rotational inertia, within typical 
expected variations from the value corresponding to uniform distribution of 
mass

• Varying the strength and stiffness of the transverse walls (Walls 3 and 4, 
Fig.6.13), multiplying by factors of 0.5 and 2.0 had only minor effect on the 
rotational displacements, with displacements increasing only slightly for softer 
transverse walls.

• Allowing the transverse walls to }deld under the rotational displacements also had 
only minor influence on the displacements of the long and short walls.

• Increasing the seismic intensity while keeping the system strength constant (i.e. 
increasing the system ductility demand) had little influence on the magnitude of 
twist associated with peak displacement demands when the strength eccentricity 
was zero. When appreciable strength eccentricity existed, the displacements of 
the walls increased almost in proportion to the displacement increase at the 
centre-of-mass. That is, the torsional component of peak displacements 
increased with ductility.

• Eccentricity of mass from the geometric centre of a building plan did not 
significantly affect response, provided sdffness and strength eccentricities were 
measured from the actual centre of mass.

• For buildings with eccentricity about only one axis (as, for example, in Fig.6.13), 
seismic excitation directed at a skew angle to a principle axis resulted in reduced 
peak displacements in the directions of the principal axes, and hence was not 
critical.

• For buildings with strength eccentricity about both principal axes (e.g. Fig.6.10), 
slight increases in displacements in the direction of the principal axes were 
possible under skew attack compared with values resulting from excitation in the 
direction of the principal axis. This increase was generally small (less than 10%).

• When the effective secant-stiffness period of the structure (at maximum 
displacement response) was larger than the corner period of the displacement 
spectrum (see Section 2.2.2) response was complicated by the fact that centre-of- 
mass displacement did not decrease if excess strength was provided to the stiffer 
wall. Hence displacements of the flexible wall increased. .
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6.4.4 Predicting Torsional Response

As noted above, DDBD provides an excellent estimate of the displacement response 
of the centre of mass of a torsionally eccentric building. It remains, however, to 
determine the displacements at the edge of the building, as effected by torsional rotations. 
No exact simplified method of analysis seems possible, as the time-history analyses have 
clearly shown that both strength and stiffness eccentricities affect response, and that peak 
displacements of centre of mass and the walls at opposite ends of the building do not 
occur at the same instant of dynamic response. The following approach, however, which 
is consistent with the principles of DDBD has been found to provide displacements of 
the building edges in close agreement with results of time-history analyses for both TU 
and TR systems.

The maximum displacements of a building plan can be approximated by a translation 
of the centre of mass, determined by DDBD principles plus a nominal rotation 6m where

~ VB a s e  ‘ 6 R ^ R tju (6.24)

where Vgase is the design base shear force, er is the elastic stiffness eccentricity, given by 
Eq.(6.18), and the ductile rotational stiffness, J r)M is modified from the elastic rotational 
stiffness h  of Eq.(6.19), dividing the wall stiffness in the direction considered by the 
system ductility jUsys:

J r,/j “  ^  ~ eRX) + ^  kXi (zi ~ eRz ) (6.25)
1 M s y s  I

Note that the elastic stiffness is used for wall elements perpendicular to the direction 
considered. Thus the effective stiffness of wall elements in both X and Z directions is 
used, since only the Z direction walls are expected to be subjected to significant ductility 
demand under Z direction excitation.

The displacements of the end walls (Fig.6.12 for TU systems or Fig.6.13 for TR 
systems) are then found from

A j — Aow + 0N - (Xj ~ev ) (6.26)

Note that in Eq.(6.26) the strength eccentricity, rather than the effective stiffness
eccentricity has been used. Similarity to the procedure outlined above for elastic torsional 
response will be recognized; the difference being that torsional stiffness is based on 
effective stiffness of the elements, and torsional displacement increments are based of 
distances from the centre of strength, Cv.

The approach outlined above has been checked against analytical results from Castillo 
et alfC6J and Beyerf64!, and found to give generally good agreement for both TU and TR 
systems. For TR systems with stiffness eccentricity but no strength eccentricity it was
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found to accurately predict the incremental displacements resulting from torsion for 
levels of ductility between 1.3 and 7. Comparisons with average time-history results of the 
predictions for short wall and long wall displacements for TU and TR systems are shown 
in Figs 6.15(a) and (b) respectively. The TU systems of Fig.6.15(a) refer to the data of 
Castillo et aUC6l, and were designed for an initial ductility of /4V5 =5.35 at zero strength 
eccentricity (i.e. Vj — Vi). The ratio of wall lengths was lwi — \Alw2- The strength of wall 
1 was then increased up to a maximum of 1.86 V2 without changing the wall lengths, or 
modifying the strength of wall 2. The increased system strength thus resulted in a 
reduction of the centre-of-mass displacement, as is apparent in Fig.6.15(a).

The TR systems of Fig. 6.15(b) refer to Beyer's data!134), and were designed for centre- 
of-mass system displacement ductilities of approximately ^ ys — 3.0. Wall 1 was twice as 
long as wall 2, and strength ratios up to Vj = 1.8 V2 were considered, while keeping the 
total system strength constant. In each case the average results from the inelastic time- 
history analyses are plotted with data points and solid lines, and the predictions using the 
approach outlined above are shown as dashed lines. In both cases the centre-of-mass 
displacements have been used as the datum, with variations from this for the short and 
long walls calculated using Eqs. (6.24) to (6.26). It will be noted that the agreement is 
satisfactory over the full range of data, with the predictions tending to be slightly 
conservative (i.e. high) for both short and long walls.

Ratio of Wall strengths (V1/V2) Wall Strength Ratio (V1/V2)
(a)TU system, system strength increases (b) TR system, constant strength 

(Castillo’s data)lC6l (Beyer’s data)(B4l

Fig.6.15 Comparison between Predicted Displacements (dashed lines) and 
Average Time-History Results (solid lines+data points) for TU and TR systems

Note that the TU and TR structures of Figs.6.15(a) and 6.15(b) are unrelated, with 
different masses, strengths and design ductilities, and no conclusions can be arrived at by 
comparison between the two figures.
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6.4.5 Recommendations for DDBD

Again it is emphasised that the best design solution will be to eliminate strength 
eccentricity. As discussed subsequently, in such cases, the displacements due to twist are 
likely to be less than 10% of the system transladonal displacement, and thus in most 
practical cases could be ignored as well within the expected uncertainty of response. 
However, this approach may not always be feasible, and the following design approach is 
intended to provide a systematic approach, completely consistent with the DDBD 
philosophy of achieving a specified displacement limit state. A simplified approach, with 
additional conservatism is briefly discussed in Section 6.4.7.

(a) Design when Te<Tc'• In Section 3.8.3 it was noted that the preferred design 
approach to accommodate torsional effects was to design for zero strength eccentricity, 
regardless of stiffness eccentricity. If this is not possible, then the strength eccentricity 
should be minimized. However, it will be noted from the material presented in the 
previous sections that even when strength eccentricity is eliminated, stiffness eccentricity 
will result in torsional response. A procedure, outlined in Section 3.8.3(c) has been 
developed to allow consideration of simultaneous strength and stiffness eccentricity (and 
hence also the special case of stiffness eccentricity without strength eccentricity), but this 
approach, which requires knowledge of the effective torsional stiffness, as well as both 
stiffness and strength eccentricities, is more suited to analysis of designed structures 
rather than design of new structures. It is, however, suitable for an iterative design 
approach. For convenience, it is again summarized here.

For wall buildings of more than six storeys the most common design situation will be 
that design displacements are governed by code drift limits. In these cases, the code drift 
will apply to the wall with greatest displacement, including torsional effects, meaning that 
the design displacement at the building centre of mass, used in the SDOF design, will 
need to be reduced in proportion to the torsional displacements. The design displacement 
for the centre of mass will thus be found, reorganizing Eq.(6.26) to give

^ C M  ~  ^ i ,c r  ~  @N ( X i,cr ~  e VX )  ( 6 - 2 7 )

where A,;6T is the drift-controlled displacement of the critical wall. With reference to 
Fig.6.13, and assuming that drift limits apply to wall 2, the design displacement for the 
SDOF substitute structure will be

^ cm ~ ^2  +|̂ j/y|) (6.28)

It is also possible, particularly for low-rise wall buildings, or buildings containing walls 
with low height/length aspect ratios, that the displacement capacity of the stiffest wall 
corresponding to material strain limits may govern design. In this case the design 
displacement at the centre of mass will be larger than the displacement of the critical
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element. Equation (6.27) still applies, with due consideration of signs, and with reference 
to Fig.6.13, the design displacement for the substitute structure will be

^ cm = ^ i Lx |) (6.29)

In general it will be necessary to adopt an iterative approach to determine the design 
displacement when torsional effects are significant, since the nominal torsional 
displacements depend on J r, eR and ey which in turn will depend on the relative 
strengths assigned to the lateral force-resisting elements in both orthogonal directions, 
and the system ductility factor.

It is possible, however, to develop some recommendations to facilitate the design 
process, based on the material presented in the previous sections. In doing so, it is 
convenient to distinguish between cases where the design is governed by drift of a more 
flexible wall and cases where design is governed by material strains of a stiffer wall.

Step 1: Determine whether the stiffer or more flexible walls govern design. This may 
be done, with adequate accuracy, by estimating the roof-level displacements of the walls 
corresponding to the limit state considered, assuming zero strength eccentricity:

Stiffer wait. = 0ysH 2n /2 + <f>lsLpH„ (6.30)

where (py>s is the yield curvature of the stiffer wall, given by Eq.(4.57c), <fas is given by 
Eq.(6.10c) and LP is given by Eq.(6.7).

More flexible wall. A nJlex = 0y J H 2 /3 + (<9C -  0.5 </>y J H„ )• H n (6.31)

We note that with zero strength eccentricity, and average ductility demand, and even 
large differences in wall length, the displacement at the centre of mass is typically 10% 
higher than that of the stiffer wall, and 10% lower than that of the more flexible wall. 
Thus

^ C M , n  -  1 ‘ s t i f f  a n ^  ^ C M , n  ~  (6.32)

Equation (6.32) will determine which of the walls is critical, and what the roof-level 
system displacement should be for zero strength eccentricity. The design displacement at 
the effective height can now be related to the roof-level centre-of-mass displacement 
based on the displacement profile of the stiffer wall, using Eqs.(6.11) and (3.26).

It should be noted that Eqs.(6.30) and (6.31) are based on the assumption that the 
stiffer wall is governed by material strains, and that the more flexible wall is governed by 
roof drift limitations. It is, of course, possible that both walls are governed by material 
strain limits, or that both walls are limited by drift. All possibilities must be considered.

Step 2: Flexible wall governs: If 0.9A„j7^v< 1.1 stiff then the calculated value for 
A cm is the largest value that can be adopted while satisfying the drift (or material strain)
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limit for the flexible wail, and the value computed for the system base shear by DDBD 
will be the lowest possible base shear, as discussed subsequently.

Step 2a: Determine relative wall strengths for zero strength eccentricity: The
analyses by Castillo et aKC6J and BeyerP4! confirm that the minimum required strength of 
the flexible wall is found from statics (refer to Fig.6.13) as

K  = = (6.33a)
X L x

The minimum strength for the stiffer wall, also defined by statics will be

= (6.33b)
X X

The situation envisaged by this is represented by Fig.6.16(a). If the strength of either 
wall is reduced below the values required by Eq.(6.33), then displacements of the flexible 
wall must be expected to exceed the drift limit. However, the strength of either wall may 
be increased above that required by Eq.(6.33) without increasing the drift of the flexible 
wall. As noted earlier, increased strength would most probably be allocated to the stiffer 
wall, as a consequence of flexural strength associated with the code-specified minimum 
flexural reinforcement ratio exceeding the required strength.

When the structural system comprises more than two walls in the direction 
considered, Vj and X\ in Eq.(6.33a) will refer to the total strength, and centre of strength, 
of all walls to the left of the centre of mass, and similarly for Eq.(6.33b) for all walls to 
the right of the centre of mass.

Step 2b: Determine system Cm design displacement: As noted above this is 
related to the critical C m  roof-level displacement by the displacement profile of the stiff 
wall, and Eq.(3.26).

Step 2c: Determine System ductility: This requires that the system yield 
displacement be determined. For the two-wall system of Figs.6.12, 6.13, and 6.16, this is 
found by weighting the wall displacements by the fraction of total base shear carried, as

V V \ V 1 V . .
A , , ,  = ^  ■ A„ + ^  ■ A ,2 = 2 e y . + ^  | (6.34,)

V B a s e  Y B a s e  V B a s e  l W 1 v  B a s e  LW 2 ,

which can be generalized to
V; 1
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(a) Flexible Wall Drift Governs

Planned strength eccentricity * 
No strength eccentricity ,

(b) Stiff Wall Strain Governs

Fig.6.16 Roof-Level Displacements for Zero Strength Eccentricity (Plan View)

Although the individual wall strengths and the total base shear are not known at this 
stage of the design, the strength ratios of Eq.(6.34) are known from the assumpdon of 
zero strength eccentricity at the start of the design process, from Eqs.(6.33), and the yield 
displacements are known from the yield curvatures (Eq.4.57(c)), regardless of strength.

Step 2d: Determine required base shear strength, and hence minimum wall 
strengths: With the system displacement ductility known, the effective damping is 
known (Eq.3.17a), and the base shear strength can be directly calculated in the usual 
manner.

Step 3: S tiff wall governs: The situation is somewhat different from the case when 
the flexible wall governs, in that the required base shear strength associated with zero 
strength eccentricity is not necessarily a minimum design condition for the structure as a 
whole, as may be seen from Fig6.16(b). In this case the roof-level centre-of-mass 
displacement corresponding to l . lA ^ .^  is significantly lower than that corresponding to 
0.9Anflex. We could reduce the total design base-shear force by designing for planned 
strength eccentricity, shown by the dashed line in Fig.6.16(b). Since the centre-of-mass 
displacement and also the system ductility demand will be higher, the required base shear 
force will be lower. An optimum solution is found when both stiff and flexible walls 
achieve their limit displacement, though this should not o c c u r t h e  expense of excessive 
strength eccentricity. In this respect it is suggested that(ey — 0.15Z,*\should be considered 
an upper limit, unless special design verification, involving inelastic time-history analysis is 
carried out.

Step 3a: Determine design displacement and drift at ro o f level: Note that if we 
design for the optimum condition suggested by the dashed line in Fig.6.16(b), the design 
displacement and twist angle are directly known at roof level. The twist angle is given by

  i ^ n , f l e x .  ^ n , s t i f f  )
ft. (6.35)
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To determine the roof-level design displacement from Eq.(6.29) evx must be 
calculated using Eq.(6.23). We need to know the strength eccentricity, which is not, at this 
stage, known. Make an initial assumption of X — V]/ V2 =1.4.

Step 3b: Determine design displacement at effective height: Design values at the 
effective height, He are found using the stiff wall displacement profile as the basis for 
determining the system SDOF displacement,

A _  A ^ He,stiff ,,
A  D,sys ~  A r,sys ' “ 7 -----------  _ _ M 6 )

n,stiff

Step 3c: Determine system yield  displacement: In this case the ratio of design 
forces between the walls is not known at the start of the design process. Again we initially 
assume a strength eccentricity factor of X — 1.4. We note that the recommendation made 
above that the maximum eccentricity should be limited to ey/Lx =0.15 implies that the 
ratio of strengths between walls 1 and 2 must be within the range implied by 
1 <X=Vi/V2< \ Taking the rather extreme example where lwj = 21W2, it is found, from 
substitution into Eq.(6.34), that the system yield displacement only varies by 10% as X 
increases from 1.0 to 1.8. Since the effective damping ratio given by Eq.(3.17a) is rather 
insensitive to the displacement ductility factor fl (and hence to the yield displacement), 
the assumption of X = 1.4 is likely to be adequate.

Step 3d: Determine system ductility: With the system limit-state and yield 
displacements known, the ductility, and hence the damping can be found in the usual 
manner.

Step 3e: Determine the SDOF base shear force: The procedure is standard.
Step 3f: Determine the rotational stiffness: Carry out a preliminary allocation of 

strength between the wails. It is again suggested that X — 1.4 be initially assumed. Hence, 
noting that kzi — Vj/Ayi etc., determine the rotational stiffness from Eq.(6.25). It is 
assumed that the strengths (and hence stiffness) of the transverse walls in the X direction 
(if any) is known at this stage. If not, assume the total strengths in the orthogonal 
directions are equal, which is a reasonable assumption, when designed by DDBD.

Step 3g: Determine the stiffness eccentricity: Rearranging Eq.(6.24) the stiffness 
eccentricity is found from the known rotation 0nom (Eq.6.35) as

G ■ Inom R,U
* * =    “  (6‘37)

* B
Care is required with signs here. With the structural layout and axes of Fig.6.13, the 

twist angle has a negative sign, and the eccentricity is negative. For a known ratio of wall 
lengths (Ifvj = CClwi), the strength ratio between the walls can then be found from 
Eq.(6.18). For the special, though common case of walls equally spaced from the centre 
of mass, Eq.(6.23a) can be generalized to give
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1 + ocX
• Lx (a) and hence X —

If the value of X found from this process implies a strength eccentricity greater than
ey/Lx — 0.15, it may be advisable to redesign for a smaller centre-of-mass displacement, 
with X — 1.8

Step 3h: Iterate steps 3a to 3g to achieve stability: Only small changes in the 
design base shear force will occur between iterations, and two or three cycles will be 
adequate.

(b) Recommendations when Te > Tc: It was noted in the summary of Section 6.4.3 
that torsional response appears to be more severe when the effective period exceeds the 
corner period of the displacement spectrum. In such cases, the procedure outlined above 
could be non-conservative, resulting in displacements of the flexible wall that exceed the 
limit state values. Research is on-going into this behaviour. Until definitive 
recommendations are available, it is conservatively suggested that the corner period be 
ignored, and the displacement spectrum be continued linearly up to the effective period. 
This will mean designing for a higher base shear than would result from designing to the 
plateau displacement applying for Te > To Since there is uncertainty associated with the 
correct value for Tc as noted in Chapter 2, such an approach is doubly prudent.

(c) Consideration o f Accidental Eccentricity: As noted in Section 3.8.1, design for 
accidental eccentricity is likely to be ineffective, since it involves increasing the strength of 
all structural elements, which simply results in an increase in the torsional moment. 
Although the overall consequence will be a reduction in displacements, the effect will be 
minor. Hence we do not recommend consideration of accidental eccentricity in DDBD.

(d) Design for Bi-directional Eccentricity: Thus far, the discussion of torsional 
response has assumed that the direction of seismic attack is parallel with one of the two 
principal axes of the structure. In fact, there will normally be excitation components in 
both principal directions simultaneously, with the resultant inertia force acting at an angle 
to the structure principal axes, as suggested in Fig.6.10 and 6.17. The example of Fig.6.17 
shows a plan view of a building braced with four boundary walls of different sizes, 
resulting in strength eccentricity in both principal directions. The inertia force Vj acts 
through the centre of mass, Cm, with the centre of strength, Cv, eccentric by a distance ev 
measured perpendicular to the line of action of the inertia force.

It is clear that there is a torsional moment acting on the building, given by Vjey. It is 
also clear that if the seismic intensity is sufficiently high, all four walls will develop their 
flexural strength. In this case the inertia and resisting forces are given by:

v , = y * = 4 ( y i+ v 1f + ( y 1 + v, f (6.39)
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Wall 3

Wall 1 Wall 2

Wall 4
F ig .6.17 Diagonal Seism ic Attack, Plan View

where V), V2, K?, and V4 are the base shears corresponding to flexural strength of walls 1 
to 4 respectively. Note that if all walls yield, the directions of the inertia and resisting 
forces are fixed, and are not necessarily parallel to the resultant ground excitation 
direction.

Given that all four walls have yielded, there is no further torsional resistance available 
to limit rotation under the torsional moment. However, torsional mass inertia, resulting 
from the distributed nature of the mass across the floor plan will limit the rotation, as 
with the torsionally unrestrained case discussed in Section 6.4.2. It would seem that an 
estimate of maximum feasible rotation should be available by determining the dis
placement response in the diagonal direction, and hence the ductility in the two 
orthogonal directions. The effective rotational stiffness can then be determined from a 
modified form of Eq.(6.25):

j r. » = z — (*,■ -  eRx y + z — (z, -  eRZ y  (6-4°)
V/*z 1 Mx

where fix and jlz are the average (system) displacement ductility demands in the X and Z
directions respectively. The procedure for/determining expected displacement response 
for a designed structure by DDBD principles is covered in Chapter 13.

In fact, it will rarely be necessary to carry out these calculations for new buildings. 
Since the strength in the diagonal direction will be greater than in a principal direction 
(typically by about 40%), displacements in the diagonal direction of the centre of mass 
will be less than the displacements in the principal directions under orthogonal excitation 
parallel to the principal direction considered. The component of the diagonal 
displacement in the principal directions will be even smaller, resulting in a large reserve in 
displacement capacity to allow for torsional rotation. Consequently, torsional rotation 
under diagonal excitation will not normally be considered in the design process.



346 Priestley, Calvi and Kowalsky. D isplacem ent-Based Seism ic D esign o f Structures

6.4.6 Design Example 6.1: TorsionaJly Eccentric Building

lwi (6m)

Fig. 6.18 Data for Example 6.1

The building shown in plan in Fig.6.18(a) has six storeys, with a uniform storey height 
of 2.8 m (9.2 ft), and equal floor weights of 3000kN at each level, including the roof The 
structural system consists of boundary walls, as indicated in Fig.6.18(a), with internal 
prop-columns and flat-slab floors which do not contribute significandy to the lateral 
resistance in either of the principal direcdons. The building dimensions are L\ — 25 m 
(82 ft) and Lz~ 20 m (65.6 ft). The two walls in the Z direction have lengths Iwi — 8 m 
(26.2 ft) and lw2 — 4 m (13.1 ft). Wall widths of 250mm (9.8 in) are selected. The 
difference in wall length results from wall 1 being on a boundary adjacent to other 
buildings, while wall 2 is on a road frontage, where minimum disruption to access is 
desired. In the X direction the structure is symmetrical, with two walls of 6 m (19.7 ft) 
length. The building is to be designed to a damage-control limit state, for which the code 
drift limit is 6 c -  0.025. Specified material strengths artf*c -  30 MPa (4.35 ksi) and f y -  
420 MPa (60.9 ksi). The flexural reinforcing steel will be 20mm (0.79 in) diameter 
tempcore steel with a ratio of ultimate to yield strength of f j f y — 1.25, and a strain at 
ultimate strength of 0.10.

The structure is to be constructed in a region of high seismicity, corresponding to a 
PGA of 0.6g, with the displacement-spectrum for 5% damping given in Fig.6.18(b). 
Displacement reduction for damping conforms to Eq.(2.8).

Solution:The design process follows the procedure outlined in Section 6.4.5(a).
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Step 1: Determine critical wall: Determine critical roof displacements for 8m and 4m 
walls respectively. The following information is common to both walls: Expected yield 
strength: from Eq.(4.23(b)),^ = 1-1/i’ ~ 462 MPa (6"7 ksi), hence £j, = 0.00231.

Strain penetration length: from Eq.(4.30) Lsp~0.022fyedf)i =0.022x462x0.02 = 0.203m
(8 in).   - - -  - .- -----------

Factor for plastic hinge length: from Eq.(4.31): k—0.2(fu/fy -1) =0.2x0.25 = 0.05 
(<0.08, OK)

Effective height: unknown, but an average value for walls of He — 0JSHn may be 
assumed, leading to He =0.75x6x2.8 = 12.6 m (41.3 ft).

8 m wall:
plastic hinge length: from Eq.(6.7):

Lp = k ■ HeJf + 0.1 lw + Lsp = 0.05x 12.8 + 0.1 x 8 + 0.203 = 1.633m (64.3m)  ̂ ^
yield cuwature: from' Kq:(4’.57c): ^  ■̂ /

^ =2£{. 1% = 2x0.00231/8 = 0.000578lm 
roof yield displacement: from Eq.(4.33):

Avn = </)v(H„ +LSP)2 / 3 = 0.000578x(16.8 + 0.203)2 /3 = 0.0557m (2.20 in) 
ro o f yield drift: from Eq.(3.26):

Ovn= ev(Hn + LSP)/lw =0.00231x17.03/8 = 0.00492 rad.

^train-basedplastic rotation: Eq.(6.10b) applies directly, since £su -  0.10:
6p = ( 0 ^ 7 2 / - <j)y)-LP = (0 .072/8-0.000578)x 1.633 = 0.0138 

strain-based roof drift: at roof level, the sum of yield and plastic rotations is 
dn = 9 vn +0p = 0.00492 + 0.0138 = 0.0187

This is less than the specified drift limit of 0.025, hence material strains limit the 
response for the 8 m wall.

Roof-level lim it displacement: The roof displacement is the sum of yield and plastic 
displacements:

A„ = Aw +Apn = A vn+0pHn =0.0557+ 0.0138x16.8 = 0.288m (11.3in)

4 m wall: The same equations apply as above. The results are listed below 
plastic hinge length: Lp -  0.05x12.6 + 0.1x4 + 0.203 = 1.233 (48.5in)
yield curvature: <py =2x0.00231/4 = 0.001156

roo f yield displacement: A vn = 0.001156 ■ (l 6.8 + 0.203)2 /3 = 0. II I3m (4.4in)
roo f yield drift: Gvn = 0.00231x17.03/4 = 0.00984

strain-based plastic rotation: 6p = (0.072/4 -  0.001 156)x 1.233 = 0.0208 

Strain-based ro o f drift: 6 = 0.00984 + 0.0208 = 0.0364 ' J* w Yn i
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This exceeds the drift limit of 0.025, and hence drift limits the performance of the 4 m 
wall. The maximum permissible plastic drift is thus Qp = 0.025 -  0.00984 = 0.0152

Roof-level lim it displacement: An = 0.1 1 13 + 0.0152 x 16.8 = 0367m (14.4in)
Substituting the roof-level displacements for the stiff wall and flexible wall into Eq.(6.32) 
it is found that the stiff wall will govern the design. As a consequence we move to step 3 
of the procedure in Section 6.4.5(a), choosing planned strength eccentricity to 
simultaneously achieve the design limits for the stiff and flexible walls. ̂

Step 3a: Calculations necessary to determine the displacement profiles, and hence the 
effective heights and design displacements for walls 1 and 2 are summarized in Tables 6.1 
and 6.2 respectively.

Table 6.1 Calculations for Wall 1 (Stiff) for Example 6.1

Col.(l) Col. (2) Col. (3) Col. (4) Col. (5) Col. (6) Col. (7)
Floor Hi Ayi Api ADi ^  A2nj AoiHi

(i) (m) (m) (m) (m) (m)
6 16.8 0.0557 0.2318 0.2875 0.0827 4.830
5 14 0.0421 0.1932 0.2353 0.0554 3.294
4 11.2 0.0292 0.1546 0.1838 0.0338 2.058
3 8.4 0.0178 0.1159 0.1337 0.0179 1.123
2 5.6 0.0086 0.0773 0.0859 0.0074 0.481
1 2.8 0.0025 0.0386 0.0411 0.0017 0.115
0 0 0 0 0 0 0

Sum 0.9673 0.1987 11..901

Table 6.2 Calculations for Wall 2 (Flexible) for Example 6.1

Col.(l) Col. (2) Col. (3) Col. (4) Col. (5) Col. (6) Col. (7)
Floor Hi Ayi Api Adi Â Di ADiHi

(i) (m) (m) (m) (m) (m)
6 16.8 0.1113 0.2570 0.3683 0.1357 6.188
5 14 0.0841 0.2142 0.2983 0.0890 4.177
4 11.2 0.0584 0.1714 0.2298 0.0528 2.573
3 8.4 0.0356 0.1285 0.1641 0.0269 1.379
2 5.6 0.0173 0.0857 0.1030 0.0106 0.577
1 2.8 0.0049 0.0428 0.0478 0.0023 0.134
0 0 0.0000 0.0000 0.0000 0.0000 0.000

Sum 1.2113 0.3173 15.027

In Tables 6.1 and 6.2 the storey heights are given in Col.(2); the yield displacement
profile, according to Eq.(6.5), with H n =16.8 m and l w — 8 m and 4 m respectively for
walls 1 and 2 are listed in Col.(3); the plastic displacements, based on the critical plastic
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rotations calculated above, are listed in Col.(4), anci the total design displacements are 
listed in Col.(5). Column (6) lists the square of the design displacements, and Col.(7), the 
product of height and design displacement profile. 

roo f twist angle: From 1 ;,q.(6.35) :
= (AnJex-  A, ,Mf)!L x = (0 .3666-0.2875)/25 = 0.003167

strength eccentricity: Initially assume A = 1.4, hence: 
ev =(1.0/2.4)-25-12.5 = -2.08 (-6.82ft) 

design C. ofM . displacement at ro o f level: From Eq.(6.29):
ACM = A, +6>(0.5Lx — |) = 0.2875 + 0.003167(12.5 — 2.08) = 0.321 m (12.6in)

Step 3b: Effective height: The effective heights for the two walls can be found from 
the data in Tables 6.1 and 6.2, and Eq.(3.35),jaoting the masses are equal at all floors:

He = X M , )  = 11.90/0.967=12.3 m (wall 1) (40.3ft)
/=) /=1

= 15.03/1.211 = 12.4 m (wall 2) (40.7ft)
design displacement at effective height, stiff wall: From Eq.(3.26):

A , = (/w,. Â .)/52(mfA,.) =0.1987/0.9673=0.2055

design C. o f M. displacement at effecdve height: From Eq.(6.36):
A,„,n = A„,s„ ■ AhhM(r / An s,iff = 0.321x0.2055/0.2875 = 0.229 m (9.0 in) 

nominal twist at effective height: By proportion: t •
= 0.003167 x 0.2055/0.2875 = 0.00226

Step 3c: System yield displacement: Substituting //, = He = 12.3 m in E_q.(6.5) we 
find the yield displacements for the two walls, at the effective height are = 0.033J/m 
and Ay 2 — 0.0661 m., Since we have assumed A = 1.4, the system yield displacement at 
the effective height is, from Eq.(6.34):

Ay,sys = (K1 1 VB )Ayi + [V21 Vs )A ,2 = (1 -4 / 2.4) x 0.0331 + (1 / 2.4) x 0.0661 = 0.0468/77 
Step 3d: The system displacement ductility demand is thus:

(  A ,, -  /A„„ = 0.229/0.0468 = 4.9
Step Jef^Base shear force: The effective clamping is found from Eq.(3.17a) as:

r H -0 = 0.05 + 0.4441 — ■ -  1 = 0.162= 0.05 + 0.444.
lin  ) ^4.9X7i

The displacement reduction coefficient, from Eq.(2.8) is

Rs =(0.07/(0.02 + ^))°5 =0.620

and the corner displacement, at T=4.0 sec, corresponding to £= 0.162 is thus 0.75x0.620 
=0.465 m. (18.3 in). The damped spectrum is included in Fig.6.18(b). By proportion, the 
effective period of the SDOF system is:
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Te =  4 .0 x 0 .2 2 9 /0 .4 6 5  =  1.97 sec

From Eq.(3.33) the effective mass of the SDOF system is:
H

/», = £ ( « , .A,.)/Arf = 3000x0.9673/(^x0.2055) = \4\20kN/g (3173 kips/g)
/=]

From Eq.(3.1), the effective stiffness at design response level is

Ke = 4 x 2meITe2 = An1 x (14120/9.805) /1.972 = \4651 kN I m 

and finally, the base shear, from Eq.(3.2) is: 

(^ = V ^ j = KeAd = 14657x0 .229  = 3356kN (754 kips)

Step 3f: To determine the torsional stiffness, we first need to estimate the stiffnesses 
of walls 1 to 4. Continuing with the initial assumption of X — 1.4, the design strengths of 
walls 1 and 2 are

V} =3356x(1.4/2.4) = 1958AN; and V2 =3356x(l/2.4) = 1399iUV

From the yield displacements calculated above, the ̂ tas-tie stiffnesses1 are thus:

(k)=VJ A y] =1 9 5 8 /0 .0 3 3 1  = 59154kN I m - 

= V2 / A y2 =1 3 9 9 /0 .0 6 6 1  = 2 1  \ 6 5 k N  I m

The stiffness of walls 3 and 4 in the transverse (X) direction, are based on the 
assumption of equal base shear strength in the orthogonal directions, and a yield 
displacement, based on a wall length of 6m, of 0.0441, resulting in:

k3 =k4 =0.5x3356/0.0441 =38050fcV/m
Since the walls are symmetrically placed with reference to C m , and noting that the wall 

length ratio is OC— 2, the stiffness eccentricity is given by Eq.(6.38a) as

Q  0 .5 ( 1 - ^ )  0.5( 1-2X 1.4)
I + aX x 1 + 2x1.4

The first estimate of the rotational stiffness can now be made. From Eq.(6.25):

= (59.2(— 12.5 + 5.92)2 + 21 ,l(l2 .5 + 5.92)2)/4.9 + 2 x  38.1 x 102 =9577MVm2

Step 3g: New estimate o f stiffness and strength eccentricities: From Eq.(6.37) 
the revised estimate of the stiffness eccentricity is:
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■JR/J -  0.00226x 9577 x 10 „ ^  ... . e.e,, = ■ ■ ' ~ ------------------------------ = -6.45m (21.1 ft)
VB 3356

The revised estimate for the wall strength ratio is given by Eq.(6.38b) as:

(0.5~(e„/Lx) _ (0.5 + 6.45/25) _ l g ?  
a(0.5 + eg/Lx ) 2(0.5-6.45/25)

Second cycle: With the new estimate of X, the following revisions result:

Design displacement: ADsys — 0.2275 m (8.96 in)
Yield displacemen t: Aytsys = 0.0454m (1.7 9 in)
Design ducdlity: fi =5.01
Effecdve damping: £ =0.163 -
Reduction factor: R% =0.618
Corner displacemen t: Ac, g = 0.464m (18.3 in)
Effective period: Te — 1.97 sec (unchanged)
Base Shear: Vgase — 3356 kN. (754 laps) (unchanged)
Design Strengths: Vj = 2050 kN (461 kips)

V2 = 1306 kN (293 kips)
Wall stiffnesses: kj = 61900 kN / m

k2 = 19800 kN/m 
Torsional stiffness: J r̂  -  9491 MNm2
Stiffness eccentricity: eRX — -6.39 m (21.0ft)
Wall strength ratio: X =1.55

It is clear that the solution has essentially stabilized, and the final values for the wall 
strengths are

V, = 2040 kN (458 kips)
V2 = 1316 kN (296 kips)

Wall Design Moments and Shears: The wall base shears are now distributed to the 
floor levels in accordance with Eq.(3.41), and the shears and moments for the walls, 
corresponding to the design forces are calculated. The results are summarized in Table 
6.3. Note that, except for the wall base moments, the moments and shears will need to be 
amplified for potential excess flexural strength of the base hinges, and for higher mode 
effects (see Sections 3.9 and 4.5). Capacity design for wails is discussed further in/Section 
6 .6 . /  /

Flexural design at wall bases: From Table 6.3 it is seen that the design base 
moments for walls 1 and 2 are 25100 kNm and 16300 kNm (222,300 kip in and 144,400 
kip in) respectively. The axial loads at the wall bases, including self weight are estimated 
to be 2200 kN and 1700 kN (495 kip and 383 kip) respectively. The design moments 
apply at the design displacement, and hence the provided flexural strength should match 
these values at the curvatures developed in the two walls at the design displacements.
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Table 6.3 Design Forces and Moments, Design Example 6.1

Floor Height
(m)

Wall 1 
Ai 

(m)

Wall 1 
Fi 

(kN)

Wall 1 
Vi

(kN)

Wall 1 
Mi 

(kNm)

Wall 2
Ai

(m)

Wall 2
Fi

(kN)

Wall 2
Vi

(kN)

Wall 2
Mi

(kNm)
16.8 0.288 606 606 0 0.367 400 400 0
14 0.235 496 1103 1698 0.297 324 724 1121

11.2 0.184 388 1490 4785 0.229 250 974 3150
8.4 0.134 282 1772 895" 0.163 178 1152 587'
5.6 0.086 181 1953 13920 0.102 112 1264 9100
2.8 0.041 87 2040 19390 0.048 52 1316 12640

0.0 2040 25100 0.0 1316 16330
Sum 0.967 2040 1.205 1316

Wall 1 is governed by the material strain limits, and hence the design curvature is 

(j)D̂  =0.012/lw = 0.009/m

Wall 2 is governed by the roof drift limit. A maximum plasdc rotation was calculated 
as Op = 0.0152. The design curvature for wall 2 is thus:

*d,4 =0y+0p =-0.001156 + 0.0152 !{LP =1.233) = 0.0135/m

It is decided to use uniform distribution of flexural reinforcement along the lengths of 
both wails. As was noted in Section 5.6.1 in relation to flexural design of beams, 
distributing the flexural reinforcement uniformly along a section, rather than 
concentrating the same amount at the section ends has little effect on the flexu/iral capacity 
of the section. Distributed reinforcement results in better control of shear deformations, 
a reduced tendency for bar buckling, and better P-A control as a consequence of higher 
post-yield stiffness.

Moment-curvature analyses including the effects of reinforcemenj/strain-hardening 
and concrete confinement result in flexural reinforcement areas of$(>00 mm2 (13.3 in2) 
corresponding to a reinforcement ratio of 0.43% for wall 1, and 18500 mm2 (28.7 in2), 
corresponding to a reinforcement ratio of 1.92% for wall 2. Although these are within 
typically accepted limits for walls (0.3% to 2.0%), the ratio for the 4 m wall is rather high. 
It is decided to increase the width of the wall from 250 mm to 300 mm. Redesign results 
in a reduced reinforcement area of 1^000 mm2 (26.4 in2), with a corresponding 
reinforcement ratio of 1.42%.

6.4.7 Simplification of the Torsional Design Process

The approach developed in the previous sections has been presented in the interests 
of completeness, and because of the philosophical basis of DDBD, which aims to 
achieve the limit-state displacement in the design seismic event. However, the procedure 
is somewhat lengthy, and for minor structures, the economy associated with designing for



C hapter 6. Structural W all Buildings 353

a minimum base shear force may not justify the additional design effort. In such cases a 
conservative design approach may be adopted.

When the flexible wall governs the design (see Section 6.4.5(a) Step 2), the process is 
straightforward, and no simplification seems warranted. However, when the stiffer wall 
governs the design, then a reasonable simplification will be to design for a centre-of-mass 
displacement equal to lAAstj/r, determined at the effective height, based on the stiff wall 
displacement profile. The design steps are then identical to the case when the more 
flexible wall governs design.

6.5 FOUNDATION FLEXIBILITY EFFECTS ON CANTILEVER WALLS

6.5.1 Influence on Damping

The influence of foundation flexibility effects in DDBD was briefly introduced with 
specific reference to cantilever walls in Section 3.5.4(b), where it was noted that 
foundation flexibility increases the elastic displacements, but has a lesser, or zero 
influence on the design displacement, depending on whether the design displacement is 
strain-limited or drift-limited. In both cases the design system ductility demand is reduced 
by foundation flexibility, and as a-consequence, the effective damping may also be 
reduced. The topic was also introduced in Section 1.3.4(c) with reference to problems 
considering foundation flexibility within a force-based design environment.

In Fig.6.19, the elastic displacement at the effective height resulting from foundation 
flexibility is A/r, increasing the yield displacement from Ay to A\. If the design 
displacement Ap is strain-limited, then the design displacerrient also increases by 
essentially the same amount to AV A small additional inc^ase may result from the 
increased base shear resulting from the post-yield stiffness of the structural response 
causing additional rotation on the flexible base. In this qise the displacement ductility 
demand is found to be

A n + A ,.
U=  A - /  (6.41a)

If the design displacement is limited by a code specified maximum drift, then 
foundation flexibility will increase the yield displacement, but not the design 
displacement, and the design displacement ductility demand will be

An
/*= . - -  (6.41b)

A;, + A f

In both cases, the design ductility demand will be less than for the equivalent rigid-
base case, and hence the equivalent viscous damping will also generally be reduced.
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(a) Structure (b) Force-Displacement

Fig.6.19 Influence of Foundation Flexibility on Design Displacement

However, as noted in Section 3.5.4(b) foundation deformation will generally also be 
accompanied by additional damping, resulting from hysteretic soil response, and 
radiation damping. As shown in Section 3.5.4(b), this can be inclucfed^in the DDBD 
procedure by using a system equivalent viscous damping of

g =~ ^ _ r— 6̂A2)
'As, +  A ,

where is the structural damping associated with the structural displacement ductility 
demand As/Ay = (Ay> - AP)/Ay. Limited experimental evidence2 supports foundation 
damping ratios in the range 0.05, for foundations responding without uplift, to 0.15 for 
foundations uplifting and reaching maximum overturning moment capacity.

6.5.2 Foundation Rotational Stiffness

Unless very massive foundadon structures or support on piles with tension uplift 
capacity are provided, some uplift on the tension edge on the foundadon/soil interface 
must be expected. This has a significant influence on the effecdve rotadonal sdffness ot 
the foundadon, which must be included when estimates are made of the foundation- 
induced displacement at the effective height. Consider the wall foundation shown in 
Fig.6.20. The foundation has been sized to provide a static factor of safety against gravity 
loads of 6, and the soil is represented by elasto-plastic response with a soil deformation at 
yield of 25 mm (1 in). Under gravity loads the settlement is thus approximately 4 mm 
(0.16 in).

2 pers. comm. R. Paolucci
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R ocking D isplacem ent at He (m)
r

1.0

Bearing pressure  
profiles at d ifferent 
stages o f uplift

1. Gravity loads., M= <x> ll o

2. Mo = PLp/6; 0o =: Pu/(3kvLp)
3. M = 2 M 0; e = 40c
i M = 2 .3 3 M 0; 0 = 90o

5. M = 2.48M 0; 0 = 270o

Fig.6.20 Foundation Compliance Effects for an Uplifting Spread Footing

The initial elastic rotational stiffness K$ can be determined by imposing a unit 
rotation on the footing/soil interface resulting in

K > = k > ' n " k,l> (643)

where kv is the vertical subgrade modulus for the soil/foundation (kN/m3, or kips/in3),
and Bf and LF are the width and length of the footing/soil interface.

The foundation rotation due to a design base-shear force Vsase for an elastic
foundation will thus be

0F =VBaSe(He +hr ) I K 9 (6.44)

and the rotation-induced displacement at the effective height will be

A F =ffF(H ,+ h F)=Vt (HI + hFf / K l, (6.45)
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However, the above formulation applies for conditions where the footing remains in 
contact with the soil along the full length of the footing. This is unlikely to be the case in 
many spread footing designs, as it would require uneconomically large spread footings.

In fact, foundation rocking may be beneficial to structural response as additional 
damping is provided, and the displacements resulting from foundadon rocking may 
reduce the structural displacement demand, and hence the damage potential.

Figure 6.20 includes bearing pressure profiles at different stages of uplift, numbered 2 
to 5. At profile 2 the foodng has zero stress at the tension edge, corresponding to the 
limit for which Eqs.(6.43) to (6.45) apply. The peak bearing stress is twice the gravity load 
bearing stress. At profile 3 the foodng has uplifted over 50% of the length, and the 
maximum bearing stress is twice that for profile 2 (i.e. four dmes gravity load bearing 
stress). The moment required to develop this profile is twice that for profile 2, but the 
foundadon rotadon has increased by a factor of 4. The effecdve sdffness is thus only 
50% of that given by Eq.(6.43).

At profile 4, only 1 /3rd of the foodng remains in contact with the soil, and the 
maximum compression stress is 6 dmes the gravity load value — equivalent to the uldmate 
bearing stress in this example. The moment is now 2.33 dmes that for profile 2, and the 
rotadon is 9 times larger, indicating an effective (secant) sdffness that is only 26% of the 
fully elasdc value. The foodng can condnue to rotate with small increase in moment 
capacity, by plasdc deformadon of the soil (profile 5), with condnual degradation of the 
effective stiffness. For the conditions represented in this example, the shear 
force/rocking, displacement relationship has been included in the plot of Fig.6.20, which 
includes the bounding envelope resulting from P-A effects (see Section 3.6). Although 
the peak lateral \force (at approximately 0.29P) seems large, it should be recalled that 
structural walls generally have substantially larger tributary areas for inertia force than for 
gravity load. n.

The recommendations^for stability of cantilever walls (Section 6.1.3) suggested 
matching the ultimate overturning moment capacity of the foundation to the input 
corresponding to overstrength conditions at the base hinge. Assuming an overstrength 
factor of (fp — 1.25, this would imply that conditions at the design lateral forces would 
correspond almost exactiy to profile 3 (uplift of 50% of the foundation length). This limit 
condition for design of spread footings is included in many design codes. It is apparent, 
then, that the appropriate stiffness to use for estimating foundation compliance effects is
0.57^0 where Kqis given by Eq.(6.43).

It is of interest to investigate the significance of foundation flexibility for the typical 
example shown in Fig.6.20. Using standard DDBD procedures the effective height is 
found to be 13.8 m (45.3ft). Flexural reinforcement expected yield strength is f ye — 462 
MPa (67 ksi).

F o u n d a d o n  d is p la c e m e n t: We assume that at design strength, the foundation uplift
corresponds to profile 3, as noted above. In this case we do not need information about

Structural yield: Fr o m Eq. (6.5): A . 0.00231
8

= 40.9mm (1.61 in)
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the soil stiffness or the base shear force. The maximum bearing stress is 0.67pu and hence 
the maximum setdement is 0.67x25mm = 16.75 mm. The foundation rotation is hence 
dp — 0.01675/6 =0.00279 radians, and the displacement at the effective height is

Af =0f (He +hF) = 0.00279(13.8 + 2.5) = 45.5mm (1.79 in)

Thus the displacement at the effective height, resulting from foundadon compliance, is 
10% larger than the structural component of yield displacement. The influence on design 
will be considerable.

6.6 CAPACITY DESIGN FOR CANTILEVER WALLS

The need for protection of locations and actions against unintended inelastic response 
has been emphasised already in different parts of this text (e.g. Sections 3.9, 4.5 and 5.8). 
In particular, the treatment of Section 3.9 used as an example a current, widely accepted 
approach for determining the required distribution of flexural and shear strength up 
cantilever walls to account for flexural overstrength at the wall-base plastic hinges, and 
for dynamic amplification resulting from higher-mode contributions to response.

It was noted in Section 5.8, in relation to capacity design of frames, that existing 
methods for capacity protection did not adequately account for the influence of ductility 
demand. Inelastic time-history analyses (ITHA) showed that when the intensity of 
excitation (and hence the system ductility demand) was increased, the influence of higher
mode effects in amplifying the envelopes of column flexure and shear also increased. 
Simple design equations were presented to represent this effect.

Investigations into the response of cantilever wall structures!72! using ITHA has 
indicated similar, though more pronounced trends. In this study, six walls, from 2 storeys 
to 20 storeys were designed to a linear displacement spectrum with a corner period at 4.0 
sec, and corner displacement of 0.594 m (23.4 in) for 5% damping. This corresponds to a 
PGA of 0.4g, and medium soil conditions.

The walls (see Fig.6.21) all had the same tributary floor mass of 60 tonnes, and gravity 
load of 200 kN at each level, and were designed in accordance with DDBD design 
principles to achieve maximum drifts of about 0.02 at roof level. Wall lengths (/w), widths 
'b), reinforcement contents (pi) and bar sizes (db) varied from wall to wall in order to 
satisfy the design displacement criteria. Details are listed in Table 6.4, which also includes 
the calculated plastic hinge length (L/>), the expected displacement and curvature ductility 
demands (JÛ JÛ , the effective period at maximum displacement (7^, approximately equal

to Te/.yjjUA ), and design base shear force and bending moment (Vgase9 and M̂ ase)-
Note that limiting the drift to 0.02 results in displacement ductility demands that are 

less than typical code limits of //a = 5 in all but the two-storey wall. The six designs were 
subjected to time-history analysis using a suite of five spectrum-compatible earthquake 
records. These records were intensity-scaled to 50%, 100%, 150% and 200% of the
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design intensity to investigate the sensitivity of the results to intensity, and hence to 
displacement ductility demand.
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Table 6.4 Wall Details for Capacity Design Study

Wall b
(m)

lw
(m)

Pi

1
tL 

3 'w'

lp
(m)

Te (sec) vb
(kN)

Mb
(kNm)

A 0.20 2.0 0.0046 14 0.58 6.4 20.6 1.2 242 1232
B 0.20 2.5 0.0080 14 0.86 3.4 12.6 1.8 312 2917
C 0.20 3.3 0.0162 20 1.49 1.9 6.0 2.6 446 8114
D 0.25 4.0 0.0172 28 2.22 1.3 2.7 3.1 590 16222
E 0.25 5.0 0.0161 24 2.83 1.2 2.2 3.7 664 24372
F 0.30 5.6 0.0177 28 3.52 1.0 1.0 3.9 830 38739

Averaged results from the ITHA are presented in Figs. 6.22 and 6.23 for moment 
and shear envelopes respectively, and compared with values based on two different 
current design approaches. The first design approach is the procedure represented in 
Fig.3.28, and adopted in several design codes^1**3!, and the second is a modal 
superposition approach, also commonly specified in design codes, where the design 
envelopes for shear and moment are determined from an elastic modal superposition 
using the elastic acceleration spectrum, with the results then divided by the design 
displacement ductility demand. In Figs.6.22 and 6.23, these alternative approaches are 
identified as Cap.Des and SSRS/|Ll respectively. Note that the SSRS method of modal
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combination was used in the latter case, but identical results would have been found from 
the more rigorous CQC method since the modes were well-separated. In these figures 
“IR” indicates the intensity factor applied to the standard spectrum-compatible records. 
Thus “IR = 1.5” indicates 150% of the design intensity, and so on. The results, for both 
ITHA and design methods include only the dynamic amplification, since material 
overstrength was not included in the analyses, except for the proportion of overstrength 
resulting from reinforcement strain-hardening.

Referring first to Fig.6.22, we see that the time-history analysis results indicate only 
small increases in wall base bending moment with increasing intensity, as expected, since 
the increase, once the nominal moment capacity has been reached is only the result of the 
post-yield stiffness of the moment-curvature characteristic at the wall base. However, at 
levels above the base, and particularly at wall mid-height, moments increase very 
significantly with increasing intensity, especially for the eight- to twenty-storey walls. It is 
apparent that both existing design procedures are non-conservative at the design 
intensity, (IR = 1.0) and increasingly so at higher intensities. For the two- to eight-storey 
walls, where the design displacement ductility exceeds 2 (see Table 6.4), the multi-modal 
moment envelope is non-conservative even at 50% of the design intensity.

In Fig.6.23 it is again seen that the time-history shear force envelopes are strongly 
influenced by seismic intensity, (and hence by ductility level), and that both the capacity 
design and muld-modal design envelope are significantly non-conservative. For the two-, 
four-, and eight-storey walls, the time-history base shear force at IR=1 is almost twice 
the multi-modal value, with a slightly smaller discrepancy for the capacity design 
envelope, and for these three walls, the shear profiles at IR=0.5 exceed the design profile 
at all heights. At intensity ratios of IR=2, base shear force is between 2.5 and 3.7 times 
the multi-modal design envelope. For the taller walls the SSRS/|Ll envelope exceeds the 
capacity design envelope, and thus the discrepancy from the capacity design value is even 
higher.

The discrepancies between the capacity design and time-history shear forces are more 
problematic than the corresponding moment discrepancies of Fig.6.22. Although un
intentional plastic hinging (which could be the consequence of designing to either the 
Cap.Des or SSRS/|1 capacity moment envelopes of Fig.6.22) at levels above the base is 
undesirable, some limited ductility demand should be sustainable without failure. 
However, the consequences of the imposed shear demand exceeding the shear capacity, 
by such large margins, could be catastrophic shear failure.

6.6.1 Modified Modal Superposition (MMS) for Design Forces in Cantilever 
Walls

Examination of Fig.6.23 indicates that at an intensity ratio of IR=0.5, where ductility 
demand is low, or non-existent for all walls, the shape of the shear force envelope is well 
predicted by the modal analysis procedure. This suggests that it might be possible to 
predict the shear force and moment envelopes by simple modification of the modal 
response spectrum (SSRS/|l) approach.
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A basic and simple modification to the modal superposition method is available by 
recognizing that ductility primarily acts to limit first-mode response, but has 
comparatively little effect in modifying the response in higher modes. If this were to in 
fact be the case, then first-mode response would be independent of intensity, provided 
that the intensity was sufficient to develop the base moment capacity, while higher modes 
would be directly proportional to intensity. This approach is very similar to that proposed 
by Eibl and KeintzeP2! as a means for predicting shear demand at the base of cantilever 
walls.

This modified modal superposition approach is clearly an approximation to response. 
Although the first-mode inelastic shape is very similar to the elastic shape, and hence the 
approximation should be reasonably valid for the first mode, it is clear that the higher 
modes will be modified to some extent by the first-mode ductility, since a basic feature of 
the modified higher modes will be that, when acting together with ductility in the first 
mode, they cannot increase the base moment demand, which will be anchored by the 
moment capacity of the base plastic hinge. The approach suggested below extends the 
basic method of Eibl and Kreintzel for shear forces to the full height of the wall, and also 
provides a method for determining the appropriate capacity-design moment envelope. 
Modifications to this approach are discussed in relation to dual wall/frame structures in 
Chapter 7, and to bridges in Chapter 10. A brief discussion of possible further 
improvements in included in Section 6.6.1.(c).

(a) Shear Force Profiles: To investigate the appropriateness of a simple approach based 
on the above arguments, shear force profiles were calculated based on the following 
assumptions.

• First-mode shear force was equal to the shear profile corresponding to 
development of the base moment capacity, using the displacement-based design 
force vector. However, for low seismic intensity, where plastic hinging was not 
anticipated in the wall, simple elastic first mode response, in accordance with the 
elastic response spectrum was assumed.

• Higher-mode response was based on elastic response to the acceleration spectrum 
appropriate to the level of seismic intensity assumed, using the elastic higher-mode 
periods. Force-reduction factors were not applied.

• The basic equation to determine the shear profile was thus:

yUUSi=(Ki.,+yk+¥k,+-T to-**)

where Vmmsj is the shear at level f\ Vw,i is the lesser of elastic first mode, or ductile 
(DDBD value) first-mode response at level i\ and V2E1 , and V3E1 etc are the elastic modal 
shears at level i  for modes 2, 3 etc. Predictions for shear force profiles based on this 
equation are included in Fig.6.25.
(b) Moment profiles: A simple modal combination, similar to that of Eq.(6.46), but 

multiplied by a factor of 1.1, over the top half of the wall, with a linear profile from mid
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height to the moment capacity at the base of the wall was found to provide best results 
for moment profiles (see Fig.6.24). The combination equation over the top half of the 
wall is thus:

M m u  = 1 ■ K « iw  + + * £ , + - > “  W

where Mmms/i is the moment at level i> Mjo,i is the lesser of the elastic first mode 
moment and the ductile design moment, and M 2 e j  and M $ E , i  etc are the elastic modal 
moments at level / for modes 2, 3 etc.

It is seen that the MMS approach provides a good representation of the time-history 
moment profiles in Fig.6.24 at the design intensity (IR=1.0), for all walls. There is a 
tendency for the MMS predictions to be slighdy unconservative for the shorter walls, and 
slightly conservative for the taller walls, though the discrepancies are generally small. The 
change in shape of the moment profiles with increasing intensity is also well represented 
bv the MMS predictions. As discussed above, slight unconservatism in the moment 
profiles is acceptable, as it implies only limited ductility demand, and there is a case for 
deleting the 1.1 factor in Eq.6.47.

Similar behaviour is apparent for the shear force comparisons of Fig.6.25. At the 
design intensity the agreement between the MMS and THA profiles is extremely close 
for the four- to twenty-storey walls, and is adequate, though a little unconservative for the 
two-storey wall. Similar conclusions apply at different intensity levels, though the MMS 
approach becomes increasingly conservative for the taller walls at high intensity ratios.

(c) Effective Modal Superposition: As noted in Chapter 10 with relation to capacity 
design of bridges, a simple and philosophically attractive (from a DDBD viewpoint) 
further modification to the MMS approach is to carry out the modal analyses using 
effective stiffness of members at maximum displacement response, as is used in the 
design process. Thus, for a cantilever wall, the stiffness of the first storey would be 
reduced in proportion to the displacement ductility demand when defining the structure 
for modal analysis. With this modification, the approach is identical to that presented in 
rhe previous section.

6.6.2 Simplified Capacity Design for Cantilever Walls.

In many cases the additional analytical effort required to carry out modal analysis of 
rhe designed wall structure to determine the capacity design distribution of moments and 
shears will be unwarranted, and a simpler, conservative approach may be preferred. The 
following approach, based on the data presented herein, is suggested.

The results for both moment and shear force envelopes indicate that dynamic 
amplification increases as the intensity ratio increases. This would indicate that 
displacement ductility demand should be included in the design equation. Also, it would 
appear obvious that the number of storeys, which has been used in the past as a key
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Fig.6.24 Comparison of Modified Modal Superposition (MMS) Moment
Envelopes with ITHA results, for Different Seismic Intensities
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Fig.6.25 Comparison of Modified Modal Superposition (MMS) Shear Force
Envelopes with ITHA Results, for Different Seismic Intensities
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parameter for capacity design (see Eq.(3.62), e.g.) should be less significant than the 
fundamental elastic period Tt of the wall. This leads to the following recommendadons:

(a) Moment Capacity-Design Envelope: A bilinear envelope is defined by the 
overstrength base moment capacity (/pMr, the mid-height overstrength moment Mt)o.5H> 
and zero moment at the wall top, as illustrated in Fig.6.26(a) for a four-storey wail. The 
overstrength base moment is determined from section and reinforcement properties, as 
suggested in Secdon 4.5. The mid-height moment is related to the overstrength base 
moment by the equadon:

M,0.5 Hn - C ]T - (j)°MB , where C, T = 0.4 + 0.0757]
V f

> 0.4 (6.48)
J

Tension
shift

Capacity
envelope

<tPMB
(a) Moment Capacity Envelope

Capacity
envelope

(b) Shear Force Capacity Envelope

Fig. 6.26 Simplified Capacity Design Envelopes for Cantilever Walls

Note that ///^ is the effective displacement ductility factor at overstrength, and that 
tension shift effects should be considered when terminating flexural reinforcement. 
Tension shift, resulting from inclined flexure/shear (diagonal tension) cracking results in 
flexural reinforcement stress at a given level being related to the moment at a level closer 
to the wall base. In effect, this “shifts” the design moment profile upwards, as suggested 
by the upper dashed line in Fig.6.26(a). The tension shift depends on wall length and the 
amount of transverse reinforcement provided, but it is reasonably conservative to assume 
a tension shift equal to lyy/2, where lw is the wall length. A complete discussion of 
tension shift is available in [PI].

(b ) S h e a r  F o rc e  C a p a c ity -D e s ig n  E n v e lo p e : The shear force capacity envelope is
defined by a straight line between the base and top of the wall, as indicated in Fig.6.26(b).
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The capacity-design base shear force is related to the DDBD base shear force by:

V Le=f(O vVBase. (6.49)

where COv = 1 + - ^ C 2 T and C2 T = 0.067 + 0.4(7]. —0.5) <1.15 (6.50)

The design shear force at the top of the wall, V°n is related to the shear at the bottom 
of the wall by:

K ° = C 3V lse where C3 = 0.9 -  0.37] > 0.3 (6.51)

In Eqs.(6.48), (6.50) and (6.51), 7} is the elastic fundamental period.
Predictions for the ratio of wall moment at mid-height to base moment, and dynamic 

amplification factor for base shear force are compared with values obtained in the ITHA 
for different elastic periods and ductility levels in Fig.6.27.

Displacement Ductility Demand, JLX Displacement Ductility Demand, J l

(a) Ratio of Midheight to Base Moment (b) Base Shear Dynamic Amplification

Fig.6.27 Comparison of Capacity Design Equations (6.48) and (6.50) with Time 
History Results for Different Elastic Periods and Ductility Levels

In Fig.6.27, the results from the ITHA are shown by solid data points, with the same 
symbol used for all different ductility levels (i.e. different seismic intensities) for a given 
wall. Predictions by the equations are shown as continuous lines. Agreement is good for 
both mid-height moment ratio and base shear force. The slightly unconservative nature 
of the wall mid-height moment ratio prediction has been deliberately imposed since 
minor inelastic response at levels above the base is acceptable. However, it should be
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noted that since nominal flexural strength will be matched to the capacity envelope, and 
since inelastic response occurs at moments lower than the nominal moment of the 
bilinear moment-curvature approximation (see Fig.4.6(a), e.g.), the inelastic response may 
in some cases be significant.

(c) Strength Reduction Factors for Capacity Design: When determining the required 
amount of transverse reinforcement for shear strength, a strength reduction factor of (|)v 
= 0.85 should be used, together with conservative estimates of material strength, as 
discussed in Section 4.5. However, with flexural strength this may not be practicable, nor 
necessary. Since moment demand may reduce only slowly up the wall, designing for 
conservative material strengths together with a flexural strength reduction factor can 
mean that flexural reinforcement content is required to increase at levels above the base, 
particularly when it is remembered that axial load, which contributes to flexural strength 
of walls will decrease with height. Recognizing, again, that the consequences of minor 
inelastic flexural action at levels above the base are acceptable, we recommend that 
flexural reinforcement areas at levels above the base be determined using the same 
expected material strengths used to design the wall base, without inclusion of a flexural 
strength reduction factor. This is of course reasonable, as the flexural reinforcement at 
the base is likely to extend, with uniform strength for a considerable height above the 
base (note that use of short starter bars with lapping of flexural reinforcement at the wall 
base is undesirable, as the strength of lap-splices tends to degrade under repeated load 
reversals, and the plastic hinge length is condensed below levels implied by Eq.(6.7)).

(d) Overstrength factors for Capacity Design: A consequence of the argument
presented in the previous section is that the flexural overstrength factor adopted in 
Eq.(6.48) should only include the component resulting from strain-hardening, and not 
from excess yield strength. Since strain-hardening will normally be included in the 
DDBD process for determining required flexural reinforcement at the wall base, this 
implies that (j)° — 1.0 for flexural design. If strain-hardening is ignored in determining 
required base flexural reinforcement content, a value of (jp — 1.2 should be adopted, as 
implied by Section 4.5.2

For shear design, the value of (fp should include allowance for material overstrength, 
strain-hardening, and excess flexural reinforcement over that required to provide the 
design strength, if provided, and should normally be determined by moment-curvature 
analysis. If not, the values recommended in Section 4.5.2 should be adopted.

(e) Design Example 6.2: Capacity Design o f a Wall Building: The capacity design 
moments and shear forces for the walls of Design Example 6.1 (Section 6.4.6) are to be 
determined using the simplified approach of Section 6.6.2. Note that moments and shears 
for the walls corresponding to the distributed base shear force are already included in 
Table 6.3.
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Capacity Moments: Using the recommendations in Secdon 6.6.2(d) the over
strength factor to be used in Eq.(6.48) is taken as (jp — 1.0. From Section 6.4.  ̂ the design 
system ductility was found to be jÛys — 5.0. Equation (6.48) requires the initial (elastic) 
period 7} to be calculated. This can be estimated from the effective period Te using the 
relationship:

Tl = l l + r ^  (6.52)
l  i  /V

where r  is the ratio of post-yield to elastic stiffness (refer Fig.3.1, e.g.). Taking a typical 
value of r  ~ 0.05, and the effective period of Te -  1.9^ sec, the initial period is found to 
be Tj -  0.975 sec.

The mid-height moments are found from Eq.(6.48) as follows:

Coefficient Ct\ C, r = 0.4 + 0.0757) (///1-1) = 0.4+ 0.075x0.975x4 = 0.693 

8m  Wall: M°05H = C[ T</>°MB = 0.693x1x25100= 17400foVm (153,000 kip in)

4m  Wall: M°Q 5H = 0.693 x 16300 = 11300kNm (100,000 kip.in)
The corresponding design overstrength moments are listed as M° in Table 6.5,

together with the moments Mj corresponding to the distributed base shear force from
Table 6.3. Note that when designing the reinforcement content for each wall, tension 
shift should be applied to the moments of Table 6.5 in accordance with the 
recommendations of Section 6.6.2(a).

Capacity Shear Forces: Moment-curvature analyses using the maximum feasible 
vield strength of the reinforcement of f y — 1.3fy — 546MPa (79.2 ksi) show that at the 
design curvatures (see Example 6.1) the overstrength factors for both walls are <p° -  1.09.

Wall Base: From Eq.(6.50): C2 T = 0.067 + 0.4(7). -  0.5) = 0.067 + 0.4x 0.475 = 0.257 

and (ov =\ + [ } l l f )C 2J =1+(5/1.09)0.257 = 2.18 
Hence from Eq.(6.49):
8m  Wall: V°Base = f(OvVBaxF = 1,0 9 x2.18 x 2040 = 4847/UV (1089 kips)

4m  Wall: V°Bme = $°oovVBaseF = 1.09x2.18x1316 = 3127&V (703 kips)
Wall Top: The wall top shear force is related to the wall base shear force by Eq.(6.51), 

where C3 =0.9-0.37) >0.3 = 0.9-0.3x0.975 = 0.608.' Thus:
8m  Wall: V° = C/°Base = 0.608x4847 = 2944kN (662 kips)

4 m Wall: V° = C3VBase = 0.608 x 3127 = 190 IkN (427 kips)
The corresponding design shear forces are listed as V° in Table 6.5, together with the 

shears, Vi, from distribution of the design base shear force from Table 6.3.
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Table 6.5 Capacity Moment Shears and Moments for Walls of 
Examples 6.1 and 6.2.

Floor Height Wall 1 Wall 1 Wall 1 Wall 1 Wall 2 Wall 2 Wall 2 Wall 2
(m) Vi Vo Mi M° Vi Vo Mi M°

(kN) (kN) (kNm) (kNm) (kN) (kN) (kNm) (kNm)
6 16.8 606 2940 0 0 400 1900 0 0
5 14 1100 3260 1700 5700 724 2105 1121 3770
4 11.2 1490 3580 4780 11300 974 2310 3150 7540
3 8.4 1770 3900 8960 17400 1152 2510 5880 11300
2 5.6 1950 4210 13920 19900 1264 2720 9100 12900
1 2.8 2040 4530 19390 22500 1316 2920 12640 14600
0 0 2040 4850 25100 25100 1316 3130 16330 16300

6.7 PRECAST PRESTRESSED WALLS

In Section 5.11.3 the concept was introduced of providing flexural strength and energy 
dissipation to precast concrete frames by prestressing beams through the columns with 
unbonded post-tensioned tendons, supplemented by bonded mild-steel reinforcement 
grouted into ducts passing through the column and into the beams on either side (so- 
called “hybrid” design). It is obvious that the concept of unbonded prestressing can also 
be applied to precast wall buildings. Fig. 6.28 shows two possible applications. In the first 
(Fig.6.28(a)), wall elements are stacked vertically and post-tensioned to a foundation. This 
essentially creates a structural system that behaves in the same way as a prestressed beam- 
to-column connection. A single crack can be expected to form at the critical section at 
the wall base, and will have non-linear elastic force-deformation characteristics. Note, 
however, that the footing must be of sufficient size and weight to ensure that rocking 
does not develop at the soil/footing interface. Note also that the gravity weight 
contributes to the flexural resistance of the wall base in exactly the same way as does the 
prestressing.

Figure 6.28(a) also shows additional mild steel bars running through the wall/footing 
interface. The normal way this would be achieved would be with bars cast into, and 
protruding below the lowest precast wall element, grouted into preformed holes in the 
foundation. These mild-steel bars are expected to yield in tension and compression as the 
base crack forms, in much the same fashion as conventional reinforcement. Since the gap 
opening at the wall base can be large, it is normal to de-bond the mild steel bars for some 
length into the precast panel, to ensure strains at maximum displacement response are 
kept to acceptable limits — normally less than 3%.

Provided that the combined axial force at the wall base resulting from gravity weight 
and prestressing exceeds the compression yield force of all the mild steel bars crossing 
the base interface, the residual displacements at zero lateral force will always be zero. In 
this case the mild steel bars provide additional strength and damping to the bilinear elastic 
response, resulting in the “flag-shaped” hysteresis loops of Figs.4.33 and 5.36. Wall 
designs using this concept have been tested^H7l with excellent results.
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(a) Single Wall (b) Linked Walls

Fig.6.28 Pfecast Post-Tensioned Walls

An alternative configuration, also providing additional damping, is illustrated in 
■Fig.6.28(b). Two parallel in-line precast walls are separately prestressed to the same 
foundadon structure, and are linked by ductile shear links. Under lateral force, each wall 
rocks about its compression toe, resulting in relative vertical deformation across the shear 
links which act as miniature coupling beams (see Section 6.8). If these are designed to 
have low yield displacements, considerable energy can be dissipated, and at the same time 
the overturning capacity of the complete system of two walls is enhanced above the sum 
of the capacities of the individual walls.

This system was adopted for the PRESSS five-story test building described in Section 
5.11P:>8,Pi9i# A photo showing the linked walls during construction of the test building is 
shown in Fig.6.29. Performance under simulated seismic loading was extremely 
satisfactory, with only superficial damage, characteristic of the serviceability limit state 
being observed under a level of seismic intensity equivalent to 150% of the Level 2 
(damage-control) earthquake.

Design of precast post-tensioned walls closely follows the methodology introduced in 
Section 5.11. However, since the design deformation is dominated by the single crack at 
the base of the wall, the design displacement profile at the damage-control limit state may 
reasonably be assumed to be linear. Designs will always be governed by the code drift 
limits. Yield displacements can be based on the stiffness of the un-cracked wall sections 
up the full height, and effective damping levels for walls without supplemental damping 
can be assumed to be 5%, related to the effective stiffness. For systems with a portion of 
the flexural strength provided by added mild-steel reinforcement, or by shear links, the 
effective damping can be determined from the equation for flag-shaped hysteresis, in 
Section 5.11.3(c) (Eq.(5.72)).



372 Priestley, Calvi and Kowalsky. D isplacem ent-Based Seism ic D esign o f Structures

Fig.6.29 Precast Post-tensioned Wall Panels During Construction of the PRESSS 
Five-Storey Precast Building Testlpi9L

6.8 COUPLED STRUCTURAL WALLS

6.8.1 General Characteristics

As already noted in Section 6.1.2, coupled structural walls form an efficient structural 
mechanism for resisting seismic actions. Since plastic hinges are intended to form not 
only at the bases of the walls but also at both ends of the coupling beams, energy 
dissipation is distributed over a more extensive region of the structure with the result 
being higher equivalent viscous damping than is the case with linked cantilever walls.

The general characteristics of coupled walls are described by reference to Figs.6.30 
and 6.31. Coupled walls typically occur in the configuration suggested in Fig.30(a) where 
two symmetrically opposed channel-shaped walls enclosing service facilities such as 
elevators, stairs and toilets are linked at floor levels by beams. Typically these beams have 
low aspect ratios Lqb/^cb, (see Fig.6.30(c)) and hence are susceptible to shear effects 
which must be carefully considered in the design, as discussed subsequently. In Fig.6.30 
the service core is shown centrally located in the floor plan, but it is not uncommon for 
service cores to be constructed hard against a boundary to maximize free floor space. In 
this case torsional effects become critical and must be considered using the techniques 
described in Section 6.4. The structural system, excluding the coupled walls, may consist 
of structural beam/column frames connected to the service core by beams, in which case 
the seismic response is more complex since the lateral seismic forces are carried partly bv 
the frames and partly by the coupled walls. The behaviour of dual wall/frame buildings is
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Fig.6.30 Structural Layout of a Coupled-Wall Building

considered in Chapter 7. More commonly the additional structural system will consist of 
flat-slab floors supported on prop columns, with little effect on the seismic response.

A typical elevation of a coupled-wall building is shown in Fig.6.31 (a), where the 
additional structural system for gravity-ioad support consists of columns and slab. Lateral 
forces are resisted by two mechanisms: 1) Bending moments are developed in the 
coupling beams which induce axial forces in the walls in exactly the same fashion as 
described for frames in Section 5.5.2. This results in a couple of seismic forces at the wall 
axes resisting a part of the overturning moment and 2) The individual walls
resist a portion of the base OTM by flexural action. The equations developed in Section
5,5.2 apply directly to this case, and are combined together in Bq.(6.53):

n n
^  o tm  ~~ X W  = + Mw 2 + TL — Mw, + MW2 + Y y cBjL (6.53)

/=l /=l

where VcBi are the seismic shear forces in the coupling beams, L is the distance between 
wall centrelines and and are the base moments in walls 1 and 2 respectively, 
including the effects of the seismic axial forces T.
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(b) Overturning Moment (c)Coupling-Beam Moment (d)Wall Moments (Sum) 

Fig.6.31 Elevation and Moment Profiles for Coupled Walls

The coupling beams modify the structural response not only by increasing the 
overturning capacity, and hence the base shear strength, but also by reducing the 
displacements of the structural system at nominal yield. The degree of coupling, and its 
influence on response is normally quantified by the ratio of the base moment M c b ,b
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provided by the coupling beams to the total OTM. Hence
n

Pcb ~ M CB,B / MQtm ~ ^CBi)L / MOTM (6.54)
r -1

The moment components for seismic response are illustrated in Fig.6.31(b) to (d). The 
total cantilever overturning moment Y,F\HX is shown in Fig.6.31(b). The profile of 
moment resistance provided by the coupling beams is shown in Fig.6.31(c) and the sum 
of the moments provided by the two walls, found by subtracting Fig.6.31(c) from 6.31(b) 
is shown in Fig.6.31(d).

In the past, using initial stiffness force-based design, the value for pCB has been based 
on elastic analysis. Paulaylp27l has shown, however, that elastic analysis is not a logical 
process for determining the distribution of forces in coupled walls, since most, if not all, 
of the coupling beams will yield at a fraction of the lateral base shear at which the walls 
vield. Paulay has suggested that the distribution of strength between the two mechanisms 
resisting lateral force, as described above, should be a designer’s choice, and should not 
be dictated by the largely irrelevant initial stiffness of the coupling beams and walls. It will 
be noted that this approach agrees well with the DDBD principles developed in previous 
chapters. The actual value of ficR adopted for design will normally be in the range 0.25 to 
U.75, and will be chosen such that wall reinforcement ratios are within acceptable bounds. 
A further consideration is that the value of j8cb should not be so large that the shear 
forces in the coupling beams induce a tension force at the wall base that exceeds the 
gravity load. Note that even when coupling between walls is only by slabs, the influence 
on response can still be considerable, particularly for small buildings, and should be 
considered in the design process. With slab coupling, the value of j .3 c b  will not normally 
be a design choice, but a consequence of slab reinforcement provided for gravity loads.

Paulay also suggested that the vertical distribution of coupling beam strength should 
.llso be a designer’s choice, and that the rational choice will normally be to make the 
strength of all coupling beams equal. Thus, for a building of n storeys, the shear to be 
carried by each coupling beam will be

7/ _  PcB^OTM t, cc\
V CBj ~ ------------   ( 6 -5 5 )nL

Assuming equal moment capacities at each end of the coupling beams, the required 
rlexural strength is

M C B J  ^ ‘^ C B J -^ C B  ( 6 .3  6 )

It will be shown shordy that the ductility demands on coupling beams will often be 
very large, and difficult to accommodate with conventional flexural reinforcement. The 
use of diagonal reinforcement for coupling beams, also pioneered by Paulay^28!, is more 
appropriate.
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The design approach suggested by Paulay^27 for coupled structural walls is well suited 
to DDBD, and is presented in the following, with some modifications and extensions.

6.8.2 Wall Yield Displacement

It is found from trial analyses that the displacement profile of the walls at design 
response is typically linear with height. The effective height to determine the yield and 
design displacements is given by Eq.(3.35). Given the discrete nature of the lateral floor 
forces, the ratio of effective height to total wall height varies with the number of storeys, 
n. Assuming that floor masses and storey heights are equal, the ratio of effective height to 
total height can be expressed, from Eq.(3.35) as

\
'L & A .H . V 'L m A ,  ! H , =  (“ 7)

V 1=1 1=1 J \  1=1 /=1 J

Equation (6.57) is plotted against n in Fig.6.32(a). For 8</?<20, a value of /////„=0.7 
is a reasonable approximation. For buildings with numbers of storeys outside this range, 
or where floor mass or storey height vary significantly with height, the effective height 
should be found directly from Eq.(3.35). To illustrate trends, however, the effective 
height ratio of 0.7 will be used in the following discussion.

In Fig.6.31(b) the total overturning moment profile has been approximated by a 
straight line from the base to the effective height. As discussed in Section 6.2.1 this is a 
reasonable approximation. With HJHn — 0.7, the OTM at the effective height is found 
to be Mo tm ,He ~  § A AIM o tm ,b  independent of the number of storeys, as can easily be 
verified. The profile of overturning moment resistance provided by the coupling beams 
(Fig.6.31(c)) may also be approximated by a straight line. The linearization, shown also in 
Fig.6.31(c), based on equal coupling-beam moment capacities up the height, has base- 
level and roof-level moments of

M  cb  , b ~ "I" 0 • 5 ̂)VCB j L (a) an<̂  M Cb ,n VCB j L (b) (6.58)

In Eqs.(6.58) V c b j  is the shear force corresponding to flexural strength of a 
characteristic coupling beam. The coupling-beam resisting moment at an effective height 
of 0.7Hn is thus

M ' c B , H e  =  ( 0 -3 n  +  Q - 5 ) V C B , i L  ( 6 -5 9 )

The yield displacement at the effective height can now be found by subtracting the 
displacement associated with the coupling-beam moment profile, Ay2 from the 
displacement associated with the total overturning moment profile, A n o t i n g  that the 
average yield curvature at the wall base is (pyw (see Section 4.4.3(c)) and by proportion, the
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wall-base curvatures corresponding to the total overturning moment, .̂/ , and the 
coupling-beam moment, (/>y 2  are

$  )■ I ~  fivW  ^ 0  P c b )  ( a )  a n c ^  0 1 ' 2  $ v w  ' f l t 'B  ^  P c b )  0 3 ) (6.60)

Using simple moment-area analysis, the vield displacement at the effective height of 
-He is thus found to be

-V- = A . -  A„, f 0.175 f He
1 Pen v 1 Pcb J

0.1225 + 0.188«

Number o f Storeys, n (3CB ( -M c b b /Motm>b) pCB ( -M c b b /M0 tm ,b)

(a) E ffective Height (b) Coupling Ratio (c) Contraflexure Height

Fig.6.32 Design Parameters for Regular Coupled Walls

Note that Eq.(6.61) has been expressed in terms of the full wall height Hn rather than 
the effective height. The dimensionless coefficient C4 in Hq.(6.61) has been plotted for 
the practical range of 0.25</?c£—O.̂ S in Fig.6.32(b) for walls of 8, 12, 16 and 20 storeys
i.e. the range of storeys for which the approximation that He — 0 . 1  Hn is reasonable).

Figure 6.32(c) includes additional information that will be required in the design 
process; that is, the ratio of the height of the point of contraflexure in the wall moment 
profile (see Fig.6.31(d)) to the total wall height Hn. This defines the height at which the 
drift will be a maximum, since the moment reversal occurring above this point reduces 
the drift in the upper storeys. This height can be calculated by comparing the moments 
at height Hqf from the moment profiles of Figs.6.31(b) and (c). The results, which are 
based on the actual profile of overturning moment rather than the linearization in 
Fig.6.31 (a) are plotted as a function of J3cb in Fig.6.32(c). It was found that the results for 
Hcf were very weakly dependent on number of storeys, and hence Fig.6.32(c) can be 
used for n >4, within the range of Pcb plotted.
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6.8.3 Coupling Beam Yield Drift

It was asserted earlier that the coupling beams would generally yield at a much lower 
level of response than would the walls. It is of interest to examine this statement in some 
depth, requiring information on the yield drift of the coupling beams to be determined. 
This information will also be needed to determine the ductility demands on the coupling 
beams. Consider the generic relationship between wall drift and coupling beam drift at a 
given level, as illustrated in Fig.6.33. Although the wall drifts Bw are related to the wall 
centrelines, they should more correctly be related to the neutral axes of the two walls. 
However, as Paulayf727) has pointed out, this makes little difference to the relationship 
between wall and coupling beam drifts since the vertical displacement of the coupling 
beam is increased at the end adjacent to the wall with seismic compression, and reduced 
by an almost equal amount adjacent to the wall with seismic axial tension, compared with 
the approximation shown in Fig.6.33(a).

(a) Drift Geometry (b) Coupling Beam Reinforcement

Fig.6.33 Deformation and Detailing of Coupling Beams

The rotation at the ends of the coupling beam is thus related to the wall rotation at the 
same level by

0CB= e w{\ + iw /lcb) (6.62)

where lw and Lqb are the wall and coupling beam lengths (see Fig.6.33(a)). As noted, the 
maximum wall drift will occur at the contraflexure height Hcf■ Thus when the walls reach 
their (average) yield curvatures (j)yw , the corresponding drift in the coupling beams at the 
contraflexure height will be
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@CB,Wy ~ 0 .5(j)y w HCF (l + IW / LCB ) (6.63)

The yield drift of a conventionally reinforced coupling beam (see Fig.6.33(b)) may be 
related to its yield curvature (/)y}cB in similar fashion:

0CBty ~~ -̂5*PyCB (0 ‘5Lcb + L SP )(1 + Fv ) (6.64)

where LSp is the strain penetration (Eq.4.30), and Fy is a flexibility coefficient to make 
approximate allowance for additional shear deformation, and which has been related to 
the coupling beam aspect ratio^l by F =3(hCB /LCB)2 • To gain some insight into the
relative magnitudes of coupling beam drift given by Eqs.(6.63) and (6.64), we take the 
typical example of a 12-storey building with Hn—42 m (137.8 ft), /^—5.6 m (18.4 ft), 
Lcb~ 1-8 m (70.9 in), hcs =750mm (29.5 in). The shear-flexibility coefficient is found to 
be Fy — 0.52; We assume J3cb ~ 0-5, and hence, from Fig.6.32(c), Hqf ~ 0.6Hn.

From Eq.(6.63), with an average yield curvature from Section 4.4.3(c) of 1.75£yHw

0cs,hv =0.5x1.75^(0.6x42/5.6X1 + 5.6/1.8) = 16.2£v

From Eq.(6.64), with a yield curvature of \ .l£y/hCB and Lsp =0.2 m (typical value)

0cBtV = 0.5x1.7 f y (0.5x1.8 +0 .2 )x l.52/0.75 = 1.90*v

Thus the rotation of the coupling beam at the contraflexure height, imposed at wall 
yield, is about 8.5 times the yield drift of the coupling beam, assuming reinforcement with 
equal yield strength in the walls and coupling beam. Although the imposed rotations at 
levels above and below the critical level will be lower than the value found above, it is 
clear that all coupling beams will yield before the walls reach yield curvature.

If the coupling beams are reinforced with diagonal reinforcement, as indicated in 
Fig.6.33(b), the yield drift will be somewhat larger than indicated by Eq.(6.64), since 
reinforcement stress will be close to constant along the bars [Pl]. However, the diagonal 
bars will ensure that shear deformation is negligible. Allowing for some tension stiffening 
and the influence of additional conventional “basketting” reinforcement, it is 
recommended that the value given by Eq.(6.64), with Fy = 0, be increased by 50%.

6.8.4 Wall Design Displacement

The wall design displacement may be governed by wall-base material strains, or by 
wall drift (at Hcf) in the usual manner. It may also be limited by the material strains in the 
coupling beams. All three options will need to be examined.

(a) Wall-base M aterial Strains: The limit-state curvatures of Section 6.2.1(c) may be 
used directly with reasonable accuracy. Hence the design displacement, corresponding to
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material strain limits is

A d£ — A y + [(pis — (p},)LpH e (6.65a)

where the yield displacement is given by Eq.(6.61) (or by Fig.6.32(b), or more generally
from first principles, since the inflexion height is known), and the plastic hinge length is
given by Eq.(6.7).

(b) Wall Drift Limit: As noted above, the critical drift occurs at the contraflexure height, 
Hcf (Fig.6.32(c)). In this case, the design displacement will be

= A v + (#C “  Q - 5 ( P y W H CF ) H e  (6 '65b)

where 6c is the code drift limit.

(c) Coupling Beam M aterial Strain Limit: Coupling beam material strains may limit 
the design displacement capacity of coupled walls, particularly when conventional 
reinforcement, rather than diagonal reinforcement is used. We consider the two options 
in turn:

(i) Conventional reinforcement: The standard equations for plastic rotation advanced in 
Section 4.2 may be modified and used to predict the coupling beam rotation limit. 
Equation (4.31) defines the plastic hinge length. For coupling beams, the low length/ 
depth aspect ratio invariably results in the strain penetration limit governing. That is, Lp— 
2L$p. Assuming the concrete is well-confined by transverse reinforcement, which will also 
be necessary to restrain the compression bars from buckling, the tensile strain limit will 
govern the plastic rotation capacity. Again making an assumption that the distance from 
the centroid of tensile reinforcement to neutral axis is 0.75hcB, the limit-state rotation 
capacity of the coupling beam for damage control will be ^

u ?
A

r
0.75 hCB

and the corresponding critical wall rotation, at Hcf wi^ be

0Wrn = , ° CBM-  (6.65c)
1 + lw / Lcb

The design displacement can now be found substituting 6wycn for 6c in Eq.(6.65b). This 
will frequently be found to be more critical than the code drift limit. Taking the example 
discussed in Section 6.4.3, and assuming a limit-state strain of £sll — 0.10, we find



Chapter 6. Structural W all Buildings 381

0.6x0 .1x2x0 .2  AA/1̂  , . ^ 0.0427 AA1A/19rn . = ----------------------= 0.0427 and hence Q = ---------------= 0.0104
CBJs 0.75x0.75 1 +5.6/1.8

This is approximately half of the typical code drift limit of 0.02-0.025 and thus governs.
(ii) Diagonal reinforcement: With diagonal reinforcement, in the configuration shown in 

Fig.6.33(b), the reinforcing steel behaves like a steel truss. The stress (and therefore the 
strain) in a diagonal bar is essentially constant for the full length of the diagonal bar, in 
either tension or compression, depending on the direction of seismic response. As a 
consequence, the wall rotation at the end of the coupling beam is significantly larger than 
in the case of conventional reinforcement. The damage-control limit state rotation 
capacity of the coupling beam can again be related to a limit-state strain of 0.6£«,, 
constant over half the beam length plus the strain penetration: *

0.6£ ((X5Lcb + Lsp)
°CBj\a ~ ^  (6’6od)0.75 hCB f -  |

Using the same numeric values adopted for conventional reinforcement, we find that

0.6x0.1(0.9 + 0.2) A11_ , ,  . 0.117 AA. 0CdCR , =----------     = 0.117 and hence: 0 = --------------- = 0.0285
CB’clm 0.75x0.75 11'CB I + 5.6/1.8

In this case, the coupling beam is unlikely to limit the design displacement response.

6.8.5 Equivalent Viscous Damping

It would be overly conservative to estimate the equivalent viscous damping on the 
basis of the wail structural ductility7 demand // = A/)/AJh since the coupling beams, which 
may well contribute the major portion of seismic resistance (i.e., if jScb- 0.5) will have 
much higher ductility demands, with a hysteretic shape associated with higher damping 
potential. It is thus clear that a weighted average should be used, similar to the 
formulation presented in Section 3.5.4. Since the lateral forces carried by wall and 
coupling-beam action are in proportion to the base moments carried by the two actions, 
and the associated displacements are identical, Eq.(3.37) can be modified to provide the 
following appropriate formulation: /, ^  > r j

L . = 0 -  A * )#, + PcbScb U  / J p ?  f , (6.66a)

where and £cb are the damping associated with wall and coupling-beam action. The 
former is calculated directly from the wall ductility demand, using Eq.(3.17a). The latter 
should be based on the average ductility demand of all the coupling beams. This is 
approximately 0.6"7 times the peak ductility demand, which occurs at HCf The 
corresponding value for equivalent viscous damping (£cb) should be based on Eq.(3.17b).

If the coupling beam strength is not uniform over the building height, the more
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complete form of the damping equation given by Eq.(6.66b) should be used:

= (1 -  f i a  &  + Pc. 5 = % ^ *  (6.66b)s y s
" CBi2 *

6.8.6 Summary of Design Process

The design process proceeds in the following steps:' ^
Step 1: Chose structural geometry. ^ ^  ^  ^
Step 2: Chose proportion of OTM carried by coupling beams: j3cs> Avoid values that 
will induce resultant tension force in either of the walls, and ensure that reasonable steel 
ratios are obtained for the walls. This may require some iteration.
Step 3: Determine the height of contraflexure, by calculation, or for regular buildings 
from Fig.6.32(c)
Step 4: Determine the effective height from Eq.(3.35) or for regular buildings from 
Fig. 6.32 (a)
Step 5: Calculate wall yield displacement from Eq.(6.61) (or from first principles, if 
preferred), or for regular buildings from Fig.6.32(b).
Step 6: Calculate yield drift of coupling beams at the contraflexure height Hcf from 
Eq.(6.64), increasing this by 50% if diagonally reinforced coupling beams are used.
Step 7: Calculate the system design displacement from the alternatives of Eq.(6.65)
Step 8: Calculate the drift at the contraflexure height at the design system displacement 
Step 9: Calculate the wall and coupling beam average displacement ductility demands. If 
the coupled walls are symmetrically opposed, use the average curvature here (Refer to 
Section 4.4.3).
Step 10: Calculate the system equivalent viscous damping from Eq.(6.66)
Step 11: Determine the required base shear force and overturning moment by DDBD 
principles in the usual manner. Distribute this overturning moment between walls and 
coupling beams in proportion to the chosen value for /3cb•
Step 12: Calculate the seismic shear to be carried by each coupling beam from Eq.(6.55). 
Step 13: Calculate the required strength for each coupling beam from Eq.(6.56), and 
design the coupling beams.
Step 14: Design the wall-base flexural reinforcement.
Step 15: Use capacity design procedures to design the wall for flexure above the base, and 
for shear. Note that if coupling beams are designed with diagonal reinforcement, the bars 
act to resist both flexure and shear. Hence there is no need to adopt a capacity design 
approach for coupling beams with diagonal reinforcement.

6.8.7 Design Example 6.3: Design of a Coupled-Wall Building.

A 12-storey structural wall building with a floor plan similar to that of Fig.6.30 is to be
constructed in a region where the seismicity is characterised by a linear displacement
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response spectrum for 5% damping with a corner period of 5 sec and a corresponding 
displacement of 1.00 m (39.4 in) for the damage-control limit state. A code drift limit of 
0.02 may govern design. The floor weights at each level, including an allowance for 
seismic live-load, are 5 MN (1120 kips). A coupled-wall solution is selected, and the 
following geometry chosen as step 1 of the design process:

Channel walls, flange length lw — 5 m (16.4 ft), web length 8 m (26.2 ft); wall 
thickness 250mm (9.84 in); storey height = 3.2 m (10.5 ft).

Coupling beams-. Length Lcb — 1.8 m (70.9 in); depth hCB — 800 mm (31.5 in) 
Materialproperties. f c = 25 MPa, (3.63 ksi) fy = 450 MPa (65.3 ksi) f j f y = 1.2 
Reinforcing bar diameters of 28 mm and 20 mm (1.1 in. and 0.787 in.) diameter are 

envisaged for flexural reinforcement of coupling beams and walls respectively.
We consider only the design for the direction parallel to the coupling beams, and 

follow the steps outlined in the previous section.
Step 1: The geometry has already been defined.
Step 2: Initial calculations indicate that to avoid net tension in either wall, no more than 
60% of the OTM should be carried by the coupling action. Hence we chose /3cb — 0.6 
Step J;T he building is regular, and from Fig.6.32(c) the contraflexure height is 0.52Hn.

Since the building height is H„ = 12x3.2=38.4 m, Hcf -  0.52x38.4=20.0m (65.5 ft) 
Step 4: From Fig.6.32(a) the approximation that the effective height is He—0.1Hn is 
satisfactory; hence 7/^=0.7x38.4=26.9m (88.2 ft)
Step 5: Yield displacement: From Fig.6.32(b), the yield displacement coefficient is C4 — 
0.14. /Adopting anjiverage yield curvature; coefficient of 1.75:? ) , 1 X 4  h 0

(pviV =\J5ey /lw = 1.75x 0.002475/5 = 0.000866/m Y  ^^G/C-CC
Note that the yield strain is based on an expected yield stress offye—\.\fy. The yield 

displacement is thus
A;j = C4<f>ytlvH* =0.14x0.000866x38.42 =0.179#w (7.05 in)

Step 6 : It is decided to use diagonally reinforced coupling beams to take full advantage of 
code displacement limits (see step 7). We require the strain penetration length, Lsp, and 
the beam yield curvature (ĵ cB-

For D28 bars, from Eq.(4.30): LSP = 0.022f yedhl = 0.022x495x28 = 305mm
From Section 6.8.3, with diagonal bars, Fy — 0
From Eq.(4.57(d): (f)y CB = 1 Hev /hCB = 1.7x0.002475/0.8 = 0.00526
Hence, modifying Eq.(6.64) as suggested for diagonally reinforced coupling beam, 

with Fy = 0,

0CB y = 0.5</)vCB(0.5LCB + LSP)( 1 + Fv 5J= 0.5 x 0.00526 x 1 .205 x 1 .0x 1.5 = 0.00475

Step 7: Design Displacement;The three alternatives are separately considered:
(a) Wall strain Limits. We assume £su — 0.10. Hence Eq.6.10(b) applies directly for the 
aamage-control limit state:
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(pdc =0.012! lw =0.072/5 = 0.0144/m
The strain penetration length for D20 reinforcement is 218 mm, hence from Eq.(6.7), 

with He replaced by Hcf, the plastic hinge length is

LP = 0.2(7;, / f y ~\)Hcf + 0 .\lw + LSP = 0.04x 20 + 0.1 x 5 + 0.218 = 1.52m 
Hence from Eq.(6.65a):

AD£ = A + [0k -  0 )LPHe = 0.179 + (0.0144 -  0.00087)x 1.52 x 26.9 = 0.723 m
? ' { Y\ C

(b) Wall drift lim it at Hcr- From Eq.(6.65b): _

Ad0 = Ay + (dc  -  0.5<f>yWHCF )He =Q.\19 + (0.02 -  0.5 x 0.00087X 20)26.9 =0.482 m

(c) Coupling Beam drift lim it (from M aterial strains): From Eq.(6.65d):

= Q.fe„(0.5Lc. + L„) = 0.6x0.1(0.9 + 0.305) ^ , 2 0 w  
0.75 ha  0.75x0.8 ' .

The corresponding wall drift, from Eq.(6.65c) is

Ow c b = — — -----= — l— = 0.0319
• 1 + Lw/Lcb 1 + 5/1.8

This exceeds the wall drift limit of 0.02, and hence the coupling beams do not limit the 
design. Note, however, if conventional reinforcement was used in the coupling beams it 
would be found that the maximum wall drift would be 0.0161, limited by the coupling 
beam drift capacity.

Case (b) governs, and hence the design displacement is Ad = 0.482 m (19.0 in).
Steps 8 and 9: Since the code drift Limit governs the design, the maximum coupling 
beam drift is found from Eq.(6.62) as

e cB = 0.02(l + 2.78) = 0.0756
The displacement ductility demands are thus:

Wall: //h/= 0.482/0.179 = 2.7
Coupling Beams: JUcb -  0.0756/0.00475 = 15.9

This is the peak ductility demand, applying at the contraflexure height. The average 
ductility demand is taken as 0.67 jU c b  — 10.7.

Step 10: System ductility demand: The damping ratios for the wall and coupling beams 
are found from Eqs.(3.17a and b):

4  =0.05 + 0 . 4 4 4 ^ - \ ) ! m w = 0.05 + 0.444x1.8/(#x 2.8) = 0.139 
4cb = 0.05 + Q.S6S{/j cb -  \)lMfiCB = 0.05 + 0.565x 9.7 /(xx 10.7) = 0.213

Substituting into Eq.(6.66):
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4 ,  = 0 -  Pcb )£ , + & *& *=  0.4 x 0.139 + 0.6 x 0.213 = 0.183

Step 12: DDBD to determine total base shear: The procedure is straightforward and 
has been elaborated in many previous examples. A summary of results is provided here: 

Displacement spectrum reduction factor for £= 0.183: — 0.586
Corner period displacement for £ — 0.183: As,o.U4 ~ 0.586 m
Effective period: Te — 4.11 sec
Effective mass: me — 46.4MN/g
Effective sdffness: K̂ , — ll.IM N /m
Design base shear: Vsase — 5.33 MN
Design Base OTM M0Tm -143.4 MNm

Step 13: Coupling Beam Shear: With Pcb—0.6, the shear force to be carried by each 
beam is given by Eq.(6.55), noting there are two coupling beams at each level, as

VCB, = PcbM°™ = - -6 x l 4 —  = 0.527MV (118.5 kips) )
2nL 24(5 + 1.8) _  ^  V O x * '

With reference to Fig.6.33(b), allowing two layers of reinforcement in each diagonal, 
with a distance of 100 mm between the coupling beam corners and the centres of the 
lavers of diagonal bars, the angle CC of the diagonal bars is a  = tan-1 (0.6/1.8) = 16.7°.
Each diagonal contributes a shear resistance of AsljfyesmQL , as a tension or compression 
force, and hence, with fye =495 MPa, the steel area required in each diagonal is

ASd — 0.52'7/(495x2sinGC) m2 =1852 mm2 (2.87 in2). This can be provided by 4D24 
bars (2.3% short-fall in capacity, which is not significant). Note that development length 
>f these bars into the wall should be conservatively designed as a consequence of the high 

force to be anchored, and the less than ideal conditions for anchorage in the slender wall 
:langeslpiL

Step 14: Calculations for the reinforcement requirements for the walls are not 
included here as they are straightforward. It should be noted that the distribution of the 
:otal wall moment of 0.4x143.4=57.3MNm between the two walls is a designers choice. 
The seismic axial force in the walls must be considered when determining the 
reinforcement requirements. Since the wall with axial compression from the coupling 
?eam shears will have a naturally higher flexural strength than the wall with axial tension, 
::iore moment capacity will normally be allocated to it. Final reinforcement details for the 
■ alls will also need to consider requirements for seismic resistance in the orthogonal 

direction (not considered in this example). Note that the total uplift force on the tension 
■.vail from coupling beam shears is 24x0.527MN = 12.6MN. This is less than the assessed 
gravity load of 13.0MN, and hence the design suggestion of no net tension force in the 
-.'. all is met.

S te p  1 5 : The walls must be designed for dynamic amplification of moment and shear.
The procedures developed in Section 6.6 can conservatively be adopted unless design
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rules specifically applicable to coupled walls are available. Note that coupling beam 
flexural strength may be enhanced by the contribution of slab reinforcement in an 
adjacent monolithicaUy connected floor slab. This will increase the system shear capacity, 
which must be considered when checking the shear capacity of the walls.



DUAL WALL-FRAME BUILDINGS

7.1 INTRODUCTION

Chapters 5 and 6 have respectively considered the DDBD of frame buildings and wall 
buildings. In many cases buildings will have both frames and walls contributing to seismic 
resistance, as illustrated in Fig.7.1.

N

s

* r

Z

*1

£ V
(a) P la n  V ie w

-.i-.-.-.-.-.-.-.-.-.i.-
: i ■:*: 
h  : ■ :t: 

i ■■■■■ *:.jw . ; .| . -
i 1 
} I

. r|.-
L

(b) Long Direction Model

 q  ^
 C

Ijj ------- C
* >: TTTTrrrrr :j: 1--------C
£ zzzzzzzzz  ̂zzzzzm :i o-------c

i i ................. □
(c) Short Direction Model

Fig.7.1 Different Wall-Frame Configurations 
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In the long direction of the floor plan, the structural system consists of boundary 
frames integrally linked to central structural walls by moment-resisting beams. Some 
columns of the frames act as boundary elements to the walls. In the short direction, the 
structural system consists of end walls and parallel one-way frames. The lateral 
deformadons of the frames and walls are constrained to be equal by the in-plane stiffness 
of the floor diaphragm, as suggested by the dashed links in Fig.7.1(c) but there is no 
moment transfer between the frames and the beams. In the analysis model described by 
Fig.7.1(c) the strength and sdffness properties of four frames and two walls will be 
represented by the frame and wall shown.

The behaviour, and design, of dual wall-frame systems has similarities to that of 
coupled walls, which were considered in Secdon 6.8. The typically large stiffness variation 
between the frames and the walls will mean that the walls yield at significantly lower 
lateral displacements than do the frames, and hence distributions of lateral force between 
walls and frames based on initial elastic stiffnesses have little relevance to ductile response 
of the structure. Consequently, as suggested by Paulay P29l, similar freedom is available to 
the designer in choosing the share of lateral resistance provided by walls and frames as 
has been suggested for coupled walls. The designer may chose the proportion of base 
shear force carried by the frames based on experience and judgement rather than on 
elastic analysis based on generally invalid estimates of wall and frame stiffness. Typically 
the proportion of base shear carried by the frames will be between 15% and 50% of the 
total base shear - rather less than for frame action with coupled walls- but the value will 
depend on the size of the walls, and the relative numbers of frames and walls in the 
structural configuration.

7.2 DDBD PROCEDURE

The design and response of dual wall-frame structures has been investigated from a 
DDBD procedure in detail by Sullivan et aUS3l. The following description relies heavily on 
that work, and on earlier design suggestions by PaulayP529!.

7.2.1 Preliminary Design Choices

As briefly discussed above, two subjective design choices are made before any design 
calculations are initiated:

(a) Frame Shear Ratio /The proportion (3? of total base shear Vgase carried by the frame 
is selected. Hence:

V f  ~  ( 3 F  V B a s e  ’  ( a )  aI1<^ ~  0  _  P f  ^ B a s e  0 3)  ( '

where VF and Vw are the base shear force carried by the frames and walls respectively. 
Note that Pf is similar to the coupling ratio J3cb describing the coupling of walls, but is 
related to base shear rather than overturning moment.
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(b) Vertical Distribution o f Beam Strength: The second choice available to the 
designer is how the frame strength is distributed vertically. Since displacement response 
will be effectively controlled by the stiffness of the walls, there is little danger of a soft- 
storey mechanism of frame displacement developing, and there is much more freedom of 
choice available to the designer. Paulayl29! has suggested a distribution of beam strength 
that results in constant frame shear at all levels. This implies that the frames are loaded 
laterally by a single point load at roof level, equal to Vp as shown in Fig.7.2(b), which is 
effected by designing beams at all levels for equal strength except at roof level, where the 
beam strength should be 50% of the strength at other levels. The lateral forces carried by 
the walls are then found by subtracting the frame lateral force from the total lateral 
forces. As suggested in Fig."7.2(c) this implies lateral forces equal to the total forces at all 
levels except the roof, where the lateral force will often be in the reversed direction.

The shear forces resulting from this distribution of lateral forces are shown in 
Figs.'7.2(d) to 7.2(f).

7.2.2 Moment Profiles for Frames and Walls

Total overturning moments resulting from the lateral forces are shown in Fig.7.2(g), 
Together with the vertical distribution of overturning moment for the frames. Although 
these are schematic, they have been based on an eight-storey structure with uniform 
storey heights, and a chosen frame shear ratio of (3f — 0.35. The vertical distribution of 
wall moments, shown in FigP.2(i) is found by subtracting the linear distribution of frame 
moments from the total. For this case (and most cases) this implies a wall contraflexure 
point at a height Hcf, as indicated in Fig.7.2(i). This contraflexure height is an important 
parameter in determining the wall design displacements.

It is useful at this stage to consider the distribution of moments induced in the frame 
bv VFy as illustrated in Fig.7.3. Here we assume that all frames in a given direction are 
identical, and the calculations relate to the combined strength of all frames. We also 
assume a point of contraflexure at mid-column heights at each storey. Initially we assume 
that all storey heights are equal at Hs- In each storey the sum of the column shears is

'Z v c = v, + y1 + v, = v F (7.2)

Consideration of moment equilibrium at the beam/column joint centres requires for 
constant storey height Hs that the sum of all beam-end moments at all levels except roof 
level, measured at the column centrelines must be
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Fig.7.2 Suggested Distribution of Lateral Forces and Overturning Moments in a 
Dual Wall-Frame Building without Link Beams
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Y\ 5

Fig.7.3 Frame Moments and Shears for Constant Frame Shear, VF

At roof level, the sum of beam moments should ideally be half that given by Eq.(7.3) 
since the moment input from the columns at the joint centres is 50% of that at other 
levels. If this suggestion is not adopted, the shear carried by the column in the top storey 
will be greater than in other storeys, unless the column flexural strength is reduced to 
provide a column hinge at the appropriate moment capacity. However, some excess 
strength of the roof level beams, especially in buildings taller than (say) 10 storeys, is 
unlikely to adversely affect performance.

Column base moments are governed by

2 X = 2 > < J / s '2  = 0.5('f //, and Ma =0.5V,Hs CM).

The strength defined by Eq.(7.4) is less than that recommended for column bases in 
Section 5.5.1. This is necessary to maintain the required uniformity of frame shear with 
height. The reason for selecting a higher base moment capacity for pure frame structures 
was to provide protection against a soft-storey mechanism developing in the ground floor 
columns. With a dual wall-frame building, the stiffness of the wall above the base plastic 
hinge provides adequate protection against such a soft-storey mechanism, and hence the 
lower moment, defined by Eq.(7.4) is acceptable.

Note that the designer may select the way in which the total shear force Vf is 
distributed between the different columns in recognition of the different axial forces in 
the columns, and to optimise beam flexural design. If the storey heights vary up the 
height of the building, the modifications to beam design moments is obvious, substituting 
0.5(Hi +///+/) for Hs in Eq.(7.3) where //,- is the height of the storey below the beam
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considered. Beam moments at roof level, and column base moments are found using the 
adjacent storey height in the appropriate equation.

7.2.3 Moment Profiles when Frames and Walls are Connected by Link Beams

The discussion above relates to the situation when the frames and walls are not linked 
by link beams. It thus applies to the design and response in the short direction of Fig.7.l , 
but must be modified for the long direction, where beams frame into the edges of walls. 
The two-bay frame of Fig.7.3 is now modified by connecting it to a wall by link beams in 
Fig.7.4. Note that this does not represent the long direction of Fig.7.1(b) where the wall 
is central, and linked on either side to two-bay frames. A typical beam together with the 
beam moment profile is shown in Fig.7.4(a). If the shear carried by the frames is still 
given by Eq.(7.1(a)), then examination of equilibrium at the joints shows that Eq.(7.3) 
needs modification by addition of the moment Mbr at the right end of the Link beam since 
this contributes to joint equilibrium of the left column. For equal positive and negative 
moment capacities in the beams, the required beam moment capacity, measured at the 
joint centres is

M h =VFHs /nbe (7.5)

where nbe is the number of beam ends framing into beam-column joints (nbe = 5 in 
Fig.7.4(a), but 4 in Fig.7.3).

When the beam moment capacities at each end of the link beam are developed, the 
slope of the moment diagram in the beam results in a larger moment increment, Mb>wan 
being developed at the wail centreline. From geometry,

Mb,wall ~ Mbl + {Mbl ~ )lw,CL I Lb C-6)

where Mbt is the link beam moment at the centreline of the column which is integral with 
the wall, Lb is the link beam span length between column centrelines, Iw,cl is the distance 
from the integral column centreline to the wall axis, and it is noted that beam moments at 
opposite ends of the link beam have opposite signs.

The wall moment increments from link beam action reduce the moment demand on 
the wall in the lower regions of the wall, but increase it in the upper regions, as indicated 
in Fig.7.4(b). The point of contraflexure will also be lowered. Although Fig.7.4(b) is 
schematic, it has been plotted to scale from the example in Fig.7.2(i), where j.% =0.35 and 
the required total beam moment at each level is divided between five moment locations, 
as is appropriate for Fig.7.4(a). The wall length was assumed to be lw ~Lb. In this 
example, the link beams result in a decrease in the base moment demand for the wall of 
37%. The reduction in the wall moment demand at level 0 is compensated by the 
restraining moment resulting from the axial force (T in  Fig.7.4(a)) developed in the wall
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by the beam seismic shear force, balanced by the equal and opposite force Cdeveloped in 
the external column. Although these forces would be the same as those developed in the 
outer columns of a two-bay frame without linking to the wall, and with equal beam 
moment capacities to the Linked example of Fig.'7.4(b), the lever arm between the line of 
action of the seismic axial forces is increased, hence increasing the overturning moment.

M om ent
(b) Influence of Link Beams on Wall Moment Profiles 

Fig.7.4 Moments in a Wall-Frame with Link Beams.

Note that if  beams frame into both ends of the wall, as indicated for the long direction 
in Fig.7. l ,  the reduction in moment demand will occur from the link beams at each end, 
the axial force in the wall will not be influenced by seismic action, and the reduction in 
wall-base moment will be balanced by the couple of axial forces developed in the 
opposite end columns. Again, the distance between these forces is increased compared 
with the case of two frames without linking to the central wall.

The height of the contraflexure point in the walls, which is required for determining 
the yield displacement profile, as discussed in the next section, and also for determining 
the maximum drift, may be determined from the characteristic moment profiles shown in
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Fig.7.4(b) using standard interpolation techniques. Note that although the actual values of 
wall moments will not be known at the start of the design process, the shape is 
completely defined by the chose of /3f> and the relative strengths of beams connecting to 
the walls, when link beams are used.

7.2.4 Displacement Profiles

^ (a) Yield Displacement Profile: In the normal situation, where walls carry at least 50% 
of the total building base shear force, the displacement pattern at yield is effectively 
dictated by the wall moment profile. As has been discussed in relation to coupled wails 
(Section 6.8.2), it is reasonable to represent the wall curvature profile as being linear from 
the yield curvature at the base to zero at the point of contraflexure. It is also reasonable, 
and conservative, to assume that the curvature above the contraflexure point is zero 
when determining storey yield displacements. On the basis of these assumptions, the yield 
displacement profile can be found from standard moment-area analysis as

for Hj HCf

for Hj >Hcf‘

(7.7a)

(7.7b)

where (fryw *s the yield curvature at the wall base, from Section 4.4.3.

J(b ) Design Displacement Profile: It is reasonable to assume that frame strain limits 
will not be critical in determining the design displacement profile. Hence, design 
displacements will either be limited by material strains in the wall plastic hinges, or (more 
commonly) by drift limitations. As with coupled walls^drifts will be a maximum at_th,e 
contraflexure height, Hcf•

^j(i) Wall base material strains govern: The limit state curvatures of Section 6.2.1(c) may 
be used directly. The design displacement profile is thus

(7.8)

where LP is the plastic hinge length, given by Eq.(6.7), using Hcf instead of He unless 
HCF>He. The corresponding drift at the contraflexure height is

@cf ~ fyyw HCf / 2 + [(f)ls (pyW )Lryw 0 ; (7.9)

l

/
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'(H) Code drift governs: If the drift at the contraflexure height given by Eq.(7.9) exceeds 
the code drift limit 6c, then code drifts will govern the design, and the design 
displacement profile will be defined by:

ADi — A yi + [6C — </>yWH CF / 2) / / / ('-10)

^(iii) Correction fo r drift amplification: Work by Sullivan et al!S3! has shown that higher 
mode effects can amplify the drifts above the design targets implied by the first-mode 
design displacement profile for buildings with large numbers of storeys, and where J3f? is 
high. For these cases, they recommend that the drift limit to be used in Eq.(7.10) be 
reduced by multiplying by a drift reduction factor 0)$

@cd ~ ~ 1 -
n-
100

- i ^  + 0 .25 
M OTm  j J

d c  (7.11)

where Motm,f is the total resisting moment provided by the frames at the base, Mqtm is 
the total overturning moment at the bas^and~7Ks the number of storeys. This correcdon 
factor will have negligible influence f o <10.

(iv) Design substitute structure displacement: The design displacement of the SDOF 
subsdtute structure is then given by Eq.(3.26):

A 0 = X M 2h ) / E M J  (3.26)

(c) Elastically Responding Walls and Design Ductility Limits: Section 6.3 
invesdgated the maximum feasible ductility demand for candlever walls based on code
specified drift limits being developed at roof level. These are too conservadve for dual 
wall-frame buildings where the cridcal drift occurs at the contraflexure height, Hqf■ Fof 
example, the aspect rado developed in Eqs.(6.12) and (6.13), above which a wall must be 
designed for elasdc response force-levels should be replaced by

H CFl l w = 0 c l e y (7.12)

That is, the aspect rado is related to the contraflexure height rather than the full building 
height. It is not possible to uniquely define a reladonship between wall aspect rado and 
maximum design ductility demand for a given code drift limit, as is provided in Fig.6.8 
for cantilever walls, since the reladonship also depends on contraflexure height. However, 
the data in Fig.6.8 form a conservadve lower bound for dual wall-frames. In similar 
fashion, the data of Fig.6.9, reladng elasdc response to seismic intensity is too



396 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design of Structures

conservative for wall-frames. For a contraflexure height of Hqf~ 0.5//„ yield displace
ments will be about 2/3rd those plotted in Fig. 6.9.

^7.2.5 Equivalent Viscous Damping

The equivalent viscous damping to be used in the DDBD will need to be a weighted 
average of the damping provided by the frames and by the walls, each of which have 
different displacement ductility demands. Sullivan et allS3l have shown that for wall-frames 
the weighting should be related to the total base resisting moment provided by the 
different structural elements, shown in Fig.7.2(h) and (i). The equivalent elastic damping 
to be used in design is thus

£ _  ^Ŵ OTM.W + ^F^OTM.F (n . ^
MOTM

where and are the damping associated with ductile wall and frame response 
respectively. These require that the wall and frame ductility demands be separately 
evaluated. The wall ductility demand is directly given by

[IW ^yW (7-14)

where A# is given by Eq.(3.26) and Ayw is found substituting the effective height He 
(from Eq.(3.35)) into Eq. (7.7). The wall damping is then found substituting ]Llw into 
Eq.(3.17a).

The frame ductility demand may be estimated with adequate accuracy dividing the 
design displacement by the frame yield displacement at the effective height. Thus

—3̂  t>y
' y F n  '

where the frame yield drift, is given by Eq.(3.8a) or (3.8b) for concrete and steel 
frames respectively. For irregular frames the method described in Section 5.3.3 should be 
used to estimate the effective yield drift. The frame damping is then found substituting 
Hf into Eq.(3.17b) for concrete frames, or Eq.(3.17c) for steel frames.

Equation (7.13) may be used with adequate accuracy for both independent walls and 
frames, and for walls connected to frames with link beams. In the latter case, the frame 
resisting moment Motm,f should be taken as Morn M0tm,w where the wall moment has 
been reduced by the link-beam moment increments as shown in Fig. 7.4(b). This makes 
allowance for the additional energy dissipated by the link-beam plastic hinges. It should 
be noted, however, that a more accurate, and slightly less conservative approach has been 
suggested by Sullivan et aUS3J.
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7.2.6 Design Base Shear Force

The subsequent design procedure is standard, involving calculation of effective mass 
(Eq.(3.33)), effective period (Fig.3.1 (d)), effective stiffness (Eq.(3.1)), and hence base 
shear force (Eq.(3.2)). The base shear is then distributed between the walls and frames in 
accordance with the initial choice of and the required plastic hinge locations (wall 
bases, beam ends and column bases are designed for flexural strength).

7.2.7 Design Results Compared with Time History Analyses

Sullivan et allS3l carried out a large number of designs of wall frame structures using 
the methodology described in the previous sections, and compared the design predictions 
with average ITHA results obtained from a suite of seven spectrum-compatible 
accelerograms. Buildings from four to twenty storeys, with and without (Fig.7.1(c)) link 
beams were considered, with different proportions of base shear carried by the frames. A 
selection of results presenting displacement and drift envelopes is shown in F i g . 5 for 
eight-storey and six teen-storey buildings with and without link beams.

These buildings were designed for a design displacement spectrum representing soft 
soil, with a peak ground acceleration of 0.35g. For the eight-storey buildings, the frames 
were allocated 30% and 40% of the total base shear for the cases without and with link 
beams respectively, and for both the sixteen storey buildings the frames carried 50% of 
the total base shear. All buildings were designed to satisfy wall material strain limits 
corresponding to Rq.(6.10b), and a drift limit of 2.5%. Material strain limits governed for 
the eight-storey buildings, though the corresponding drifts were close to the 2.5% limit. 
The sixteen-storey buildings were governed by the 2.5% drift limit. In order to allow for 
dritt amplification, the drift reduction factor defined by Eq.(7.11) was applied to the 
designs of the sixteen-storey buildings.

Typical displacement ductility levels for the walls and frames were Hw~6 and JUf~2. 
Tvpical base shears were about 17% and 9% of building weight for the eight-storey and 
sixteen-storey buildings respectively, with the base shears for the cases with link beams 
being about 10% lower than for the cases without link beams. The comparatively high 
values for base shear were a consequence of the high design displacements defined by the 
soft soil spectrum. Note that the design base shears for the eight- and sixteen-storey 
buildings differed only by about 5% for reasons discussed in Section 3.10.2.

The plots of Fig.7.5 include the design displacement and drift profiles corresponding 
:o first-mode response shown as solid lines, and the average envelopes of displacement 
;md drift from the inelastic time-history analyses shown as dashed lines. Typical scatter 
from the average values was less than ±20% from the mean value. Also shown is the 
code drift limit of 2.5%. Good agreement between the design and time-history results for 
displacement profiles is apparent in all cases with the time-history results generally 
indicating smaller displacements than the design values. Drifts also agree well with first
mode values, except for the sixteen-storev “with link-beams” analyses (Fig.7.5(h)), where 
:he use of the drift amplification factor has kept the drifts within the code limit.
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D isplacem en t (m)
(a) E ight Storey D isp ., no link beam s

D isplacem ent (m)
(c) E ight sto rey D isp, w ith  l i n k  Beam s

D rift (%)
(b) E ight storey D rift, no link  beam s

D rift (%)
(d) E ight Storey D rift, w ith  L ink B eam s

D isplacem ent (m)
(e) Sixteen Storey D isp ., no L ink Beam s

D rift (%)
(f) Sixteen Storey D rift, no L ink Beam s

D isplacem ent (m)
(g) S ixteen  Storey D isp., w ith  L in k  Beam s
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(h) Sixteen S torey D rift, w ith  L ink Beam s

Fig.7.5 First-Mode Design Parameters Compared with Average Results from 
Seven Spectrum-Compatible Time-History Analyses fS3l
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7.3 CAPACITY DESIGN FOR WALL-FRAMES

The work by Sullivan et allS3l included a detailed investigation of amplification of wall 
and frame shears and moments by higher mode effects. It was found that the modified 
modal superposition (MMS) approach advanced in Chapter 6 for dynamic amplification 
of moments and shears in walls provided a good agreement with inelastic time history 
results (THA) for the walls of four-storey and eight-storey wall-frame buildings, but 
became increasingly conservative as the height of the building (and hence its natural 
periods) increased.

The reason for this increasing conservatism can be explained with reference to Fig.7.6, 
which investigates the influence of period shift, caused by ductility, on the second-mode 
period with respect to the elastic acceleration response spectrum. For low-rise buildings, 
the initial (elastic) second mode period is likely to be on the rising branch, or constant 
acceleration plateau of the acceleration response spectrum, as indicated by T2yi in Fig.^.6. 
Inelastic response in the fundamental mode will inevitably induce a lengthening of the 
higher-mode periods, as indicated by the period shift arrow. However, for low-rise 
buildings the response acceleration is unlikely to decrease since the period will remain on 
the plateau. In fact, for very stiff buildings, there may be an increase in the acceleration 
response' associated with the period shift. In such cases the MMS approach has been 
found to be slightly non-conservative.

Period (sec)

Fig.7.6 Influence of Second-Mode Period Shift on Response Acceleration

For higher-rise buildings, the period shift associated with inelastic first-mode response 
may result in a reduction in acceleration response associated with the second-mode (see
72,2 in Fig.7.6), as the period moves down the constant velocity slope of the acceleration 
response spectrum. In such cases the MMS approach can be expected to be conservative.
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7.3.1 Reduced Stiffness Model for Higher Mode Effects

Sullivan et alfS3’S4l report improved agreement with THA results when the modal 
superposition approach adopted in the MMS procedure is based on a modified elastic 
analysis, where the structure has the stiffness of potential plastic hinge regions reduced to 
values appropriate to the post-yield branch of a bilinear approximation to the moment- 
curvature characteristic (see Section 4.2P). For a dual wall frame building the appropriate 
model for modal analysis can be simplified to the representations of Fig.7.7. In Fig.7.7(a) 
the stiffness of the wall-base and column-base have been reduced to the appropriate 
post-yield stiffness values, together with similar treatment for the beam-end plastic 
hinges. The simplified model of Fig.7.7(b) recognizes that the beam-end post-yield 
stiffness will often be low, and a reasonable approximation is to treat them as having zero 
stiffness. In this case a simple linear model may be used where the base plastic hinge has 
the sum of the post-yield stiffness of all walls and columns, and the vertical element has 
the summed elastic (cracked-section) stiffness of walls and columns.

(a) S tructure w ith  R ed u ced -stiffn ess  p lastic  h inges (b) S im plified  M odel

Fig.7.7 Models for Estimating Higher Mode Response Using Post-Yield Stiffness
in Plastic Hinge Locations^3!

The application of this method is very similar to that described in Section 6.6.1. The 
distribution of wall shear force with height conforms to Eq.(6.46), where the shears from 
modes 2 and higher are found using one of the models of Fig.7.7. Design moment 
envelopes are found using a directly analogous equation to (6.46) where the shears are 
replaced by the modal moments. Thus, the 1.1 factor of F,q.(6.47) is replaced by unity, 
and the equation taken to apply to the entire height of the wall, not just to the top half. In 
both cases the first-mode component is identical to that in Section 6.6.1, being defined by 
the actual strength of the structure in first-mode response. As noted above, this model
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gave improved representation of higher mode effects, particularly for column forces, and 
wall shears, though it tended to be over-conservative for wall moments, and somewhat 
under-conservative for wall shears.

A further modification of the method, termed Effective Modal Superposition 
(EMS) uses the secant stiffness of all members at maximum (design) displacement. This 
method is described in Section 10.5.2(c) related to capacity-design effects in bridges, 
where it was found to produce better estimates of higher mode effects than the MMS 
method described in Chapter 6, or the reduced stiffness model described in this section. 
Although it has not yet been tested for wall or dual wall/frame structures, it is expected 
to produce superior predictions.

7.3.2 Simplified Estimation of Higher Mode Effects for Design

Examination of ITHA results for wall-frame buildings indicates that the interaction 
between the frames and walls generally reduces the influence of higher mode response to 
both the walls and the frames. It is possible to write conservative design rules for both 
elements, that can be used as an alternative to the modified modal analysis described 
above. Clearly the interaction of walls and frames requires that a significant proportion of 
the total- base shear be carried by each of the structural types, and it is recommended that 
the following rules only be applied when the proportion of base shear allocated to the 
frames falls within the range 0.2</?f~—0.6. When J3f<0.2 it is recommended that the 
capacity-design procedures for the walls follow the recommendations of Section 6.6.2, 
and when ^ > 0 .6  capacity design procedures for the frames follow Section 5.8.4(c).

(a) Column moments: As recommended in Section ~\2.2, the frames may be designed 
so that the beam flexural strengths are equal at all levels except the roof, where beam 
flexural strength should be reduced by 50%. This is compatible with the assumption of 
constant frame shear force between levels 1 and the roof. It was also recommended that 
column-base flexural strength be chosen to satisfy Eq.(7.4) which ensures that the ground 
floor design shear force is the same as at upper levels. If these measures are adopted, then 
the required column flexural strength to satisfy capacity design requirements may be 
taken as

(/>f M c > M ° = 1 3(/>°Mce (7.16)

where M Ce  is the corresponding column moment resulting from the design frame shear 
force, assuming column moments are equal above and below the joint, and (p? is the 
overstrength factor associated with beam hinging. With beam ductility levels typically 
being low (jUf <2.5), a value of (jp — 1.1 can generally be assumed, since consequences of 
column yielding are minor. As column moments were found to be only weakly dependent 
on ductility demand, ductility has not been included in Eq.(7.16).
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None that the above provisions may not provide absolute security against column 
:\:n£ing at levels above the base. This is, however, not critical, as the stiffness of walls,
•. :;ich will remain essentially elasdc above the base hinge, will protect the building against 
:■ rnvauon of a soft-storey mechanism. Indeed, it might appear reasonable, on the basis of 
::iis argument to further relax the conservatism of Eq.(7.16).

(b) Column shears: Again, column shears are not greatly influenced by ductility
j.rmand, nor by variation in accelerogram characteristics^3!. An average value of

<t>vVc > V ° = \ 3 fV CE (7.17a)

be used for design, where Vce is the shear corresponding to the design frame shear 
:. rce. Note, however, that if the beams at roof level have not been designed for reduced 
ncxural strength as recommended above, the shear in the upper floor columns should be
:.^en as

AVC (7.17b)

Similarly, if additional strength has been provided in the column base plastic hinge, then a 
'imiiar modification should be used for the design shear force in the ground floor 
: :>iumns.

(c) Wall Moment Capacity Envelope: A bilinear moment envelope of the form 
' .ingested by Fig.6.26(a) was found to be adequate, with the dependency on ductility7 
demand being clearly apparent. Equation (6.48) can be directly applied, provided the 
ouculity demand is taken as the system, rather than wall ductility demand. Although this 
i' occasionally non-conservative, it provides a good average agreement with wall mid- 

eight moment demand. As noted, the consequences of minor ductility demand at levels 
.ibove the wall base are not serious.

(d) Wall Shear Force Capacity Envelope: Application of the linear shear force 
envelope defined by Eqs.(6.49) to (6.51) for cantilever walls was found to be excessively 
conservative at the base, while being a little non-conservative at the top. However, the 
ITHA results indicated a strong dependence on ductility demand. Equation (6.49) can be 
iirecdy applied, with Eqs.(6,50) and (6.51) modified as follows:

COv — 1 H — C2 T where C2 T — 0 .4  + 0.2(7". — 0 .5 ) < 1.15 (7.18)
<t>° ’

Tr.e design shear force at the top of the wall may be taken as 40% of the amplified wall- 
r a > c shear. That is

C = o.4 f ; (7.19)
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7.4 DESIGN EXAMPLE 7.1: TWELVE-STOREY WALL-FRAME BUILDING

7.4.1 Design Data

The building shown in Fig.”7.8(a) and (b) is twelve storeys high. The seismic structural 
system consists of two-way moment-resisting structural-steel frames with channel walls of 
reinforced concrete at each end of the building containing elevators, stairs and toilets. 
The plan is regular, based on an 8m X 8m (26.2ft X 26.2ft) bay module.

500 t

(a) Plan D im ensions

10® 
700 t

770 t

__6
IT)

. ECs]

(b) M asses and H eights

Period (sec)
(c) Acceleration Response Spectrum

Period (sec)
(d) D isplacem ent Response Spectrum

Fig.7.8 Data for Example 7.1
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In the transverse (short) direction, there are three steel frames acdng parallel to the 
end channel walls. Gravity steel beams simply supported at both ends connect the 
channels to the corner column, and thus do not induce seismic actions in the reinforced 
concrete walls.

In the longitudinal direction the internal steel frames are connected to the ends of the 
wall flanges with steel beams that are moment-resisting at the columns, but pinned to the 
wall ends. Although no moment will be transmitted to the wall at the beam end, the 
seismic shear in the beam will induce moments at the channel axis, reducing the base 
moment demand in the channel weak-axis direction.

Storey heights are 4m (13.1 ft) for the ground floor, and 3.2m (10.5 ft) at all other 
levels. Storey masses, including allowance for seismic live-load and wall weight are 7^0 
tonnes (1698 kips) at level 1; 700 tonnes (1544 kips) at levels 2 to 11, and 500 tonnes 
(1103kips) at roof level. A basement foundation box provides effective rigidity at Level 0.

The building is to be constructed in a region of moderate seismicity, with a PGA of 
0.35g. The site is classified as soft soil, and the elastic acceleration response spectrum has 
a plateau at 0.875g between 0.25 and 1.0 sec, with a subsequent constant velocity slope to 
5.0sec, as shown in Fig.7.8(c). The design code does not include information on the 
displacement spectrum so it is generated from the acceleration spectrum in accordance 
with the recommendations of Section 2.2.2(b). The resulting displacement spectrum for 
5% damping is shown in Fig.7.8(d). Note that the corner period is assumed to be 5 sec. It 
will be found that this does not influence the design in any way as the effective structural 
period is less than this value. The design drift limit is 6q — 0.02.

Initial sizing for the design indicates beam depths of 800mm (31.5 in) with the channel 
flange thickness at 400mm (15.7in) and web thickness at 300mm (11.8 in). Overall section 
dimensions of the channel walls are 8m X 4m (26.2ft X 13.1ft).

Specified material strengths are
concrete: Pc — 30 MPa (4.35 ksi)
reinforcing steel: fy -  400 MPa (58 ksi); fu -  1.35 fy 
structural steel fy -  350 MPa (50.8 ksi)

7.4.2 Transverse Direction Design

The transverse design is considered in detail. Subsequently, in Section 7.4.3, the initial 
stages of the longitudinal design will be carried out.

Step 1: Design Choices: Based on the number of frames and the channel sizes it is 
decided to allocate 40% of the base shear to the frames: fir — 0.4. The same size steel 
beams will be used for all beams at all levels but the roof, where a reduced depth and 
smaller flange thickness will be adopted to ensure beam strength is approximately 50% of 
that at the lower levels. Hence the frame storey shear will be constant up the height of the 
building, and the internal columns will carry twice the moment and shear of the external 
columns.
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Step 2: Wall Contraflexure Height: The initial stages of analysis, necessary to 
determine the wall contraflexure height are summarised in Table n A

We initially assume that the displacement vector is linear with height. This could be 
modified later, but is only used at this time to calculate the contraflexurc height. Small 
errors in this calculation are not significant. With that assumption, the lateral forces will 
be proportional t o T h e s e  products are listed in Col.4 of Table 7.1. The relative 
forces at the different levels are then proportional to as listed in Col.5. Still
using these relative forces, the total shear force (Col.6), total overturning moment (Col."7), 
and frame shear (Col.8) can be found. The wall shear (Col.9) is found subtracting Col.8 
from Col.6, and the vertical profile of wall moments found from the relationship

These are listed in Col. 10. Note that the final values for moments and shears will be 
found by multiplying the relevant values in Table 7.1 by the base shear force Vgase-

Table 7.1 Design Example 7.1 - Preliminary Calculations to Determine H Cf

1 2 3 4 5 6 7 8 9 10
Level Height 

Hi (m)
Mass
mi (t)

miHi Fi
(rel.)

Vxi
(rel.)

MoTM.i
(rel.) frame

Vŵ
wall

Mŵ i
wall

12 39.2 500 19600 0.1127 0.1127 0.00 0.4 -0.287 0.00
11 36 700 25200 0.1449 0.2576 0.36 0.4 -0.142 -0.92
10 32.8 700 22960 0.1320 0.3897 1.19 0.4 -0.010 -1.37
9 29.6 700 20720 0.1192 0.5088 2.43 0.4 0.109 -1.41
8 26.4 700 18480 0.1063 0.6151 4.06 0.4 0.215 -1.06
7 23.2 700 16240 0.0934 0.7085 6.03 0.4 0.309 -0.37
6 20 700 14000 0.0805 0.7890 8.30 0.4 0.389 0.62
5 16.8 700 11760 0.0676 0.8567 10.82 0.4 0.457 1.86
4 13.6 700 9520 0.0548 0.9114 13.56 0.4 0.511 3.32
3 10.4 700

oGOC\lr

0.0419 0.9533 16.48 0.4 0.553 4.96
2 7.2 700 5040 0.0290 0.9823 19.53 0.4 0.582 6.73
1 4 3080 0.0177 1.0000 22.67 0.4 0.600 8.59
0 0 0 0 0.0000 1.0000 26.67 0.4 0.600 10.99

Sum 8270 173880 1

From Col. 10, the wall contraflexure point is between levels 6 and n. Interpolating 
linearly,

Hcf = 20 + 3.2x0.62/0.99 = 22.0m f2 .2  ft)

Step 3: Wall Yield Displacement: The expected yield strength of the reinforcing 
steel, from Eq.(4.23b) \s>fye~\Afy — 440 MPa. Hence £y — 0.0022. The yield curvature for 
the wall is estimated from Eq.(4.57) as
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ty = 1.5ey /lw = 1.5x0.0022/8 = 0.000413/m

From Eq.(7.7a) for Hj < 22.0m: Ay, = Qyw - r -
II:3 \

V ^ 6Hcf ;
= 0.000413

6x22

From Eq.(7.7b) for Ht > 22.0m: a  . = ^ f HCFH, H 2c f >

/
= 0.000413

f 22H, 2 2 1 A

V

The vertical profile of yield displacements from the above equations is listed in Col.4 
of Table 7.2.

Table 7.2 Design Displacement Information for Example 7.1

8
Level Height 

Hj (m)
Mass
mi(t.)

Ayj
M l

Ani
(m)

mj A2 Di HIjAdi miAniHi

12 39.2 500 0.145 0.705 248.2 352.3 13810
11 36 700 0.130 0.644 290.6 451.0 16240
10 32.8 700 0.116 0.584 238.1 408.9 13410

29.6 700 0.101 0.524 192.1 366.7 10850
26.4 700 0.087 0.464 150.5 324.5 8570
23.2 700 0.072 0.403 113.9 282.4 6550
20 700 0.058 0.343 82.4 240.2 4800

16.8 700 0.043 0.283 56.2 198.3 3330
13.6 700 0.030 0.225 35.3 157.2 2140
10.4 700 0.019 0.167 19.6 117.1 1220
7.2 700 0.010 0.112 78.6 570

770 0.003 0.060 2.8 46.4 190
0.000 0.000 0 0 0.0

Sum 8270 1439.2 3023.6 81670

Step 4: Design Displacement Profile: We first consider material strains, then check 
to see if drift governs:

(a) Wall M aterial Strains With no information on the strain at maximum stress for the 
wall reinforcing steel, we conservatively assume £su = 0.10. The limit-state curvatures ot 
Section 6.2.1(c) are likely to be slighdy high for flanged walls, with the flange in 
compression, and we conservatively reduce the damage control curvature from 
Eq.(6.10b) by 10%:

0dc=O.9xO.On/lw = 0.0648/8 = 0.0081/ w

Plasdc hinge length: from Eq.(6.7) with f jfy  — 1.35: k —0.2(1.35-1) = 0.07, and for df,/-
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25mm, LSp — 242 mm:

Lp = kHCF + 0. Uw + LSP = 0.07 x 22 + 0 .1 x 8 + 0.242 = 2.58m (8.46 ft)

Check if drift limit at Hcf is exceeded: From Eq.(7.9):

6CF = <pyWHCF / 2 + ((pdc -  (j)vW )LP = 0.000413 x 11 + (0.0081 -  0.00041)2.58 = 0.0244
This exceeds the drift limit of 0.02, hence code drift limits govern the wall design.

(b) Drift Limits: Since the building is tall, drift amplification should be considered. 
From Table 7.1 we note that the base overturning moment carried by the frames is the 
difference between the total OTM and the wall moment, i.e. 26.7 — 11.0 = 1 5 .7  (related 
to unit base shear force). From Eq.(7.11):

f

coQ = 1 -v v 100 ^ ^  + 0.25
MqTM ) J

\- 0.071 ^ -  + 0.25 | 1 = 0.941

The design drift is thus reduced to 0.941x0.02-0.01882 
The design profile is thus given by Eq.(7.10):

A Di=A yi + (0c ~<Py»'H cF /2K  = A „ +(0.01882-0.000413x11)//,. = A y. +0.0143//,

The corresponding design displacement profile is listed in Col.5 of Table 7.2. At this 
point it would be possible to refine the initial stages of design listed in Table 7.1 based on 
the displacement profile of Table 7.2, but the errors resulting from the initial assumption 
of a linear displacement profile will be found to be negligible.

Step 5: Design SDOFDisplacement: The necessary calculations are listed in Cols. 
6 and 7 of Table 7.2. From Section 7.2.3(b)(iv) the design displacement, given by 
Eq.(3.26) is

= E  )/£ ( » A ) = 1439 /3024 = 0.476m (18.7 in)
/ 1 ; = 1

Step 6: Effective Height: The additional necessary calculations are shown in Col.8 
of Table 7.2. From Eq.(3.35):

He = Y j miAiHi /£m iAi =81670/3024 = 27.0w (88.6ft)
M /=1

Step 7: Equivalent Damping: The displacement ductility demands of walls and 
frames must first be evaluated:

(a) Walls: The yield displacement of the SDOF substitute structure is found substituting 
He into Eq.(7.7b), since He > Hcf.

A. =<ply  r  'yW

f HCFHt H2c f >

J

-  0.000413
^22x27 222 ^= 0.0893ra

J
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From Eq.(7.14): /jw = AD/Av„ =0.476/0.0893 = 5.33

From Eq.(3.17a): ^  =0.05 + 0.444^  1  ̂= 0.05 + 0 . 4 4 4 f - ^ -  1 = 0.165
fj.71 ) ^5.33;?,

(b) Frames: With a steel frame, with f ye = 1.1 f y =385 MPa (55.8ksi) the yield drift is 
given by Eq.(3.8b) as:

6 vF = 0 .65e yLh /hh = 0.65x0.00193x8/0.8 = 0.0125

From Eq.(7.15): JUF = A D /(&yFHJ =  0 .476/ (0 .012 5 x 27 ) = 1.41

From Eq.(3.17c): P = 0.05 + 0 . 5 7 v f 0  = 0.05 + 0.577f —  ' 1 = ° -103
{ /in ) \\A\jc)

Finally, from Eq.(7.13), using OTM values for unit base shear from Table 7.1:

_ £wM0TMjV + £f Motmf _ 0.165x11.0 +0.103x15.7 _
s>’s ~ ~ n ~M  otm  26.7

Step 8: Base Shear Force: From Eq.(2.8) the spectral displacement reduction factor 
for damping is

(  0.07 Y'5
Ro m =\---------------  = 0.688

°'128 ^0.02 + 0.128 J
(a) Effective period: At T=5.0 sec., the spectral displacement for 5% damping is 
1.087m (42.8 in) (see Fig.7.8d). Thus at 5 sec, the corner displacement for 12.8% damping 
is 1.087x0.688= 0.748m. The effective period (see Fig.7.8(d)) is found by proportion as

Te =5x0.476/0.748 = 3.18sec
(b) Effective mass: From Eq.(3.33) and Table 7.2,

m = Yj miA, /Ad =3024/0.476 = 6252tonnes (O.^Xm,)

(c) Effective Stiffness: From Eq.(3.1):
K ,  = 4 n 1m„IT} = An1 X6353/3.182 = 24.8MV/w

(d) Base Shear: From Eq.(3.2):
VBase = KA o  = 24 .8x0.476 = 11.8MV (2653 kips; = 14.5% of total weight)

Step 9: Wall Base Flexural Design: From Table 7.1, the total wall-base moment 
will be

M w,Bose =  1 L 0 V Base = 1 1 . 0 x 1 1 . 8  = 129.8MNm (1149,000 kip.in)
This is shared between the two end walls, resulting in a design moment of 65MNm/wall. 
The axial load supported at the base of the walls is estimated as 5.0MN, including selt 
weight. A detailed flexural design is inappropriate at this stage, as the wall also has to be
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designed for flexure in the orthogonal direction, which will affect the distribution of 
reinforcement between the web and the flange. However, trial analyses indicate that 
reinforcement ratios of about 0.004 in the web and 0.005 in the flanges will provide the 
required design strength. Although on the low side, these are acceptable. It is probable 
that a smaller reinforcing bar size than the 25 mm initially assumed would be chosen to 
ensure spacing between the bars is not excessive.

Step 10: Frame Beam Flexural Design: The design was based on the assumption 
of equal beam strength up the building, and at each beam at each level, the exception 
being the top level. The total shear force to be carried by the frames is 
''i.4xl 1.8=4.72MN, and hence the shear force per frame is 4.72/3=1.5^MN. At each 
level, there are six potential plastic hinges per frame, and hence, from Eq.7.3, with all 
beam plastic hinges having equal strength:

Mhi = Vr Hs /6 = 1.57x3.2/6MNm = 831kNjv (7407 kip.in)

At roof level, the required moment capacity will be half this. Note that this moment 
demand applies at the joint centroid, and will be reduced to find the design moment at 
the column face in proportion to the ratio of column width to beam span. The beam 
design seems reasonable, requiring a flange area of about 5000mm2 (7.8 in2) (say 
300x16mm= 12x0.65 in)

Step 11: Column Base: The design shear force for the columns in the short direction 
will be 1.57/6—0.262MN for the outer columns and 1.57/3=0.524MN for the inner 
columns. In order to maintain the required storey shear in the taller ground storey, the 
moment capacity of the columns at the base will need to be VcoiHoj -O.SZAf/,/. Hence: 

Outer column: MCB =4.0x0.262-0.837/2=0.63MNm (630kNm = 5576 kip.in).
Inner column: MCb -2x0.63=  1260kNm (11,150 kip.in)

Since the columns are subjected to biaxial moment demands, these moments will be 
amplified in accordance with the suggestions of Section 5.6.2(c) once strength 
requirements in the long direction have been determined.

Step 12: Capacity Design for Walls: Strictly, this should not be carried out until the 
ciesign requirements in the orthogonal direction are defined, since the overstrength factor 
mav be influenced by the provision of excess reinforcement, above that required for the 
transverse direction. However, since detailed design calculations will not be provided for 
the orthogonal direction, we assume a perfect match for required and obtained base 
moment capacity at the design ductility level. The system displacement ductility can be 
found from the base shear forces weighted by ductility demand:
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(a) Mid-height moment: From Section 7.3.2(c), with an elastic period of 7} ~ Te/̂ l/I — 
=3.22/V3.76 = 1.66 sec, the required moment capacity at wall mid-height is given by Eq. 
(6.48), with (jp =1.0 as recommended in Section 6.6.2(d):

C, J  = 0.4 + 0.0757; {ji^  -1)  = 0.4 + 0.075 x 1.66x 2.76 = 0.743

Hence, M 05Hn = 0 .7 4 3 M ^ S

(b) Wall shear force: As no specific anatysis has been undertaken to assess the 
overstrength factor, we assume a value of <fP — 1.2, as suggested in Section 4.5.2. 
Equation (7.18) lead to:

C1T= 0.4 + 0.2(7; -  0.5) = 0.4 + 0.2(1.66 -  0.5) = 0.632 <1.15

Hence: ax, = 1 + T =1 + ^ ^ x 0 .6 3 2  = 2.98 and from Eq.(6.49) the
^  f  2 ’T 1.2

overstrength shear demand on each of the two walls is:

vLe = r ^ ^ . t o  = 1.2x2.98x0.5(0.6xll.8) = 12.7MV (2846 kips)

At the wall top, in accordance with Eq.(7.19)

Vn° =0.4Kfio = 0 .4 x 1 2 .7 -  5.08MN (1142 kips)
A quick check on the wall shear stress levels is appropriate at this stage. At 

overstrength, the maximum shear stress is 12.7/(8x0.3) = 5.29MPa (767psi). This is less 
than 13.5% of the expected compression strength of 39MPa, and though high, should be 
acceptable. Since the shear design is routine, it is not presented here (see Section 4.7.5).

Step 13: Capacity Design for Columns: Again this should wait till the column required 
design strengths have been determined also for the orthogonal direction. However, the 
overstrength requirements are based on the beam strengths, not the column strengths. 
From Section 7.3.2, Eqs.(7.16) and (7.17) require that the design moments and shears for 
the columns (except for the column base hinges) be designed for the moments and shears 
resulting from the design forces amplified by a factor of 1.3^° = 1.3x1.2=1.56. Note that 
the column base has a moment demand that is already 51% higher than at other levels to 
provide the required shear force in the ground floor. This is close to the capacity design 
enhancement factor, implying that the same column size could be used up the height ot 
the building. Note that steel column flexural strength is only marginally influenced bv 
axial load level, and strength will increase slightly at higher levels.

7.4.3 Longitudinal Direction Design

As noted above, a detailed design will not be carried out for longitudinal response, as 
it is largely repetitive of the transverse design. However, we investigate the initial stages of 
design below.
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Step 1: At each floor level there are 28 beam hinge locations in the longitudinal direction, 
compared with 18 hinges in the transverse direction. This, together with the expectation 
that wall moment capacity will be reduced in the longitudinal direction indicates that 
more of the base shear should be allocated to the frames. We chose f r  = 0.5. Again we 
will select a design where all beam moments are equal, allowing efficiency in design and 
construction since the same beam size can be selected at all levels except the roof

Step 2: Contraflexure Height: Calculations similar to those summarised in Table 7.1 for 
unit base shear would indicate a base moment to be carried by the two walls of 
"\07MNm. This does not, however, include the effects of having the beams between the 
wall flange-ends and the adjacent columns being moment-resisting at the columns. With 
28 beam hinges, and P f- 0  .5, the beam moment corresponding to unit base shear can be 
found from Eq.(7.3) as

M m = VfHs /28 = 0.5x3.2/28 = 0.057
From Eq.(7.6), noting that Mb/ ~ 0 because of the hinged connection between beam and 
wall, and that the geometric centre of the wall is 2.75m from the flange ends:

M w ,  = M h, +(A/W- M hr)lW£LILb = 0-0 .057x2 .75/4  = -0.039  
Twelve increments of this moment (corresponding to the twelve storeys) reduces the wall 
base moment to 6.62 Vgase. The contraflexure height is found to be Hcf — 14.85m (48.7 
ft). The procedure follows that for the transverse direction. It will be found that the drift 
limit again governs the wall design, and that higher base shear strength is needed because 
of the greater elastic flexibility, which results in lower ductility and hence lower damping.

7.4.4 Comments on the Design

The design illustrates a number of important beneficial aspects of combining frames 
and walls in the same structural system. Briefly these are:

• The SDOF design displacement is increased compared with the design
displacement for a pure frame, or a pure structural wall building, when code drift 
limits govern the design, which will normally be the case.

• Equivalent viscous damping is increased compared with a pure frame design.
• The combination of the two points above mean that the design base shear force

is significantly reduced compared with a pure frame design.
• In the specific example considered above, the beam and column design moments

are reduced to about 1 /3rd of the values that would apply to a pure frame design.
The resulting economies are obvious, and substantial, particularly when it is
considered that the walls can be used as surrounds for essential services, and 
hence need not impinge on freedom of space utilization.

It is clear from these comments that dual wall/frame buildings are a particularly 
appropriate structural form to maximise the efficiency advantages resulting from DDBD.



8
MASONRY BUILDINGS

8.1 INTRODUCTION: CHARACTERISTICS OF MASONRY BUILDINGS

8.1.1 General Considerations

Conventions for masonry construction in seismic regions differ greatly between 
different countries. In some countries -  particularly the United States, New Zealand and 
Japan, masonry constructed in seismic regions will normally be hollow-unit concrete 
masonry, where the units have provision for both vertical and horizontal reinforcement, 
resulting in construction that can be termed “reinforced concrete emulation”. Although 
the compression strength tends to be lower than with reinforced concrete, the seismic 
response is sufficiently similar for there to be no significant conceptual difference from 
reinforced concrete. Material presented in Chapters 5, 6 and n thus applies directly. 
Detailed discussion of seismic design of this form of masonry construction is available in 
[PI], and will not be repeated here.

In Europe, central and south America, and Australia, unreinforced, or very lightly 
reinforced masonry is often constructed in seismic regions. It is this form of construction 
that is considered in this chapter.

Unreinforced masonry is often considered a construction material to be avoided in 
high seismicity areas, because of an assumed inherent high vulnerability that cannot be 
eliminated even by appropriate design approaches and construction rules. This opinion is 
motivated by poor performance often observed during and after earthquakes, but does 
not have a rational scientific base and can therefore be added to the long list of myths in 
seismic engineering. While it is true that many unreinforced masonry buildings have 
suffered significant damage or have collapsed due to earthquake action, it is also evident 
that many other masonry buildings survived over centuries, with little damage resulting 
from repeated seismic eventstM13L

Considering the problem from a displacement “capacity versus demand' viewpoint, it is 
true that masonry elements and structures attain specified performance levels in terms of 
sustained damage at lower interstorey drifts when compared with other construction 
rvpes. On the other hand it has to be noted that fundamental periods of masonry 
buildings are also naturally lower than those of other structural types, and consequently 
the displacement demand is also comparatively smaller.

413
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Masonry buildings of the class considered in this chapter are characterized by a limited 
number of storeys (normally not exceeding four or five; possibly less in high seismicity 
regions) and by the presence of walls with a large total resisting section area with respect 
to the floor area. Typical ratios between total resisting section area and floor area may 
range between 3% and 7% for the case of masonry structures, against values commonly 
between 1% and 2% for concrete wall buildings.

Examples of plan structural layout of masonry buildings are shown in Fig.8.1. It 
should be noted that structural elements are used in conjunction with non-structural 
masonry partitions to a much higher extent than for other construction types. This 
implies that the estimate of acceptable drifts for different performance levels based on 
structural and non-structural constraints tends to coincide. As a consequence, drift limits 
derived from non-structural constraints are less likely to limit structural performance.

Unreinforced or Reinforced Masonry Unreinforced or Reinforced Masonry 
2 - 4  Storeys 2 - 3  Storeys

Fig.8.1 Typical Plan Layout for Masonry Buildings

In countries with seismic design traditions, it is also noticeable that masonry buildings 
often have regular plan shapes, with symmetric or almost symmetric wall distribution in 
both directions, and the external walls in most cases are part of the system resisting 
horizontal forces. This obviously implies a rather low sensitivity to torsional problems.

It is often prescribed in codes of practice that perpendicular walls should be well 
connected to each other at each intersection, and sometimes it is also prescribed to 
provide each shear wall with some flange at both ends. A proper connection between 
perpendicular walls may actually be important in existing buildings, where floor slabs may 
be inadequate to provide any diaphragm action to redistribute the horizontal forces to the 
wall system and to provide adequate out of plane restraints. However, in the case of new 
buildings constructed with strong and stiff floor slabs, normally using reinforced 
concrete, we do not see any reason for provisions of this kind. At the connection 
between web and flange, high shear forces may result from the deformation constraints, 
producing local damage and diagonal cracking. We would in general recommend the
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choice of planar walls for new construction, or at least to neglect composite action in 
analysis.

Typical structural wall elevations for new buildings are shown in Fig.8.2. Simple 
structural walls rising from the foundation level, or from a reinforced concrete basement, 
are coupled by bending and shear action of floors and possibly by concrete beams or 
masonry lintels. Typically, masonry wails have adequate width such that the vertical 
distance between horizontal slabs is not larger than 15 times the wall thickness (this limit 
applies more appropriately to the distance between contraflexure points considering the 
out of plane response of walls). The geometric aspect rado of each pier, as resulting from 
openings, is normally not larger than Hw/lw ~ 3, where Hw is the height of the pier and lw 
is its depth. Because of the generally low height and low periods of the class of masonry 
buildings considered in this chapter, higher-mode effects are often less significant than 
with convendonal reinforced concrete buildings. This is particularly the case when forces 
in a pier are considered. As discussed subsequently, capacity protection can be provided 
bv ensuring that piers have adequate slenderness to favour a flexural rocking mode of 
inelastic response.

Foundation flexibility normally does not significantly affect the response and design. 
In the standard case of multiple walls sitting on a continuous foundation, wall rocking is 
forced to occur on the top of the foundation structure, rather than on the supporting soil. 
For cantilever walls the indications given in Section 6.5 are direcdy applicable with minor 
obvious modifications.

□

a  o  

d  o

(a) Walls coupled through (b) Walls coupled through (c) Walls coupled through (d) Wall with openings 
floor slabs masonry lintels concrete beams

Fig.8.2 Typical Wall Shapes 

3.1.2 Material Types and Properties

The materials used for construction of masonry structures can be extremely 
heterogeneous and can be characterized by a wide range of strength, deformation and 
energy dissipation properties. The strength and stiffness properties result from a 
combination of the properties of bricks or blocks and those of the mortar. As an example 
consider the values reported in Table 8.1, where the recommendation given in the current 
Italian code for existing buildings are summarized^1"-. The average values given there are 
compression strength (ftnc), shear strength (iw ) elastic modulus (£)„), shear modulus (Gm)
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and weight per unit volume (wm). The table refers to assessment of existing buildings 
rather than to design of new buildings, and the values given are considered to be 
appropriate for low quality mortar and poor masonry texture (multiplying factors in the 
range of 1.3 -  1.5 are recommended in case of good quality mortar or presence of 
regularizing block layers).

Although the data do not refer to new design, it is of interest to note that the strength 
and stiffness values can vary in a range of 5 — 10 times with even higher variation for the 
case of shear strength. It is also noticeable that the typical values of shear strength are in 
the range of 3 — 6 % of the compression strength.

Table 8.1 Average Values of Strength and Stiffness Properties of Masonrylxl7l

Masonry type
f Vmv Em Gm Wm

min
max

min
max

min
max

min
max

MPa ksi kPa p s i MPa ksi MPa ksi kN/
m3

k ip j

f t
Natural stone of various types 
and shapes

0.6 0.087 

0.9 0.131

20 2.90 

32 4.64

690 100.1 

1050 152.3

115 16.68 

175 25.38
19 0.121

Natural stone, with exterior 
walls and interior mixed filling

1.1 0.160 

1.55 0.225

35 5.08 

51 7.40

1020 147.9 

1440 208.8

r O  24.66 

240 34.81
20 0.127

Natural stone, well connected 
irregular blocks

1.5 0.218 

2 0.290

56 8.12 

^4 10.73

1500 217.5 

1980 287.2

250 36.26 

330 47.86
21 0.134

Natural stone: Low strength 
regular blocks (tuff, sandstone)

0.8 0.116 

1.2 0.174

28 4.06 

42 6.09

900 130.5 

1260 182.7

150 21.75 

210 30.46
16 0.102

Natural stone, well connected 
regular blocks

3 0.435

4 0.580

78 11.31 

98 14.21

2340 339.4 

2820 409.0

390 56.56 

4^0 68.17
22 0.140

Solid clay bricks and lime 
mortar

1.8 0.261 

2.8 0.406

60 8.70 

92 13.34

1800 261.1 

2400 348.1

300 43.51 

400 58.01
18 0.115

Solid clay bricks and cement 
mortar

3.8 0.551 

5 0.725

240 34.81 

320 46.41

2800 406.1 

3600 522. /

560 81.22 

^20 104.4
15 0.096

Clay blocks and cement mortar 
(holes area < 45%)

4.6 0.667 

6 0.870

300 43.51 

400 58.01

3400 493.1 

4400 638.1

680 98.62 

880 127.6
12 0.076

Clay blocks, unfilled vertical 
joints (holes area < 45%)

3 0.435

4 0.580

100 14.50 

130 18.85

2580 374.2 

3300 478.6

430 62.36 

550 79.77
11 0.070

Concrete blocks (holes area 
between 45% and 65%)

1.5 0.218 

2 0.290

95 13.78 

125 18.13

2200 319.1 

2800 406.1

440 63.81 

560 81.22
12 0.076

Concrete blocks (holes area < 
45% )

3 0.435 

4.4 0.638

180 26.11 

240 34.81

2^00 391.6 

3500 507.6

540 78.32 

^00 101.5
14 0.089
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For new construction, the masonry compression strength to be used in design is often 
given in codes as a function of the properties of blocks and mortar. An example of 
recommended European characteristic (i.e. lower 5%) values for clay blocks and cement 
mortar is reported in Table 8.2. Different values will apply in different countries. The 
shear strength is normally in the range of 0.1 — 0.3 MPa (in the absence of axial stress, as 
discussed in Section 8.2.1 (c)), the elastic modulus is around Em ~ 1000^I7C, and the shear 
modulus Gm ~ 4 0 0^ c. Due to the high variability of the properties and the influence of 
cracking, an evaluation based on experimental testing is generally recommended.

Table 8.2 Masonry Compression Strength Based on Blocks and Mortar Strength

L11 1 /i ̂ -11̂ Mortar strength [MPa, ksi\J-llUdvo 9 HCIlg 111 î ivj.1 y AdiJ 15.0 2.18 10.0 1.45 5.0 0.73
5.0 0.73 3.5 0.51 3.4 0.49 3.3 0.48

10.0 1.45 6.2 0.9 5.3 0.77 4.7 0.68
15.0 2.18 8.2 1.19 6.7 0.97 6 0.87
20.0 2.90 9.7 1.41 8 1.16 7 1.02
30.0 4.35 12 1.74 10 1.45 8.6 1.25

In the case of reinforced masonry, the possible addition of horizontal reinforcement 
in the mortar beds and of vertical and horizontal reinforcement in cavities obtained from 
rhe appropriate combination of special blocks can further vary the global properties of 
the resulting construction material. In the case of horizontal reinforcement alone, an 
increase of shear strength can be obtained, resulting in a flexural failure mode in most 
cases. Vertical reinforcement can increase both flexural and shear strength. Both 
horizontal and vertical reinforcement can also reduce the probability of out of plane 
failure of a masonry panel. The geometric percentage of both vertical and horizontal 
reinforcement can be as low as 0.05% in European designs for the type of lightly- 
reinforced masonry discussed in this chapter. It is again emphasised that reinforced 
concrete emulation is not considered herein.

In this chapter, construction materials characterised by relatively low compression and 
shear strength will be considered, resulting from an average consideration of holes in 
blocks, with specific reference to design of new structures. Even with this limitation, the 
material properties can range from those of high strength stone and concrete mortar to 
rhose of aerated concrete and glued joints. Minimum required strength values, measured 
on gross sections, are often set around 5 MPa (0.725 ksi) for compression strength of 
blocks in the vertical direction, to 1.5 MPa (2.175 ksi) for compression strength of blocks 
in the horizontal direction and to 5 MPa for compression strength of mortar.

Detailed discussion of masonry properties can be found elsewhere^07’ ll2<T1i; the focus 
here will be on general design aspects for standard materials.
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8.2 TYPICAL DAMAGE AND FAILURE MODES

8.2.1 Walls

(a) General Aspects: The principal in-plane failure mechanisms of masonry piers with 
little or no vertical reinforcement subjected to gravity loads and seismic actions can be 
summarized as follows.

• Flexural (rocking) failure: As horizontal force and displacement demand increases, 
bed joints crack in tension and shear is carried by the compressed masonry; final 
failure is obtained by crushing of the compressed corner and possibly simultaneous 
overturning of the wall.

• Diagonal shear cracking: Peak resistance is governed by the formation and 
development of inclined diagonal cracks, which may follow the path of bed and 
header joints or may go through the bricks, depending on the relative strength of 
mortar joints, brick-mortar interface, and brick units.

• Shear sliding: due to the formation of tensile horizontal cracks in the bed joints, 
subjected to reverseci seismic action, potential sliding planes can form along cracked 
bed joints; this failure mode is possible for squat walls, with low levels of vertical 
load and/or low friction coefficients and mortar properties.

(b) Flexural Rocking Response: The maximum horizontal shear which can be resisted 
by a rocking pier failing under static in-plane loading may be approximated introducing 
an appropriate stress distribution for the masonry in compression and neglecting the 
tensile strength of bed joints. With reference to Fig.8.3, equilibrium leads to the following 
standard expressions for the flexural strength, MUj of the base section, and the associated 
s h e s r  fo r c e  V n \

The depth of the compression zone a/lw is equal to the rado between average vertical 
stress (i£,), and masonry compression strength (Pmc) reduced by a coefficient (C) which 
takes into account the vertical stress distribudon at the compressed toe (a common 
assumption is an equivalent rectangular stress block with C =0.85). As a consequence the 
value of a/lw does not vary much, being commonly between 0.10 and 0.30.

An approximate estimate of the shear force corresponding to the flexural strength of a 
masonry panel can be therefore obtained from Eq.(8.2) as:

(8 .2)

(8 .1)

(8.3;
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1 J  2 ' 4/ 2

e

P

Fig.8.3 Equilibrium and Base Stress Conditions for Flexural Response of a Pier

appropriate boundary conditions of the wall. It is theoretically equal to the height of the 
wall when fixity is assumed at the base and free rotation at the top, and to half of the 
height when the pier is assumed fixed at both ends (see Fig.8.3 for the second option). As 
pointed out, for common situations of relatively low mean vertical stress (fm/fmc<§.2) > a 
precise evaluation of compression strength and average vertical action is not critical, due 
to the low sensitivity of the results to the parameters C and f mc,while wall geometry and 
boundary constraints are strongly influencing the shear capacity.

Typical horizontal force—displacement loops for flexural response are shown in 
Fig.8.4. The rocking nature of the response is evident from the shape of the loops, which 
show relatively large displacement without significant strength loss but are characterized 
by relatively low energy dissipation and correspondingly low equivalent viscous damping, 
but low residual displacement.

The design drift for a damage-control performance can be theoretically obtained 
limiting the masonry strain at the compressed toe of the wall and assuming a reasonable 
curvature distribution in the lower part of the wall. This is shown in Fig.8.5, where the 
curvature is assumed to vary linearly from the maximum value at the base, limited by the 
assumed strain capacity of masonry (a reasonable value is £cm 0 .004), to zero at a height 
equal to the distance from the neutral axis to the tensile edge of the wall (i.e. a 45° spread 
is assumed). Assuming a maximum compression depth equal to 20% of the depth of the 
wall, i.e. c — 0.2 1^ the design drift is:

The height to the point of contraflexure Hq should be determined considering
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S  '■

Fig.8.4 Typical Horizontal Force—Displacement Loops for Rocking Response
(after [A6])

lw- c

£cm / C

Fig.8.5 Assumption for Curvature Distribution for Flexural Failure Mode

Although experimental results have shxmn that larger values may be obtained it is thus 
recommended that a limit of j ddji =_0.8%\is assumed in design. This value is also 
consistent with practical considerations, related to the drift levels characterizing other 
failure modes and nomstructural damage. It may be noted that this corresponds to an



Chapter 8. Masonry Buildings 421

equivalent plastic hinge length equal to 0.4/v, with the assumptions for £cnt and c made 
above.

In principle, the total drift or displacement should be computed adding the elastic 
values to those obtained from Eq.(8.4). However, this is normally of little interest for 
design, since the elasdc displacement should be calculated using gross section properties 
and will normally be in the range of one tenth of the plastic displacement capacity.

The area—based values of the equivalent viscous damping resulting from the typical 
flexural cycles have been estimated^111! as ^ft ~ 5 % related to the secant stiffness. Some 
sample experimental data are reported in Fig.(8.6). It may be argued that some additional 
dissipation may be obtained from radiation damping resulting from rocking response; this 
is generally small and will be neglected.

(c) Shear Failure Mode: The evaluation of the strength capacity of a masonry pier 
failing in shear is theoretically much more complex than in the case of flexural collapse. 
Diagonal shear cracking may originate in parts of the element where no flexural cracking 
is present (e.g. the central area of the panel); in this case the strength should be evaluated 
considering the whole horizontal section. It may also originate where the presence of 
flexural cracks would suggest consideration of a cracked section (such as at the base of 
the panel). In addition, cracks may propagate essentially through mortar layers (bed joints 
and head joints), in which case the most relevant parameters would be related to mortar 
(cohesion and friction coefficient), or may be initiated and propagated due to shear — 
tensile cracking of blocks.

before shear cracking after shear cracking
v C
' ~ . <

r .  ;
r

D iag. crack, shear fa ilu re

■ 1st cycle

□ 2nd cycle

□ 3rd cycle

F lexura l fa ilure

a 1st cycle 

a 2nd cycle

Drift

Fig.8.6 Equivalent Element Damping (area based)lM11l
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Formulations to predict different kinds of collapse are available in the literature (e.g. 
[X9, X I0, X I6, X I7]), but require a careful determination of the constitutive equation of 
blocks, mortar and block-mortar interface and are consequently of more interest for 
detailed analysis based on finite element modeling.

Code equations to predict the shear strength Vs/j tend to condense the required 
parameters into some equivalent global friction value jUmf  and material shear strength vmv, 
to be normally applied to the uncracked part of the critical section of the pier:

Vsh= Mmf- P+v mv-a-bw V ^  U VU \ l ' V' K  (8.5)

where bw is the wall thickness, and the other symbols have already been defined.
Considering the expression for the compression depth a discussed in the previous 

section, and assuming that it will not vary significantly in case of shear failure, Eq.(8.5) 
can be rearranged as:

Vsh=P mv
-A . (8.6)

If reasonable values are assumed, e.g. .85^and vmv/ f mc ~ 0.05, it is
obvious that the shear strength is dominated by the value of the axial force, resulting 
approximately in:

Kh ~ 0.46P • (8.7)- l ■> ■ -,r ,

Note that comparing Eqs.(8.3) and (8.6), a flexural failure mode is predicted when the 
height of the point of contraflexure is higher than 0.87 times the length of the wall. It is 
reasonable to use a conservative estimate of 1.0 times the wall length.

Typical horizontal force—displacement loops for walls dominated by shear response 
are shown in Fig.8.7.

Compared to the case of flexural response (Fig.8.4), the cycles in Fig.8.7 are 
characterized by significandy larger energy dissipation loops, but they also show- 
considerable strength and stiffness deterioration even for cycles repeated at the same 
displacement demand, and lower displacement capacity. Data in the available literatu re^  
M9, Mil, mi2] consistendy indicate design drifts for a damage-control performance of 
around]#/ ~ 0.4 - 0.5%? compared with 0.8% recommended above for flexural response.

Expeflmentardata on area-based values of the equivalent viscous damping resulting 
from typical cycles indicate values consistently larger than ^ / , = 10%, for cycles that take 
place after the opening of diagonal shear cracks (see Fig.8.6, where data referring to 
flexural and shear response are compared^111!). However, it should be kept in mind that 
these (and all other) available data refer to specific masonry materials; care should 
therefore be exercised in relation to the already discussed heterogeneity of the available 
materials.
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(d) Sliding Failure Mode: From a conceptual point of view, the case of sliding along 
bed joints differs from the previous case and is appropriately defined by the following 
equation, where no contribution of cohesion is considered, assuming that the joint is 
already cracked in tension due to flexure:

Ki = Mm/ ■ P (8.8)

The friction coefficient value to be used in this equation is different, in principle, from 
the value to be adopted in Eq.(8.5), since in this case we are dealing with a more proper 
frictional response, while in the previous case the value to be adopted must account for 
the complexity of the possible different phenomena involved.

In code approaches it is commonly accepted to neglect this failure mode, considering 
it to be included in the verification related to Secdon 8.2.1(c) above. Actually, from a 
displacement-based design point of view, a shear sliding damage mode should be 
regarded as more conservative (i.e. more desirable) than a shear mode, since the 
associated equivalent viscous damping would be larger, and the displacement capacity will 
be again limited only by practical considerations, non-structural limit states and 
combination with other failure modes. These may be considered good additional reasons 
to neglect this collapse mode in design.

Consider also that this failure mode is favoured by low quality mortar properties and 
solid bricks, it is therefore unlikely to take place in new construction.
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(e) Reinforced Masonry: It is again emphasized that in the context of this chapter, 
reinforced masonry is not masonry designed for reinforced concrete emulation. The 
addition of relatively low amount of reinforcement (maximum levels of reinforcement 
percentage commonly specified in codes are of the order of 1.0% for the vertical 
reinforcement and 0.5% for the horizontal reinforcement) may significantly change the 
expected response of masonry walls, in terms of strength, deformation capacity and 
energy dissipation.

The evaluation of flexural strength can be carried out in analogy with reinforced 
concrete, assuming a compression depth equal to 0.8 times the neutral axis depth, a 
constant stress in the compression area equal to 0.85 Pmc, and a limit strain at the 
compressed masonry toe of £mc — 0.003-0.004. The strain limit for steel can again be 
taken as in the case of concrete, but it is unlikely to govern the collapse mode.

The shear strength can be obtained by adding to the computed masonry strength 
(Eq.(8.7)) a term that takes into account the steel contribution:

K ,„ = — JsWfyd (8-9)

It has to be noted that the steel contribution is reduced to 60 % of what would result 
considering 45° cracks and full yield of the horizontal reinforcement. This derives from 
experimental results and reflects the reduced anchoring capacity of masonry when 
reinforcement is laid in bed joints.

The possibility of diagonal strut compression failure due to low masonry strength in 
the horizontal direction should also be checked. Codes frequently indicate a limit of 30% 
of the compression capacity of the wall section, or lower.

In the case of reinforced masonry buildings, it will be recommended (see Section 8.3) 
to apply capacity design principles to avoid any possibility of shear failure in walls. While 
in the case of unreinforced masonry this may be difficult to obtain due to geometric 
constraints, appropriate use of bed-joint reinforcement may allow this objective to be 
satisfied. As a consequence, displacement capacity and equivalent viscous damping of 
reinforced masonry walls are primarily of interest related to flexural failure modes.

It may be argued that the displacement capacity could be calculated in analogy to what 
has been presented in relation to reinforced concrete walls, and consequently derive an 
expression similar to Eq.(6.7) to evaluate the length of a plastic hinge, and this can 
actually apply to the case of “reinforced concrete emulation”. In this case, the k value to 
be obtained from Eq.(4.31b) should be increased to consider the reduced bond capacity 
of masonry and the consequent larger spreading of steel deformation into the wall. As 
well, and for the same reason, the strain penetration length into the wall will significantly 
increase. The following equation is therefore recommended, based on experimental 
evidence and engineering judgment:

LP.,™ = 0-04He + 0.1 lw + Lsp > 3Lsp (8.10)
}

V
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where Lsp is obtained from the standard expression (Eq.(4.30)). The equivalent yield drift 
can be derived from Eq.(6.15) as:

from Eq.(8.10) should be multiplied by the plastic curvature ($,) resulting from the 
difference between the limit state curvature ($*) controlled by masonry maximum 
compression strain (£is) and the curvature corresponding to yield ($,). Assuming for 
example for a damage-control limit state with Ey — 0.0025, £dc ~ 0.004 and c/lw — 0.2 for 
both yielding and ultimate conditions, it is found that fy.c — 0 . 0 2 (fo — 0.0031 /lWi and 
therefore:

The equivalent viscous damping can be computed applying Eq.(3.17a). For typical 
values of aspect ratio and plastic hinge length, Eqs.(8.10), (8.11) and (8.12) will predict a 
displacement ductility of the order of 2 and the resulting equivalent viscous damping will 
be approximately 7%, to be added to the initial damping of 5%. Considering the value of 
the area—based equivalent viscous damping recommended for flexural response of 
unreinforced masonry buildings, a total minimum equivalent viscous damping equal to £e 
-  + £eji = 0.05+0.05=0.10 can be conservatively assumed for most preliminary
designs. Note that because of the low ductility no adjustment to elastic damping is 
recommended.

8.2.2 Coupling of Masonry Walls by Slabs, Beams or Masonry Spandrels

(a) General Aspects: As discussed in Section 8.1.1, masonry walls are normally coupled 
bv slabs and/or concrete beams but may also be coupled by masonry spandrels. As 
shown in Fig.8.8, different geometries and coupling conditions may lead to soft-storey 
failure modes or to global collapse modes that will first require a non-linear response of 
the coupling elements.

The bending and shear forces transmitted by coupling elements may increase the 
building lateral strength, may produce additional damping, increase the apparent stiffness 
of the walls and may modify the height of the point of contraflexure. However, the 
magnitude of the forces must be compatible with the capacity of the walls to assure 
equilibrium. These issues will be discussed in the following sections.

(b) Coupling Slabs: It is straightforward to calculate the bending moment that a 
coupling beam can transmit to the adjacent walls, based on its moment capacity. When 
coupling is by concrete slabs, consideration should be given as to what contributing width 
of slab should be adopted. Recommendations on this aspect are provided in several text

0vmr = 0 .6 ^ , - ^  = 0 .0 0 1 4 ^V\m\\i V j iV̂l V4 ■' (8.11)

To calculate the total drift (or displacement) capacity, the plasdc hinge length resulting

(8.12)

books (e.g. [PI]).
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Fig.8.8 Possible Failure Mechanisms of Coupled Masonry Walls

It is however recommended to be cautious in adopting large width values, in 
consideration of the significant local deformability of masonry walls. A width 
corresponding to the thickness of the wall plus a similar width on each side of it is 
considered appropriate for determining design strength. Larger widths are appropriate for 
upper-bound estimates necessary for capacity-protection considerations. The maximum 
transmittable shear is then obtained by equilibrium of the coupling beam, as the sum of 
the moments divided by the span.

The capacity of an unreinforced masonry wall to equilibrate moments and shears 
depends essentially on the weight transmitted by the beam or slab and by the upper wall. 
With reference to Fig.8.9, the following equilibrium equation can be written:

M]+Vik + M 2  + v2 ^ < w w^ + { w u, + ws) 1̂

which implies the following limitation:

(8.13)

M, + M2 V, + V, Ws
— !------- -  + —-------  < Ww + —

/ 2 2 (8.14)

where M  and V are the moments and shears transmitted by the beam/slab, and Ww and
Ws are the weight supported by the wall (including self weight) above the level 
considered, and the tributary weight of the beam/slab respectively.

Modifications to be considered for the case of an end wall or of a top storey floor are 
obvious, though in the latter case the coupling moment for an end wall will depend on 
the direction of lateral force. Note that when coupled by composite beam/slabs (rather 
than by slabs alone) coupling moments of opposite sign may be significantly different 
because of the presence of the slab, which may be in compression or in tension.
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Fig.8.9 Equilibrium Conditions of a Coupling Beam Intersecting a Masonry Wall

In the case of reinforced masonry, the modifications are also rather obvious, but of 
less interest, since in this case it is unlikely that the equilibrium of the wall poses a limit to 
the maximum transmittable bending moment and shear.

(c) Masonry Spandrels: In principle, moment input from masonry coupling beams 
spandrels) can only be considered if a compression force is dependably assured in the 

horizontal direction, or when some horizontal elements, such as steel ties or floor 
slabs /beams or flexural resisting lintels can provide a tensile force capable to provide 
horizontal equilibrium. The alternatives are explained in Fig.8.10.

If a compression force is provided, the evaluation of the maximum transmittable 
bending moment and shear do not differ from that discussed in relation to masonry walls 
coupled with reinforced concrete beams and slabs. However, the compression strength of 
masonry in the horizontal direction should be considered, which can be significantly 
lower than that in the vertical direction. In addition, the aspect ratio (obviously to be 
considered with reference to the horizontal axis) is often such that a shear collapse will be 
predicted (considering the double-bending condition, this case has to be expected for a 
ratio between width of the opening ls and height of the spandrel hs lower than l/hs — 2). 
In this case, the opening of diagonal shear cracks in both directions may imply a strong 
deterioration of the spandrel capacity with cyclic loading.

The same consideration may apply in the most common case of a restraining tensile 
force provided by a slab or lintel. As shown in Fig.8.10(a) a masonry spandrel located on 
top of a beam or slab will act as a compression strut, resulting in a bending moment close 
to zero at the compression wall and in a maximum bending moment, at the tensile wall, 
approximately equal to the tensile force developed in the beam multiplied by a lever arm 
equal to the depth of the spandrels minus one half of the compression depth.
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Fig.8.10 Equilibrium of Masonry Spandrels

The bending moment will also be limited by the compression capacity of masonry in 
the horizontal direction, by the maximum admissible masonry strain, and by the shear 
capacity of the spandrel. In addition, if the beam reinforcement is considered to provide 
the computed tensile force, it will not also contribute to the development of the beam 
bending moment, or vice versa.

For all the above reasons, it is not recommended to design considering the 
contribution of unreinforced masonry spandrels to increase the coupling between 
different walls, except in special cases where all the actual parameters are carefully 
considered.

In the case of reinforced masonry, the tensile force required to assure the horizontal 
equilibrium can be provided by the horizontal reinforcement, as shown in Fig.8.10(b). 
However, it may still be difficult to avoid a shear failure if the aspect ratio is relativelv 
low, because of the possible difficulties in locating significant amounts of vertical 
reinforcement (see again Fig.8.10(b)). Even in the case of predicted shear damage, the 
presence of reinforcement will reduce the opening of diagonal cracks and the cyclic 
strength deterioration; therefore a contribution of the spandrels can be more reliably 
accounted for.
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In ail cases, however, the capacity of the spandrels to cope with the local imposed 
drift resulting from geometry and compatibility with the design drift assumed for the 
walls should be carefully considered. As discussed with reference to coupling beam drift 
(see Section 6.8.3) the rotation at the ends of a coupling beam is always larger than the 
wall rotation, as expressed by Eq.(6.62), reported here as Eq.(8.15) for convenience.

@cb ~ 0 W (l + Iw/LCb ) (8.15)

Since it will be difficult to provide a much larger rotation capacity to the coupling 
beam than to the wall, it is recommended to neglect the spandrels contribution unless the 
width of the opening (Lqb) is significantly larger than the width of the adjacent walls (lw) 
and the spandrel rotation demand is therefore limited to, say, 1.5 times the wall rotation.

8.3 DESIGN PROCESS FOR MASONRY BUILDINGS

8.3.1 Masonry Coupled Walls Response

(a) Introduction: The design process for masonry buildings will not differ conceptually 
trom that discussed in Chapter 3 from a general point of view and in Chapter 6 with 
specific reference to wall buildings.

In general, less emphasis should be placed on torsional response, because masonry 
buildings are always highly redundant restrained systems; this topic will be therefore 
initially neglected and only briefly addressed in Section 8.4.

Second order (P-A) effects are also unlikely to be relevant, due to the limitation 
imposed to the acceptable displacement. Therefore they will not be considered (though 
the principles discussed for wall buildings are directly applicable).

Masonry buildings are in general simple, small structures and it is therefore 
appropriate to consider simplified design approaches. This is particularly the case for 
unreinforced masonry buildings, for which even the application of capacity design 
orinciples is difficult and often unreliable, since it is not possible to modify the shear and 
flexural capacities independently without modifying element aspect ratios. For 
unreinforced masonry buildings an absolute maximum of three storeys is considered 
appropriate in high seismicity regions.

More complex approaches, including relevant capacity design rules, should be 
considered for reinforced masonry (of the type considered in this chapter) based on the 
recommendations of Chapter 6. In this case a limit of five storeys is recommended.

(b) Coupling Action: In general, masonry buildings will be designed in each direction 
with structural walls coupled by reinforced concrete beams and/or slabs. As a 
consequence, the procedure will be similar to that discussed in Section 6.8 for the case of 
coupled shear walls, and the relevant parameters will be the effective height the 
coupling ratio (ficB) and the height of contraflexure (Hcf).
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It is interesting to observe that the limited number of storeys does not imply 
significant differences from the trends discussed with reference to Fig.6.32. Effecdve and 
contraflexure height are shown in Fig.8.11 as a function of total number of storeys (/?), 
total height (i^,) and coupling ratio.

The effective height is essentially constant at around 0.8 times the height of the 
building; the contraflexure height is not significantly affected by the small number of 
storeys and its variation with /3cb  is similar to that shown in Fig.6.32. Note, however, that 
the coupling degree will not be a design choice, but will depend essentially on the 
characteristics of the floor slabs and ring beams. The factor /3cb will normally assume 
relatively low values, say below 0.5, in which case the height of contraflexure will not 
differ significantly from the effective height.

n r .

N um er of Storeys, n 

(a) Effective Height

PcB (“ PcB,b/PoTM,b) 

(b) Coupling Ratio

Fig.8.11 Effective and Contraflexure Height as a Function of Number of Storeys
and Coupling Action

A fundamental difference from the case of reinforced concrete coupled walls is that in 
this case the coupling ratio is a design datum rather than a variable. As discussed in 
Section 8.2.2, only the coupling provided by concrete beams and slabs will be accounted 
for. It will obviously be assumed that for each coupling beam the bending moment 
capacity Myi and the corresponding yield rotation 6ybi have been calculated. The yield 
rotation can be computed from the equations derived in Section 3.4.2, appropriately 
modified to this specific case. Including some 10% contribution from the shear 
deformation, Eq.(8.16) is obtained:

(8.16;

An extended effective length of the beam {Lbi,efj) is considered, to take into account 
some curvature penetration into the masonry wall, as a function of the beam section 
depth hbf.
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Lbi,eff ~ Lbi + 2 hbi

The rotation demand of each beam can be computed as discussed with reference to 
Fig.6.33 and Eq.(6.62)> considering a rigid rotation at the wall bases. When several walls 
and openings are considered, as shown in Fig.8.12, the rotation demands for each beam 
are: , - J, '

2 L

@b2 ~
2 L'b2,eff J

(8.18a)

hvl j hv2 /v2 , r /vi ^bl ~  —  + Ĵ b2 ---2  “ oy 2  2  ' 2  

Fig.8.12 Walls and Coupling Beams Rotations

Note that 6W is the wall design drift, which will be known at the start of the design 
process.

Since for each beam the rotation demand and the yield rotation are known, the 
bending moment (M&) transmitted by each beam to a wall will be computed as:

M bi = M ybi 

M b, = ^ ~ M ybl
ybi

i f  &bi -  6 ybi

i f  @bi — ®ybi

(8.19a)

(8.19b)

The shear forces corresponding to the bending moment will be immediately 
computed by equilibrium. In the case of unreinforced masonry walls, bending moments 
and shear forces have to be compatible with Eqs.(8.13) and (8.14).
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8.3.2 Design of Unreinforced Masonry Buildings

(a) General Aspects: As already pointed out, unreinforced masonry buildings in high 
seismicity areas are normally simple buildings with a limited number of storeys (a 
maximum of three is here assumed). A desired structural layout is known at the start of 
the design process, resulting from architectural choices and constraints. Therefore the 
design is essentially an assessment of the expected performance, possibly followed by an 
adjustment of the layout of the structural walls. As a consequence, there is little possibility 
of applying any sort of capacity design principle, given that wall geometries and capacities 
are essentially defined and damage and collapse modes can hardly be modified.

As discussed, only planar (rectangular section) walls coupled by concrete beams will 
be considered part of the structural system. Different choices will not imply conceptual 
modification of the design approach, but will generally require careful consideration of all 
possible damage modes.

On the basis of these premises, a simple design approach will be presented and 
discussed, without considering any preliminary application of capacity design procedures 
and therefore accepting in principle the possibility of shear damage in the walls. Shear 
collapses will be likely to be predicted for one-storey buildings with relatively low wall 
aspect ratios or in cases with rather high coupling between walls, provided by slabs or 
spandrels (which will substantially reduce the contraflexure height). It is however 
considered appropriate to initially assume a flexural response for all walls, and to check 
that this is actually the case at the end of the design process. Modifications of the 
procedure to obtain more efficient structural layouts does not present any conceptual 
difficulty; however, careful verification of the actual response should be required.

(b) Design Displacement and Equivalent Viscous Damping: In general, the 
structural system will be composed by either walls where a flexural damage mode is 
expected, or walls where a shear damage mode will be predicted. However, since only 
coupling from floor slabs will be considered, it is assumed that in all cases a global pier 
mechanism (Fig.8.8(b)) will take place, rather than soft-storey mechanisms (Fig.8.8(a)).

As discussed in Section 8.2, in the case of flexural response a drift of — 0.8% and 
a total equivalent viscous damping ratio ^^=0.10 may be assumed for initial design. This 
damping level will imply a reduction factor to be applied to the 5% damped displacement 
spectrum of /?£=0.76, from Eq.(2.8), for “normal” earthquake characteristics.

In the case of a shear damage mode, a drift of Od,sh — 0.4% and a total equivalent 
viscous damping of ^ / , = 0.15 have been recommended. This damping level will imply a 
reduction factor to be applied to the 5% damped displacement spectrum of R% — 0.64.

Designing for a shear failure mode will thus require an effective period 41% shorter 
than for a flexural failure, and a lateral strength 184% higher than for a flexural mode (see 
Eqs.(3.1) and (3.2)).
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(c) Equivalent Mass and Height: The equivalent mass can be assumed in all cases 
equal to 90% of the total mass, with adequate accuracy. As shown in Fig.8.11, the 
effective height can be assumed as He — 0.8Hn (with the obvious exception of a single 
storey building where He ~ H„). The design displacement on the 10% damped spectrum 
will thus approximately be:

4/.,o%= 0.0064H„ (8.20)

(d) Coupling Action and Contraflexure Height: Based on the design displacement 
(or drift), the drift demand and the corresponding moment and shear values can be 
computed for each one of the coupling beams, as discussed in Section 8.3.1(b) and 
expressed in Eqs.(8.18) and (8.19) (with the limitations defined by Eqs.(8.13) and (8.14)). 
For each wall it is thus possible to calculate the total moment resulting at the wall base 
due to the presence of the coupling beam (Mqb,b, equal to the sum of all beam moments 
and shear force contributions at the wall centreline).

For each wall it is also possible to calculate the moment capacity (Muw), applying 
Eq.(8.1). Note that in this case the axial force P  may include a component from the 
coupling beam shear forces (see below). The total overturning moment capacity will be 
Motm ~ MtiW + Mcb,b and, as discussed in Section 6.8.1, the degree of coupling will be 
expressed as (Eq.(6.54)):

P c b  “  M c b , b  / M 0 t m  (8.21)

The height of contraflexure for each wall will be read from Fig.8.11(b) and it will be 
straightforward to check that a flexural collapse mode will actually control, verifying that 
the shear demand resulting from Eq.(8.2) (with the appropriate value of Hq — Hqf) is 
lower than the capacity resulting from Eq.(8.6). If this should not be the case for any wall, 
either the geometry should be modified, or the displacement capacity and equivalent 
viscous damping typical of a shear damage mode should be adopted.

It has to be noted that yielding of coupling beams, if any, will contribute to increase 
the total dissipated energy, and may consequently affect the damping value, reducing the 
displacement demand. This effect can be relevant if significant ductility demand is 
predicted in the coupling beams and a significant coupling is resulting for several walls 
(relatively high values of Pcb)- If this should be the case, the system damping can be 
recalculated applying Eq.(3.17b) to compute the beam equivalent viscous damping, 
Eq.(6.66a) to each wall—coupling beams system and then combining the wall damping 
values as discussed in Section 3.5.4 for structural elements working in parallel. The design 
displacement will thus be reduced and an iteration of the process will be required.

(e) Strength Demand and Capacity: The design process will proceed as usual; 
therefore the global strength demand will result from entering the displacement spectrum 
with the appropriate design displacement and equivalent viscous damping, reading the
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corresponding period of vibration, Te> calculating the equivalent sdffness (Eq.(3.1)) based 
on the equivalent mass and finally multiplying sdffness and displacement (Eq.(3.2)).

Note that the global strength capacity is simply the sum of the capacity of each wall 
and consequendy if an insufficient global strength is assessed, it will be a design choice to 
decide which wall should be made stronger, provided that symmetry is conserved.

Note, as well, that the process outlined has not considered the axial force variadon in 
the masonry piers due to coupling. With reference to Fig.8.2, the axial force variadon will 
be small for any interior wall (such as wall 2 in Fig.8.2), since the shear forces on the two 
opposite sides will have opposite signs, while it can be significant for an end wall (such as 
walls 1 and 3 in Fig.8.2). In all cases, the axial force variation will compensate, increasing 
compression on one end wall and decreasing on the other one. The total shear strength 
will be only marginally affected. It is however straightforward to include the effect of 
axial force variadon in the evaluadon of strength, or to check that its global effect on the 
total strength is negligible, since the beam shear forces are known and the axial force 
variation at the wall base is simply the sum of the shear values in the beams.

(f) Example 8.1: To illustrate the procedure, consider the simple case of two-storey 
coupled shear walls separated by a continuous opening and coupled by floor beams 
(Fig. 8.13).

The total length of walls plus opening is 7.5 m (24.6 ft); various configurations of 
walls will be considered. The appropriate floor weight (dead plus seismic live load) is 
assumed to be 8 kN/m2 (0.17kip/ft2) , with possible tributary widths of 5 m (16.4 ft) (i.e. 
floor load 40 kN/m) or 1 m (3.28 ft) (i.e. floor load 8 kN/m).

The masonry walls are assumed to be 250 mm (9.8in) thick, with compression 
strength fcm — 6 MPa (870psi), shear strength fmv — 0.4 MPa (58psi) and weight per unit 
volume \vm — 1 5 kN/m3 (961b/ft3).

The floor beams are assumed 250 mm thick, with a moment capacity M = 45 kNm 
(398 kip .in) in both directions, calculated considering an appropriate equivalent width. 
The reinforcement steel has a yield stress fy -  500 MPa (72.5ksi).

The building is located in a moderate seismicity area, with the input ground motion 
represented by a displacement spectrum with a corner period at 2 s. and a corresponding 
corner displacement demand equal to 200 mm (7.9in).

'■ 3 m (118.1 in), tributary

305 kN (68.6 kips)
0.61 MPa (88.5 psi) 
0.12

268.5kNm (2375kip-in)

(i) case one —  wall 1 — 2 m (78.7 in), opening — 2.5 m (98.4 in), wall 2 -  
f lo o r  5 m (196.9 in) wide: /

W ain /
Load at the base: Wj = (2x^25x40)+ (6x2x0.25x15) =
Average stress: i^/=305/(2x0.25) =
Compression depth: ai/lwi = 0.61/(0.85x6) =
Flexural capacity, from Eq.(8.1): M wj — 305x (2/2) x (1-0.12) =
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Fig.8.13 Coupled Walls of Example 8.1

Wall 2 .  r
Load at the base: W2 = (2> (4.2^x40)^(6x3x0.25xl5) = 407.5 kN (91.6 kips)
Average stress: - - fm2~ 407.5/(3x0.25) = 0.54 MPa (78.3 psi)
Compression depth: 2̂/^2 ~ 0.54/(0.85x6) = 0.11
Flexural capacity: from Eq.(8.1): M W2 = 407 .5x (3/ 2 )x (l-0 .11) =546.1kNm (4830kip*in)
Design displacement and damping
Effective height: from Secdon 8.3.2(c): He — 0.8 Hn — 4.8 m (15.7ft)
Design drift: from Secdon 8.2.1(b): 64 — 0.8 %
Design displacement: = 6dHe — 0.008x4.8m= 38.4 mm (1.51 in)
Equivalent viscous damping: from Secdon 8.2.1(b): — 0.10%
Spectrum reduction factor: (Section 8.3.2(b): R^~ 0.76
Hence damped corner displacement: Ac,o.i — 0.76x200 =152 mm (5.98 in)
Strength demand
Equivalent mass: From Section 8.3.2(b): me =0.9Z/7? = 0 .9x (305+407.5)/9.8

i.e. me — 65.4 kNs2/m (0.373 kip*s2/in) 
Equivalent period of vibration: Te = 2x (38.4/152) = 0.505 s
Equivalent stiffness: K<, ~ 4 ^ x 6 5 .4 / 0 .5 1 2 =9920 kN/m
Base Shear demand: VBase — 9920x0.0384 =381 kN (85.6 kips)
Total overturning moment demand: M otm =381 X4.8 = 1829 kNm (16189kip*in)
Coupling action
Beam coupling moment capacity: (at wall face) M^y = 45 kNm (398 kip-in)
Beam coupling shear capacity: V ŷ = 2x45/2.5 =36 kN (8.1 kips)
Check wall capacity (top of wall 1, Eq.(8.14), noting that M 2  =0 and ^2=0):

(45+0)/2+(36+0)/2=40.5 < 0+ 3.25x40/2 =65 (OK- full coupling) 
Beam effective length (Eq.(8.17)): h i,e ff =2.5+2x0.25 =3 m (9.84 ft)
Beam yield rotation (Eq.(8.16)): 6^  0.35x0.0025x3/0.25 = 0.0105 (1.05%)
Beam rotation demand corresponding to 0.8% design drift (Eq.(8.18)):

Obud = 0.008(1 + (2+3)/(2x3)) = 0.0147 (1.5%)
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Thus the beams yield, and therefore: Mbi -  and Vbi — V ŷ
Note that the ductility demand in the coupling beams is small; therefore the additional 

equivalent viscous damping can be neglected.
Total coupling moment: M c b  =2x(45+1 x36+ 45+ 1.5x36) =  360 kNm 3190kip*in) 
Axial force variation on each wall: APw — 2xVhjfV —12 kN
Coupling degree related to strength demand: Eq.(8.21):

Pcb — Mcb/ Motm — 360/1829 =0.31 
From Fig.8.11(b) the contraflexure height is approximately Hcb — 0.85 //„, therefore 

the aspect ratio of the 3m (118.1 in) long wall is 0.85x2x3/3=1.7>1.0. There is thus no 
danger of shear collapse (this can easily checked applying Eq.(8.6) to each wall: the shear 
strength is significantly larger than the flexural strength).

Strength capacity
The total overturning moment capacity is thus approximately equal to Mqt}c ~ 268.8 

+ 546.1 + 360.0 = 1175 kNm (10400 kip-in), significantly lower than the flexural demand 
Md — 1829 kNm (16189 kip-in) and consequently the design should be revised. If we take 
the variation of axial force into account, the total overturning moment depends on the 
direction of lateral force, as a consequence of the different wall lengths, resulting in 
l l 75+30kNm (10400±266 kip-in), for a minimum capacity of 1145kNm (10135 kip*in), 
only 63% of the required capacity. It is thus decided to reduce the opening to 1.5 m (59.1 
in), increasing the coupling action, and designing two identical walls of 3.25m (128 in) 
length.

(it) case two — wall 1 — wall 2 — 3.25 m (128 in), opening — 1.0 m (39.4 in), tributary floor 5 m 
(196.9 in) wide: Since the calculations are repetitive of those for case (i), only the final 
results are included:

Wall 1 and 2
Load at the base: Wf = 300 + 73.1= 371 kN (83kips)
Average stress: fmj = 0.46 MPa (67 psi)
Compression depth: = 0.090
Flexural capacity: Mwj -  549 kNm (4860 kip-in)
Design displacement and damping 
identical to the previous case.
Strength demand
Equivalent mass: me — 68.1 kNs2/m (0.389kip-s2/in)
Equivalent period of vibration: Te — 0.51 sec
Equivalent stiffness: K<, -  10340 kN/m
Base Shear demand: VBaSe ~ 397kN (89 kips)
Total overturning moment demand: Motm — 1905 kNm (16,900 kip-in)
Coupling action
Beam coupling moment capacity: = 45 kNm
Beam coupling shear capacity: Vbi>y -  90 kN
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Check wall capacity (top of walls): 
Beam effective length (Eq.(8.17)): 
Beam yield rotation (Eq.(8.16)):

58.8 < 75 (OK- full coupling))

Beam rotation demand (Eq.(8.18)):
The ductility demand in the coupling beams is in this case fid — 4.77 and would

reduction of the displacement demand may result, which would be more relevant for 
higher values of Pcb-

Again, the contraflexure height (HCb — 0.77 Hn, from Fig.8.11) does not imply any 
potendal for shear collapse.

The system global equivalent viscous damping can be evaluated from Eq.(6.66a), as:

£)« = 0 -  0.4 l)xO. 10 + 0.41x0.18 = 0.13
Strength capacity
The total overturning moment capacity M 0 t , c  =  2 x  548.6 +  765 =  1862 kNm (16481 

kip-in), is still slightly (2.3%) lower than the flexural demand M q t m  — 1905 kNm (16862 
kip*in), but it can immediately be verified that introducing the spectrum reduction factor 
corresponding to the corrected equivalent viscous damping (R% — 0.68), the equivalent 
period would be Te — 0.56 sec and consequently the bending moment demand would 
decrease to 1580 kNm (13985 kip-in). The design is satisfactory, and a solution with wall 
lengths of 3m, and a coupling slab of 1.5m (59.1 in) might be investigated.

Hi) case three -  wall 1 — wall 2 — 3.25 m (128 in), opening — 1.0 m (39.4 in), tributary f lo o r  1 m
39.4 in) wide: it is of interest to discuss a case where the limited floor tributary area

significantly reduces the vertical load on the wall. In general, the coupled walls examined 
in the previous examples will participate in the global reaction system, and only for the 
sake of simplicity it was assumed to have the same total weight participating in the
dynamic response. In other words, internal cross-walls reduce the gravity load on the
walls in Fig.8.13(iii). It is here assumed that the global properties of the system have been 
previously evaluated resulting in the same displacement demand and equivalent period of 
vibration of the previous example (i.e. Aj  38.4 mm (1.512 in), Te — 0.51 sec). The 
contribution of the wall to the global strength is here assessed.

correspond to an equivalent viscous damping of %eq — 0.19 (from Eq.(3.1'7b)) and some

Total coupling moment:
Axial force variation on each wall:
Coupling degree: (related to demand strength)

Men — 765 kNm 
APW = 180 kN
P c b  — 0-41

Wall 1 and 2
Load at the base: 
Average stress: 
Compression depth: 
Flexural capacity:

W, = 60 + 73.1 = 133 kN (30 kips) 
fmi =0.16 MPa (23.2psi) 
a\/lwi -  0.032
Mwi — 209.3 kNm (1850 kipin)
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Coupling action
The coupling beam bending contribution is now lower, because it cannot rely on the 

contribution of the same amount of slab steel. It is assumed at 50 % capacity with respect 
to the previous situation.

Beam coupling moment capacity: M ^ y  =22.5 kNm (199 kip-in)
Beam coupling shear capacity: V̂ y = 45 kN (10.1 kips)
Check wall capacity (top of walls): (Eq.(8.14): 29.9 > 15 (inadequate)
Full coupling action cannot therefore be transmitted at the top level. We approximate 

the coupling action by proportion from the equilibrium capacity/demand inequality as 
Second floor beam coupling moment: Mbj,y — 22.5x15/29.9=11.3 kNm (100 kip-in) 
Second floor beam coupling shear: V^y — 22.5 kN (5.1 kips)
Check wall capacity (first storey): 58.8 < 118.1 (OK- full coupling)
Beam effective length, yield rotation and rotation demand are the same as before, but

only at the first storey will this imply yielding, with: jldi — 4.77
Total coupling moment: M c b ~  286.8 kNm (2539 k ip-in)
Axial force variation on each wall: APw — 67.5 kN (15.2 kips)
Coupling degree: J 3 Cb  ~ 0.52
This high level of coupling corresponds to a height of contraflexure H Cf  ~ 0.62 H n — 

3.72 m (146.5 in), the shear force corresponding to a wall flexural capacity is V// = 56.2 
kN (12.6 kips), while the shear collapse capacity is Vsh = 63.7 kN (14.3 kips) (from 
Eq.(8.6)). A flexural damage mode is therefore still predicted.

Strength capacity
The total flexural capacity of the coupled walls is now M q t ,c  = 2 x  209.3 + 286.8=

705.4 kNm (6244 kip-in), i.e., less than 40 % of the previous case.
Note that considering the effects of axial load variations on the two walls will lead to 

the following results:
Wall 1
Load at the base: Wj = 133.1 -  67.5 = 65.6 kN (14.8 kips)
Average stress: f,„j — 0.081 MPa (11.75 psi)
Compression depth: ^t/l̂ i — 0.016
Flexural capacity”. Mwj = 104.9 kNm (928.5 kip-in)
Wall 2
Load at the base: W2 = 133.1 + 67.5 = 200.6 kN (45.1 kips)
Average stress: fm2 — 0.25 MPa
Compression depth: a2/l„2 = 0.04
Flexural capacity: Mw2 — 310.2 kNm
The total resulting flexural capacity of the two walls is less than 1 % different from 

that computed neglecting the axial force variation. Clearly, the height of contraflexure for 
the two walls will now be different, and shear and flexural collapses will be predicted to 
be very close for wall 1. In fact, the predicted height of contraflexure is 3.24 m (127.6 in), 
with shear and flexural capacity approximately equal Vp ~ Vs/t ~ 32 kN (7.19 kips).
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8.3.3 Design of Reinforced Masonry Buildings

(a) General Aspects: Design of reinforced masonry buildings is conceptually different 
from the case of unreinforced masonry for several main reasons:

• Vertical reinforcement increases flexural strength and provides increased energy 
dissipation therefore increasing equivalent viscous damping. Horizontal 
reinforcement increases shear strength.

• The flexural and shear strength of masonry piers can be independently varied, within 
limits, by appropriate selection of the vertical and horizontal reinforcement 
percentages. As a consequence, capacity-design principles can be applied to avoid 
shear damage and collapse, and the required flexural strength can generally be 
obtained, without significant variation of the building geometry.

• The design displacement cannot be defined a priori on the basis of an accepted drift, 
since the actual drift capacity of each wall may be different, depending on geometry 
and on reinforcement details. In general, the presence of reinforcement will not 
imply significantly larger displacement capacity with respect to unreinforced 
masonry; design drifts larger than 1% are rarely attainable.

• Similarly, the equivalent viscous damping will depend on the final design, as a 
function of each wall’s ductility demand. Normal ductility levels are in the range of 2

2.5 and the resulting equivalent viscous damping will not be much larger than in 
the case of unreinforced masonry. Values normally obtained are up to around 15 %.

• For the above reasons, design may imply some iteration, unless conservative choices 
are accepted for design displacement and equivalent viscous damping at the start.

The recommended design procedure will be similar to that suggested for unreinforced 
masonry, considering only planar walls coupled by concrete beams or slabs.

(b) Design Displacement and Equivalent Viscous Damping: As anticipated, a 
flexural failure mode will be assumed for all walls composing the structural system and 
only global pier mechanisms will be considered possible, without formation of any soft 
storey mechanisms.

As discussed in Section 8.2, minimum (default) values to be assumed for design drift 
and equivalent viscous damping are those characterizing a flexural response in 
unreinforced masonry, i.e. a drift Oj — 0.8 % and a total equivalent viscous damping ^  =

To have a better feeling about the possibility of increasing the design drift, the 
following procedure can be applied, to take into account building geometry and 
reinforcement details:

1. Decide the diameter to be used for vertical reinforcement steel, apply Eq.(4.30) and 
evaluate the length of strain penetration (for example, with dbl = 1 6  mm (0.63 in)

length from Eq.(8.10). Since the height of contraflexure in not known, assume low

10 %.

and fye = 500 MPa (72.5 ksi), it follows that L$p -  176 mm (6.9in));
2. Consider the height and length of each wall and calculate the minimum plastic hinge
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coupling (this is reasonable, since coupling forces should not change with respect to 
unreinforced masonry, while pier strengths generally increase) and use the effective 
height (for example, assuming that the controlling wall is 3 m (118.1 in) long and 10 
m (393.7 in) tall, Lptmw = 0 .04x0 .8x10  + 0 .1x3 + 0.176 = 0.796 m (31.3 in))). Use 
this if  it exceeds the value from Eq.(8.10);

3. Calculate approximate yield, plastic and design drifts from Eq.(8.11) and (8.12) 
(considering again a wall 3 m (9.8 f t ) long and 10 m (32.8 ft) tall and using the same 
values as in Section 8.2.1, i.e. £y — 0.0025, £dC — 0.004 and c/lw ~ 0.2, we obtain: 
6y,mw — 0.47 %, 6P}mw — 0.45 %, Od,mw = 0.92 %. As anticipated, the design drift is 
not significantly larger than 0.8 %).

For evaluation of the equivalent viscous damping, the approximate yield drift can be 
computed for all walls, using Eq.(8.11). For each wall the approximate displacement 
ductility demand can thus be computed (dividing the design drift by the yield drift) and 
the corresponding equivalent viscous damping found from Eq.(3.17a). For example, 
using the data of the wall considered above, JLLa — 2.18 and — 0.127 are obtained.

A proper evaluation of the system damping should be based on Eq.(3.38), but the 
relative strengths of each wall are not available at the start of the design process. 
However, the shear strength distribution between walls is to some extent a design choice. 
It is therefore possible and appropriate to assign relative capacities to different walls. For 
example, a possible choice is to assume each wall strength proportional to the square of 
the wall, as for reinforced concrete walls (see Eq.(3.39) in Section 3.5.4). In this case the 
system damping can be obtained from the following equation; modifications for different 
choices are obvious.

The system equivalent viscous damping will have to be corrected considering the 
coupling degree and the associated damping of coupling beams, if  appropriate.

(c) Equivalent Mass and Height: There is no difference with respect to the case of 
unreinforced masonry. Therefore it can be assumed that me -  0.9L/7? and He ~ 0 .8 i^ 7 
with adequate accuracy.

(d) Coupling Action and Contraflexure Height: In the case of reinforced masonry, 
the coupling degree can be considered a design choice, within certain limitations, since 
equilibrium can be assured by tensile reinforcement connecting slab and wall, without a 
need for satisfying Eq.(8.14). Reinforcement of walls and of ring beams can be decided 
at the end of the design process.

Values lower than J3cb — 0.4 are recommended, in which case the height of the point 
of contraflexure will not be lower than the effective height.

(8.22)
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Since the design drift is known, it is possible to calculate yield drift, drift demand and 
ductility demand for each coupling beam, from Eqs.(8.16), (8.1 ̂  and (8.18). The ductility 
demand of the beams will essentially depend on the span of the openings, and for this 
reason it is a good design choice to tty to keep the opening size as uniform as possible. 
With an estimate of the average equivalent viscous damping of the coupling beam 
s vs terns (£cb, as usual calculated on the basis of the ductility demand using Eq.(3.17a)), it 
is possible to estimate the global system equivalent viscous damping, combining £w,Sys 
(Eq.(8.22)) and £cb into Eq.(6.66a).

(c) Flexural Strength Demand and Capacity: The design process will proceed in the 
usual sequence. Therefore the global strength demand will be found by entering the 
displacement spectrum with the appropriate design displacement and equivalent viscous 
damping, reading the corresponding period of vibration, calculating the equivalent 
stiffness based on the equivalent mass (Eq.(3.1)) and finally multiplying stiffness by 
displacement Eq.(3.2)).

The distribution of the required strength capacity, which is equal to the resulting 
strength demand, to the different walls participating into the resisting system is a design 
choice. As discussed, a possible choice is to make the bending moment capacity of each 
wall proportional to the square of the wall length.

As usual with coupled walls, the response to horizontal actions will induce some axial 
force variation in the masonry piers at the extremities. Although the global strength is not 
normally significantly affected, for the same reasons discussed with reference to 
unreinforced masonry, it is recommended to check whether the axial force variation 
should cause a different damage mode for individual walls.

(f) Shear Strength and Capacity Design: The horizontal reinforcement should be 
designed to avoid any potential of shear collapse, according to the usual capacity design 
principles. For this purpose, the flexural capacity of each wall should be calculated 
considering both directions of loading. The corresponding shear strength should be 
computed considering the contraflexure height corresponding to each case. Normally, the 
higher shear force will be obtained for the case with a higher axial load, since the 
increased coupling degree corresponding to a lower axial force is not enough to 
compensate for the lower flexural strength. The shear strength should be calculated by 
applying an appropriate protection factor to the higher value obtained (see Chapter 6). In 
determining the propensity for shear failure, conservatively high estimates of the flexural 
contributions from coupling beams or slabs should be assumed, as discussed previously.

(g) Design Example 8.2: The reinforced masonry building shown in Fig.8.14 is to be 
designed for a site where the seismic action at the damage-control limit state has been 
assessed as being represented by a displacement spectrum characterized by a corner point 
period of 3.0 seconds with a corresponding displacement demand of 412 mm (16.2 in) 
tor 5% damping. Note that it is unlikely that masonry structures in high seismicity areas
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will be designed for equivalent periods of vibration larger than the corner period, 
therefore in most cases only the slope of the spectrum is relevant to design.

The building has four storeys with a total height of 12 m (39.4 ft); the floor weight is 8 
kN/m2 (0.167 kip/ft2), and all walls are 300 mm (11.8 in) thick. The masonry properties 
are the same as in Design Example 8.1 (compression strength fcm — 6 MPa (0.87 ksi), 
shear strength vmv ~ 0.4 MPa (58 psi), weight per unit volume wm — 15 kN/m3 (96 
lb/ft3). The reinforcing steel has an expected yield strength fye = 500 MPa (72.5ksi).

Only the walls in the direction to be considered are shown in Fig.8.14, but only 50% 
of the floor load is assumed to be carried by the walls. This could be the result, for 
example, of a cast-insitu two-way flooring system, or from changing the direction of a 
one-way floor system at alternate storeys, which has beneficial effects on design, by 
avoiding both too low and too high vertical forces on the walls.

As shown, the structure is composed by three lines of walls. Lines 1 and 2 each have 
three 3 m (9.8ft) long walls linked by slabs through 1 m (3.3ft) wide openings. Line 3 has 
two 4 m (13.1ft) long walls with a central 3 m (9.8ft) wide opening. The floor structure, 
including the coupling beams, has a thickness of 250 mm (9.8in). The effective height is 
taken as He = 0.8 Hn = 9.6 m (31.5ft).

3 m  l m  3 m 1 m 3 m

4 m 3 m 4 m

Line 3 1 | - b 5 -1
W 7 W 8

W 4 W 5 W  6
b 4 .

Line 2 1 I - - I  1
3 m l m 3 m 1 m 3 m

Fig.8.14 The Reinforced Masonry Building of Example 8.2: Floor Plan

It is assumed that 16 mm (0.63 in) diameter bars will be used for the vertical 
reinforcement steel; the strain penetration length is thus Lsp — 0.022 x 500 x 16 = 176 
mm (6.9in) (from Eq.(4.30)). For each of the 3 m (9.8ft) wide (walls 1 to 6) and 4 m 
(13.1ft) wide (walls 7 and 8) walls, the following design parameters can be computed: 

Plastic hinge length (Eq.(8.10)):

Lpivvl 6 = 0.04 x 9.6 + 0.1 x 3 + 0.176 = 0.86m (33.9in) 

Lp w l _ s  = 0.04x 9.6 + 0.1 x 4 + 0.176 = 0.96m (37.8in)
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Yield drift (Eq.(8.11)):

0y M  _6 = 0.60 x 0.0025 x 12/3 = 0.0060 

6ywl _8 = 0.60 x 0.0025 x 12/4 = 0.0045

Plastic drift (Eq.(8.12), approximate value, assuming a / J w = 0.2):

&p.w\-6 =0.86x0.0169/3 = 0.0048 

0vwl_% = 0.96x0.0169/4 = 0.0041

Design drift (maximum value, > 0.8%);

0d M _6 = 0.006 + 0.0048 = 0.0108 

0d,wi-g =0.0045 + 0.0041 = 0.0086

Walls 7 and 8 thus govern, and it is decided to take advantage of the small increase 
over the default value of 0.008 and to design for dj — 0.86%. This implies the following 
ductility demand and equivalent viscous damping for each wall (Eq.(3.17a)):

fldM 6 =0.86/0.6 = 1.43 = 0.092 from Eq.(2.8)

= 0.86/0.45 = 1.91 £ iW7_8 = 0 .117 from Eq.(2.8)

It is now necessary to consider the coupling beams, all 250 mm (9.8 in) deep, 1 m long 
in Lines 1 and 2 (beams 1 to 4) and 3 m (9.8ft) long in Line 3 (beam 5). Their rotation and 
ductility demands are found as follows:

Effective beam lengths (Eq.(8.16)):

hjjM-* =1-0 + 2x0.25  = 1.5m (59.1 in) 

=3.0 + 2x0.25 = 3.5™ (137 8in)

Beam yield drifts (Eq.(8.17)):

0yJ)]_A =0.35x0.0025x1.5/0.25 = 0.0052 

dybS =0.35x0.0025x3.5/0.25 = 0.0122

Beam rotadon demand (Eq.(8.18)):

3/.ai-4 =0.0086(1 + (3 + 3)/2xl. 5) = 0.0258 
0dM5 =0.0086(1 + (4 + 4)/2x3.5) = 0.0184

The ductility demand in beams 1 to 4 is therefore Hd,bi-4 — 2.58/0.52 = 4.96, while for 
beam 5 jl̂ bs ~ 1.84/1.22 =1.51. The equivalent viscous damping in the beams can be 
obtained from Eq.(3.17b) as %eyhi-4 — 0.194 and ^^5 — 0.111.

It is now assumed that the required total shear strength will be distributed in equal 
part to the three lines of walls. This accounts for the higher vertical load and the larger
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wall length of Line 3, slightly increasing its load share with respect to a pure 
proportionality to the resisting section areas. It is also decided that 30 % of the required 
strength capacity for each alignment will be taken through coupling action and 70 % 
through walls flexural capacity (i.e. J 3 q b  — 0.3). As discussed, these are design choices that 
could be revised at the end of the design process, adopting alternative solutions. Based on 
these choices, the equivalent viscous damping of each line and the system global 
equivalent viscous damping are obtained as follows:

Equivalent viscous damping of Lines 1 and 2 (Eq.(6.66a)):

Ze,A\ -2 =0-O.3)xO.O92 + O.3xO.194 = O.123 
4e.A3 = ( l-0 .3)x0.117 + 0.3x0.111 = 0.115

System global equivalent viscous damping (Eq.(3.38)):

= 0.123x2/ 3  + 0.115/3 = 0.120
The corresponding reduction factor to be applied to the 5% damped displacement 

spectrum is thus, from Eq.(2.8), R% -  0.707. It is now possible to apply the usual 
procedure to obtain the total shear strength demand, as follows:

Total weight of floors: Wjj = 8 .0x10 .0 x11 .0x 4  = 3520 kN (791 kips)
Total weight of walls: Ww = (3 .0x6 + 4 .0 x 2 )x 0 .3 0 x l2 .0 x l5 .0  = 1404 kN (316 kips) 
Equivalent mass: me — (3520+1404) x 0 .9/9.81 = 451.7 tonnes (2.58 kip- s2/in)
Effective height: He = 0.8x12.0  = 9.6 m (31.5 ft)
Design displacement: A</ = 0.0086x9.6 = 0.0826 m = 82.6 mm (3.25 in)
Effective period: Te = 3.0x82.6/(412x0.707) = 0.851 s
Effective stiffness: Ke = 4 x ^ x 4 5 1 .7 / 0 .8 5 1 2 = 24640 kN/m (140.7 kip/in)
Design shear strength: Vgase — 24640x0.0826 = 2035 kN (458 kips)
Design shear per line: V^ai-2 -  2035/3 = 678 kN (152 kips)

Considering first Line 3 (Fig.8.15(a)), the same procedure discussed in Chapter 6 for 
coupled shear walls can be applied, calculating the axial forces acting at the base of each 
wall due to gravity with the assumption that 50% of the floor tributary weights is 
transmitted to walls oriented in the perpendicular direction.

Line 3
Overturning moment: M 0 t , a 3  — 678x9.6  = 6510 kNm (57,600 kip-in)
Coupling moment: Mcb^i ~ 6510x0.3 = 1950 kNm (17,250 kip*in)
Wall flexural strength: Mw7_8 — 6510x0.7/2 = 2280 kNm (20,200 kip*in)
Wall base gravity load: PW7-8 — 4 .0x0 .3x 12 .0x1 5 .0  + 5 .0x5 .5x8 .00x4 / 2  =

= 216.0 + 400.0 = 616.0 kN (138 kips)
Wall base axial force variation: APw7_s — 1950/(2.0+3.0+2.0) = 279 kN (63 kips)
The vertical reinforcement should be calculated applying the standard procedure used 

for reinforced concrete, as discussed. To have an idea of the approximate amount of
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reinforcement required, it is possible to check what would be the flexural capacity of the 
wall without vertical reinforcement:

Average compression stress: fm,w7-8 ~ 616000/(4000x300) = 0.51 MPa (74psi)
Compression depth: a w j s/ lw j s  — 0.51/(0.85x6.0) = 0.10
Flexural capacity: Mw\ = 616 .0x2 .Ox (1— 0.10)= 1109 kNm (9815 kip-in)
The flexural capacity of each unreinforced wall should therefore be approximately 

doubled by adding an appropriate amount of reinforcement. It is easy to check that this 
could be obtained with a vertical reinforcement percentage on the order of 0.10 %, or 
approximately using 16 mm bars spaced at about 650 mm (25.6 in).

The shear strength to be provided to each wail will be based on capacity design 
principles, considering the situation with the minimum and maximum axial load, equal to 
Pmin ~ 336.7 kN (75.7 kips) and Pmax — 895.3 kN (201.3 kips). The second case is likely 
to govern.

The coupling beams should be designed for a total coupling moment M q b ,a 3 ~ 1955.3 
kNm (17307 kip*in). It is immediate to calculate the flexural strength to be provided to 
each beam and the corresponding shear. The shear strength of the beams, though, should 
be conservatively designed applying CD principles.

Beams flexural strength: MCB,b5 — (1950/8)x 1.5/3.5 = 104.5 kNm (925 kip-in)
Corresponding shear force: VcB,h5 ~ 104.5x2/3.0 = 69.6 kN (15.7 kips)
The order of magnitude of flexural and shear actions in the beams are fully compatible 

with standard reinforced concrete design.
A similar procedure can be applied to Lines 1 and 2 (Fig.8.15(b)), considering 

appropriately the different geometry. Overturning and coupling moment demands will be 
the same as before.

Lines 1 and 2
Wall flexural strength: Mw1.6 = 6510x0.7/3 = 1520 kNm (13,450 kip-in)
Wall base gravity load (approximate, considering equal share):

PwJ.6 = 3 .0x0 .3x12 .0x15 .0  + 2 .5x3 .7x 8 .00x4/ 2  =
= 162.0 + 146.8 = 308.8 kN 69 kips)

Wall base axial force variation (between walls 1—3 and 4—6, essentially no change for 
walls 2 and 5): AP^.3/4-6 =1950/(1.5+1.0+3.0+1.0+1.5)

= 244 kN (54.9 kips)
The flexural capacity of each wall from gravity loads is:
Average compression stress: fmywi-6 — 308.8/(3x0.3) = 0.34 MPa (49 psi) 
Compression depth: lwi-6- — 0.34/(0.85x6.0) = 0.07
Flexural capacity: Mwi = 308 .8x1 .5 x (l-0 .0 7 )=  430.8 kNm (3813.1 kip-in)
A larger share of each wall flexural capacity should thus be provided through 

reinforcement, the approximate amount of required reinforcement percentage will be 
about ps ~ 0.2 %.

The coupling beams should be designed for a flexural strength equal to McB,bi-4 ~ 
(1950/16)x0.5/2.0 = 30.6kNm (270.9 kip-in), corresponding to a shear force of V CB ,b i-4
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— 30.6x2/1.0 — 61.1 kN (13.7 kips). The capacity-protected shear strength design should 
in this case consider a flexural ductility demand of about HdM-4 ~ 3.2.
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Fig.8.15 Equilibrium of Lines 1-2 and Line 3 of Example 8.2

8.4 3-D RESPONSE OF MASONRY BUILDINGS

8.4.1 Torsional Response

(a) General Aspects: The trea tment of torsional problems in displacement-based design 
has been addressed in general terms in Section 3.8 and discussed in more detail for wall 
buildings in Section 6.4. The approach illustrated there is fully applicable to masonry 
structures, with significant simplification related to the simpler design procedure 
illustrated in this chapter. This is particularly the case for unreinforced masonry buildings, 
for which it has been pointed out that all basic design parameters are known from the 
beginning and the whole procedure is more iterative assessment than a proper design.

In general, well designed masonry buildings are stiff and highly redundant. Therefore 
they are not particularly sensitive to torsional problems. In addition they are always 
restrained systems, with reference to the description and procedure of Sections 6.4.2 and 
6.4.3.

Since masonry buildings are normally low-rise and relatively simple structures, it is 
even more advisable to eliminate strength eccentricity if at all possible. However, some 
indications on possible design procedures are presented in the following.
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(b) Unreinforced Masonry: As already discussed in some detail, when designing an 
unreinforced masonry building, the geometry, loads and material properties are assumed 
to be generally known at the start of the design process with only minor adjustments to 
geometry possible. It has also been discussed how effective height, design drift and 
equivalent system damping can be assumed on the basis of an expected flexural collapse 
and verified at the end, once the height of contraflexure of each wall has been estimated.

In the case of unavoidable strength eccentricity, it is recommended to simply reduce 
the design displacement of the center of mass, to keep the drift demand of the wall where 
the additional displacement demand due to the nominal building plan rotation is a 
maximum within the drift limit capacity. An approximate, conservative evaluation of the 
drift reduction to be considered can be based on the following steps, derived from the 
procedure presented in detail in Section 6.4.5. Refer to Fig.6.10 for definition of symbols.

1. Since the strength capacity of each wall (Vj) is known, calculate the strength 
eccentricity in both directions:

^  = t r Zix ,/ ± V Zi ; eRZ = £ v xjZi/ £ v Xi (8.23)
I I  I I

2. Calculate a conservative estimate of the value for the rotational stiffness, assuming 
that the stiffness of each wall is proportional to its strength, i.e., assuming a constant 
drift for all walls (equal to 0.8 % of the effective height) and a secant stiffness to this 
drift value. This assumption is obviously approximate, since it is not considering the 
torsional response, but is acceptable if the plan rotation will be reasonably small. It 
also conservatively implies full inelastic response simultaneously in the orthogonal 
principal directions.

j = Z^U,:-^)2+Ẑ /(̂ -gffz)2 82
0.008He

3. Estimate the plan rotation demand in each direction according to Eq.(6.24):

&N,x ~ yD,x ' e RZ /J R,V 5 @N,z ~ D̂.z ' e RX / ̂  R,V  (8.25)
4. Reduce the design displacement of the center of mass in each direction by the 

amount equal to the displacement demand of the most external wall due to the plan 
rotation:

\,x — @N,x ‘ Xi.max ’ 0̂.y = @N.y ‘ 3; i ,max (8.26)
(c) Design Example 8.3: Torsional Response o f an Unreinforced Masonry 
Building: In order to show how relevant a strength eccentricity could be to design, 
consider the conceptual case in Fig.8.16, where a simple square building, 7 by 7 m (23 x 
23 ft) in plan is considered, with a structural system braced against horizontal forces 
composed by two identical walls 3.5 m (11.5 ft) long in one direction and two walls 3 and 
4 m (9.8 ft and 13.1 ft) long in the other direction. The building is 7 m (23 ft) high; each
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storey weight is 400 kN (90 kips) and each wall is assumed to carry an equal share of the 
total weight. No coupling is considered here, for the sake of simplicity.

The effective height is He — 0.8x7 = 5.6 m (18.4 ft). All material properties are 
assumed to be those used in Design Examples 8.1 and 8.2. The shear strengths of the 
walls have been assessed to be 74 kN (16.6 kips) (3 m wall), 87 kN (19.6 kips) (3.5 m 
walls) and 101 kN (22.7 kips) (4 m wall).

The following results are thus obtained, from Eqs. (8.23), (8.24), (8.25) and (8.26):

eRX = (7 4 x 3 .5 -1 0 1  x3.5)/(74 + 101) = -0.54m  (-21.3m); eRZ =0

3.5 r

3.5 r

Fig.8.16 A Conceptual Unreinforced Masonry Building with Strength Eccentricity
(Plan View)

J R = 101(3.5-0 .5 4 )2 + 74(3.5+ 0.54)2 +2x87x3.5/0.0448  

= 59500kN m 2 (l4 4 0 0 0 kip • f t 2)
0Nz = (74 + 10l)x0.54/69529 = 0.0016 

A0Z =0 .0016x3.5  = 0.0056w (0.2205i/i)-  0 .\%He
The design drift in direction Z has therefore to be reduced to 0.7%.

(d) Reinforced Masonry: When designing reinforced masonry structures it is normally 
possible to avoid strength eccentricities, since the strength of each wall is a design 
parameter. If for some particular reasons it is decided to assign strength proportions to 
the walls that will result in a torsionally unbalanced structure, the conservative procedure 
described for unreinforced masonry is still applicable, with obvious modifications. 
Alternatively, the more accurate, and less conservative procedure of Section 6.4.5 can be 
directly applied.

A possible conceptual reason to design a building with strength eccentricities could be 
an attempt to optimize the demand/capacity ratio for each wall, increasing the drift 
demand on walls that have a larger drift capacity (see Section 6.4.5(a)). Since drifts related
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to material strain normaHy govern design, suffer walls tend to have smaller displacement 
capacities and if they are assigned a larger share of the strength the center of strength 
becomes closer to the wall, reducing their displacement demand.

Such a design philosophy is possible but makes design more complex and does not 
seem to produce significant benefits, since the differences in drift capacities are normally 
contained within a maximum of 20 %.

8.4.2 Out-of-Plane Response of Walls V C

(a) General Issues: The problem of out-of-plane stability of unreinforced masonry 
walls has traditionally been treated by comparing demand and capacity in terms of 
strength, but it is now fully recognizedlM13l and confirmed by recent experimental and 
theoretical research!06’05! that only by considering displacement parameters is there a 
reasonable prospect of predicting the actual response.

As first pointed out by Pries tley^23̂  the problem is quite complex and requires the 
evaluation of the seismic demand considering the dynamic filtering effect of buildings 
Tig.8.17) and the out-of-plane displacement capacity of walls.

Considering the problem within the framework of a simple approach to design (or 
more appropriately, to assessment), a procedure is suggested, with the aim of indicating 
oossible areas of future research rather than providing specific values to be used; the 
^eason simply being that the current research evidence is not yet adequate to allow the 
quantitative development of reliable approaches that can be widely applied. However, 
codified slenderness and minimum thickness and detailing requirements will generally 
orevent out-of-plane driven failures in new buildings.

(b) Response Assessment: It is assumed that all building walls have been designed 
considering in-plane action; the fundamental effective period of response of the structural 
svstem (7^) and each storey design displacement relative to the ground (Aj) are therefore 
known in each direction. It is further assumed that the response of a wall excited by the 
storey motion in the direction perpendicular to its plane is essentially governed by the 
displacement demand obtained by the amplification of the absolute storey displacement 
as resulting from the interaction of two simple SDOF systems: one being the structure as 
a whole, and the second being the wall considered as an independent structure. The 
absolute storey displacement is calculated from a corrected displacement spectrum, as 
shown in Fig.8.18(a). The theoretical amplification due to the wall response can be 
obtained by the following equation, represented in Fig.8.18:

■ W  = >/ l / M  T ,/T „,„fj + 4 g j T J T „ y  (8.27)

where Toui and &„/ are the response period and equivalent viscous damping of the wall 
in the out-of-plane direction.
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Floor diaphragm response 
am plifies accelerations and 
transmits excitation to out- 
of-plane w alls

In-plane shear w alls 
response filters the 
ground motion and 
transmits to floor 
diaphragm s

Parapet w all

Out-of-plane w a l l '

Earthquake 
excitation at 
footings

Fig.8.17 Simplified Conceptual Representation of Out-of-Plane Seismic
Response(D6»P23l

T OUT/Te

(a) A b so lu te  D isp lacem en t Spectrum  (b) O ut-o f-P lane A m p lifica tion  Sp ectru m  ( ^ w/=0.1)

Fig.8.18 Out-of-Plane Response of a Masonry Wall to Building Period, Assuming
Steady-State Building Response
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Clearly, the displacement demand is essentially a function of the equivalent viscous 
damping ratio of the wall responding out-of-plane ( «̂/)> which can be assumed equal to
0.10 (this is possibly too high if referred to the actual equivalent viscous damping, but it 
compensates to some extent for the assumption of steady-state sinusoidal response of the 
building, inherently assumed in Fig.8.18), and of the ratio Te/Toui between the period of 
vibration of the system and that of the wall. The maximum amplification, at theoretical 
resonance, is Smax — 5 for 0.10. The design amplification spectrum should be
revised on the basis of extensive experimental and numerical studies as new information 
about the effective damping becomes available.

The displacement capacity can be estimated by considering the out-of-plane 
equilibrium of a wall in a displaced position (Fig.8.19). Though refined equations have 
been developed, a simplified set of equations is here suggested for design.

c A (4r J \0[

Fig.8.19 Out-of-plane response of an URM wall in vertical bendinglp23]

With reference to Fig.8.19, the response is dominated by P-A effects. The ultimate 
wall displacement corresponding to zero lateral strength is evaluated considering a pure 
rigid body motion and an infinite material strength:

_b w 4P + 2W 
2 4P + W

(8.28)

where W and P  are the wall weight in the storey considered, and the supported load at 
the floor above respectively. Similarly, the maximum horizontal force at zero 
displacement is calculated as:
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r
p +

b
(8.29)

k„

(c) Design: The design (assessment) procedure will require some iter a don to find what 
displacement demand of the wall will be compatible with the interaction with the building 
response. The following procedure is suggested:

1. Compute the force—displacement curve of the wall, based on Eqs.(8.28) and (8.29), 
and make an inidal assumpdon of response displacement, e.g. : A,/ = 0.5AM>H>;

2. Compute the corresponding effecdve stiffness and corresponding period of 
vibradon of the wall based on the assumed response displacement;

3. Enter the amplification spectrum and calculate the displacement demand, 
multiplying the average structure displacement at floors above and below the wall by 
the amplification factor, and iterate until the assumed response displacement and the 
obtained displacement demand are approximately equal.

4. Check that the predicted displacement is less than the displacement capacity by an 
acceptable factor (at least a factor of 2 is suggested).

(d) Design Example 8.4: Out-of-Plane Response o f an Unreinforced Masonry 
Wall: As an example, consider a wail 250 mm (9.8 in) thick, 1 m (3.3 ft) wide and 3 m 
(9.8 ft) tail, located between the third and top floors of a building. Assume a load acting- 
on the wall top of P — 16 kN (3.6 kips), a total wall weight W — 11.25 kN (2.5 kips). 
Assume also that the building effective period of vibradon is Te — 0.4 sec. and the 
average structural response absolute displacement of the third storey and roof is 60 mm 
(2.36 in). The wall effective mass is estimated as mew~ 0.8/77 =0.917 tonnes (0.0052 
kip*s2/ft). The procedure will give the following results.

Tout/T;
Fig.8.20 Iterative Procedure to Calculate the Displacement Demand in

Example 8.4

Force — displacement limit curve (from Eqs.(8.28) and (8.29), see Fig.8.20):
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AUjW = 143 mm (5.63 in), V0 = 1.802 kN (405 lb)
First iteration:

4 /  = 4 UJ 2  = 71.5 mm (2.81 in), Vj = Ve/2= 0.901 kN (202 lb) 
kr1 = Vj/An = 12.6 kN/m, T o u t i  = 27C(0.917/12.6)°-5= 1.69 s 

The spectral displacement demand is obtained by entering Fig.8.18 (or applying Eq. 
(8.27)) with the ratio between the periods of vibration T o v n / T e — 4.23.

A spectral amplification S o v t i  ~ 1-06 is obtained, to be applied to the storey 
displacement (60 mm). A displacement demand of 4// — 63.5 mm (2.5 in) is therefore 
obtained, lower than the assumed displacement of 4 /  = 71.5 mm (2.82 in).

For the second iteration we assume a response displacement close to the demand 
obtained in the first iteration:

4 2  = 65 mm (2.6 in), V2 = V0 (143 -  65)/143= 0.970 kN (214 lb) 
kr2 = V2/Ar2 = 14.9 kN/m (0.085 kip/in), T0VT2 = 2tc(0.917/14.9)°-5= 1.56 s 

Proceeding as before, a spectral displacement demand amplification of S o u t 2 — 1*07 is 
obtained, from a period ratio T o v r 2 / T e — 3.9. The corresponding displacement demand 
is Aj2 -  64.2 mm (2.53 in)

The displacement demand obtained from the second iteration is close to the assumed 
response displacement, it is therefore concluded that the approximate displacement 
demand on the wall will be 65 mm (2.56 in), compatible with its displacement capacity.

For comparison, assume now that the same wall is located at a lower level, where the 
average storey displacement is 20 mm (0.79 in) and the axial force from the upper storeys 
is 100 kN (22.5 kips). The following values will result, applying the same procedure as 
above.

Force -  displacement limit curve: Au =128 mm (5.04 in), Vo ~ 8.802 kN (1.98 kips) 
First iteration: 4 /  = 64 mm (2.5 in), krj = 68.8 kN/m (0.393 kip/in), T o u t i = 0.72 s 
Spectral displacement demand: TouTi/Tsys— 1.81, 5duti = 1.42, 4// = 28.4 mm (1.12

In)
Second iteration: Ar2 — 46 mm (1.8 in), kr2 — 122.6 kN/m (0.7 kip/in), T0ut2 — 0-54 s 
Spectral displacement demand: T o v r 2 / T e -  1.35, S 0 v t 2  — 2.08, 4/2 = 41.6 mm (1.64

in).
Third iteration: 4 j  = 44 mm (1.7 in), kr3 — 131.3 kN/m (0.75 kip/in), Tout3 ~ 0.53 s 
Spectral displacement demand: Tovr3/Te — 1.31, Sout3 — 2.24, 4 tf = 44.8 mm (1.76

in).
In this case the displacement demand is assessed to be about 45 mm (1.8 in) again 

compatible with its displacement capacity.
In general, out of plane response will not be an issue for the case of reinforced 

masonry, but a similar procedure can be applied.
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TIMBER STRUCTURES

9.1 INTRODUCTION: TIMBER PROPERTIES

As is illustrated in Fig.9.1, the stress-strain characterisdcs of dmber are not suitable for 
ductile response. Timber is brittle in tension, failing with little warning, typically at knots 
and other imperfections, with a complete lack of ductility. In compression, the strain 
characteristics parallel to the grain are less undesirable, with some ductility apparent under 
monotonic loading. However, on unloading, the residual deformation is typically high, 
and strength degradation is apparent under cyclic loading. Flexural response will typically 
be dominated by the tensile strain limit, implying nearly elastic behaviour to failure. As a 
consequence seismic design of timber structures is generally required to be elastic where 
material strength governs the design.

9.2 DUCTILE TIMBER STRUCTURES FOR SEISMIC RESPONSE

Although the brief description above indicates that timber, as a material must be 
considered non-ductile, this does not mean that ductile structures cannot be constructed 
from timber products. To obtain ductile response in timber structures, ductility must be

455
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provided in the connections between structural members, and the timber members 
designed by capacity-design principles to ensure that their strength exceeds the maximum 
force that could be developed corresponding to overstrength capacity of the connections. 
The design philosophy is thus directly analogous to the “ductile connection1 category of 
prestressed frames discussed in Section 5.11.1. A selection of possible categories of 
ductile-connection timber structures is shown in Fig.9.2.

<  <  <-----
(c) Post-tensioned Timber Frame

Fig.9.2 Categories of Ductile Timber Structures

Figure 9.2(a) represents a glulam portal frame with moment-resisting connections at 
the knee joints provided by dowels (bolts) arranged in one or more concentric circular 
orientations. The rotational capacity of the connection is less than the dependable 
moment capacities of the column and the roof arch beam, and hence a ductile design 
approach is reasonable. Direct displacement-based design of this class of structure has 
been studied by Zonta et alfzlJ. It was pointed out in [Zl] that current force-based seismic
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design to ECB^3! is very coarse, with behaviour factors of q = 1.5 and 4 applying for 
dowels with diameter < 12mm (0An in) and > 1 2  mm respectively, resulting in a large, 
and unrealistic apparent change in seismic resistance for a small increase in dowel 
diameter. Design using DDBD principles and experimental hysteredc characteristics of 
the connection would clearly improve the reliability of the designs.

Light structural buildings and houses are often braced laterally with plywood shear 
panels connected to timer or light steel framing, as suggested in Fig.9.2(b). Under seismic 
lateral force the nails connecting the shear panels to the framing slip, providing a measure 
of ductility to the connection. If the displacement capacity and hysteredc characteristics 
of the connections are known then the required strength to limit the drift of the shear 
panels to defined limit-state levels can immediately be found from application of DDBD 
principles, as has been shown by Filiatrault and FoltzlF9L

A third possible application is shown in Fig.9.2(c)^34!. Glulam timber beams and 
columns are connected by prestressing and ductile connectors in exacdy the same way as 
adopted for hybrid precast concrete frames described in Section 5.11.3.

The three categories of connection briefly outlined above are discussed in more detail 
in the following sections.

9.2.1 Ductile Moment-Resisting Connections in Frame Construction

The portal frame knee-joint connection using concentric rings of dowels shown in 
Fig.9.2(a) is popular in EuropelR9l and has been extensively researched by CecotdlC9l. The 
straight smooth dowels are inserted in pre-drilled holes. Strength development is 
significantly lower than the capacity of the connected members, though some problems 
of splitting at sendee loads have been experienced 1B9J. Hysteredc performance of the joint 
is characterized by the development of slackness in the connection as the timber 
surrounding the dowels crushes at moderate rotations. A characteristic moment-rotadon 
plot is shown in Fig.9.3.

&o

Rotation

Fig.9.3 Hysteredc Response of a DoweUed Connection (after [C9])



458 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design of Structures

Note that despite the very low stiffness at low rotations following high amplitude 
displacements, the strength is not significantly affected, and peak capacity is resumed for 
displacements only slighdy higher than the previous maximum.

The hysteretic response indicated in Fig.9.3 implies that the effective viscous damping 
would actually decrease with increasing displacement ductility. Without specific 
information on hysteretic characteristics, a low value of equivalent viscous damping 
should be adopted in design. We suggest E, — 0.10.

Many other connections suitable for timber frames have been developed. A summary 
is available in [B9], from which the categories sketched in Fig.9.4 have been taken. Figure 
9.4(a) shows a portal frame knee-joint where the connection is made by steel nail plates. 
The plates have been necked to a reduced width at the line of the beam/column 
intersection to ensure that the flexural strength of the steel plate is the critical element. 
Fat hysteresis loops with high energy absorption result, with high equivalent viscous 
damping. The Ramberg-Osgood damping relationship of Eq.(3.17c) would be 
appropriate. Residual displacements after seismic response can, however, be high, and 
buckling of the plate is likely if steel strains are excessive. It can readily be shown that to 
ensure a plastic rotation capacity of dp — 0.02 the height H  of the reduced section must 
be at least H — 0.33B, where B is the depth of the “throat” of the reduced section (i.e. 
the dimension perpendicular to H) if  steel strains are limited to Ss < 0.03. Sufficient nails 
are driven through pre-formed holes in the steel plates to ensure that the bearing 
resistance of the nails in the timber exceeds the flexural capacity of the steel plate.

Fire resistance is a problem with this external steel plate connection detail. A 
modification which reduces the fire problem consists of inserting steel plates in slots in 
both the beam and column, and drilling holes insitu for connecting dowels. A further 
modification uses external plywood, instead of steel plates, though this results in the 
bearing capacity of the nails dominating performance, resulting in hysteretic 
characteristics similar to the dowelled connection of Fig.9.3.

Different connection details incorporating dowels epoxied into holes in the connected 
members are shown in the remaining sketches of Fig.9.4. In Fig.9.4(b) a portal frame 
knee-joint is connected by deformed reinforcing bars inserted and epoxied into holes 
drilled vertically through the beam and into the column. Provided the anchorage length is 
adequate, the dowels will yield alternately in tension and compression under cyclic 
flexural joint rotation. Improvement in performance can be obtained if the dowels have 
reduced diameter at the member interface and are debonded from the epoxy by wrapping 
the section of bar with reduced diameter with tape, to spread the yield over a length 
sufficient to keep peak strains to about 0.03 or less.

A similar technique is employed for the beam/column joint of Fig.9.4(c) where dowels 
are epoxy grouted in holes drilled into the beam ends, and through the column. Again 
more dependable performance would be expected if the dowels are debonded for a short 
length on either side of the beam/column interfaces. Tests on beam/column test units 
have shownP9) that connections designed by capacity design principles to ensure that the 
connection is weaker than the members can sustain drift angles of more than 4% with 
displacement ductility capacities of about 6.
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(c) Beam/Column Joint, 
Epoxied Dowels

(d) Beam/Column Joint with 
I-Beam and Epoxied Dowels

I-Beam with 
end plates

Fig.9.4 Ductile Connection Systems for Glulam Frames (after [B9])

Note that a concern with both of the connections of Fig.9.4(b) and (c) would be shear 
Transfer across the member interface. Once cyclic yielding of the dowels has occurred, it 
is probable that a continuous gap will develop at the interface, and the dowels will be the
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oniy available mechanism for transferring the shear force between members. 
Performance could be improved by placing ductile shear connectors across the interface.

The final alternative shown in Fig.9.4(d) also uses epoxied dowels, but in this case they 
are not intended to yield. Steel I-sections with welded end plates are placed between the 
beams and the column, and connected by threaded rods anchored by epoxy grouting in 
the members. Under cyclic flexural action, the flanges of the steel I section yield in 
tension and compression, providing the energy dissipation, and limiting the strength of 
the connection

9.2.2 Timber Framing with Plywood Shear Panels

This form of construction is very common for individual houses, and low-rise 
apartment buildings and offices in the USA and other countries. Recently, this form of 
construction has received considerable research attention, including full scale shake-table 
testinglF9>F10>F7>F5]. Initial information for plywood shear panels is available in [F9]. This 
study investigated the hysteredc response of 9.5mm (0.374 in) orientated strand board 
connected to timer framing with 50mm (2in) spiral nails, pneumatically driven. The shape 
of the force-displacement hysteresis loop of a single nail connection under racking load is 
idealized in Fig.9.5(a). A ductile envelope was obtained under monotonic response, with 
significant stiffness degradation, but little strength degradation under cyclic loading. A 
peak lateral strength exceeding IkN (0.23kips) was obtained. The hysteredc response of 
an entire panel, shown in Fig.9.5(b) was similar to that of the individual nail.

Monotonic

Fig.9.5 Idealized Hysteretic Response of a Nailed Plywood Panel
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Modelling of the hysteretic response indicated that at 1% drift the equivalent viscous 
damping was approximately 0.11, while at 2% drift the damping increased to about £ 
= 0.15. In both cases the damping included initial sdffness damping of £ei — 0.02. The 
analyses showed that these damping levels were essentially independent of the number of 
nails connecting the panel to the frame, and hence were independent of the strength. 
More recent information^10) has suggested that these figures be revised upwards, with 
equivalent viscous damping ratios of % — 50# for 6 < 0.0035, where 6  is the drift angle, 
and £= 0.18 for 6>  0.0035. Elastic damping should not be added to these values.

Drift limits of 1% and 2% were taken in [F9] to represent “immediate occupancyand 
'*life-safety?' limit states, though it is our opinion that the 2% limit is rather low for life 
safety of timber frame structures, and might be more appropriate for a damage control limit 
state. More research is required to establish reasonable structural displacement limits for 
different performance levels for timber structures. Without such information, timber 
structures will probably be designed for drift limits corresponding to non-structural 
performance, noted above.

9.2.3 Hybrid Prestressed Timber Frames

At the time of finalizing this book an extensive experimental research program was in 
progress at the University of Canterbury, New Zealand, investigating application to 
laminated veneer lumber (LVL) structures of the principles of unbonded post-tensioning 
combined with special energy-dissipating elements developed for precast concrete 
structures under the PRESSS program^19! and described in some detail in Section 5.11. A 
summary of the research program in available in [P34].

Tests have already been carried out on exterior beam/column joints (see Fig.9.2(c)) 
where the beam is connected to the column, which is continuous through the joint, with 
unbonded post-tensioning. Internal ducts for one or more post-tensioning tendons in 
both beam and column are formed during manufacture of the LVL members, which thus 
provide fire protection for the post-tensioning. To form a hybrid system, additional 
strength and energy dissipation is provided by special elements across the beam/column 
interface. Two different approaches have been investigated. The first consists of 
deformed rebar rods inserted and epoxied in drilled holes, in similar fashion to Fig.9.4(c). 
The rods are wrapped over a short length at the interface to reduce peak strain levels. 
.Alternate tension and compression yield of the rods adds damping and strength to the 
connection. Since the rods are internal, fire proofing is achieved.

The second alternative uses external dissipaters consisting of rebar anchored at one 
end to the face of the beam and at the other end to the column, across the joint (see 
Fig.9.2(c)). The rebar rods pass through a loose steel sleeve whose purpose is to restrain 
the rod from inelastic buckling while in compression. A disadvantage of this external 
approach is that special fire proofing measures are needed. An advantage is that the 
devices can be checked, and replaced, if necessary, after high-level seismic response.

Excellent, stable hysteretic response has been obtained from test units with both 
internal and external dissipaters at drift levels exceeding 4%. An example, from a
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beam/column test with external dissipaters is shown in Fig.9.6. Note the excellent 
stability of the hysteresis loops and the low residual displacement. Minor crushing of 
timber in the column at top and bottom of the beam interface has been noted at high 
drift angles in the tests, but without any apparent degradation of structural response. 
Note that dmber crushing could be alleviated by “armouring” the beam/column 
connection using steel plates or angle sections bonded to the column face and to the 
beam ends, to distribute the flexural compression forces at the beam ends.

Hybrid specimen 3 -  HY3
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Fig.9.6 Hysteretic Response of a Hybrid LVL Beam/Column Connection using 
External Dissipaterslp34l

Hybrid technology has also been tested^34' for the anchorage of LVL columns and 
walls to foundations, in similar fashion to that discussed for concrete walls in Section 6.^ 
with similarly excellent results.

9.3 DDBD PROCESS FOR TIMBER STRUCTURES

It is evident that there are no unique characteristics of timber structures that need 
special consideration in the DDBD process apart from the identification of appropriate 
displacement or drift limits, and hysteretic characteristics of connections. Material 
properties -  particularly strength and stiffness -  need to be defined on the basis of local 
information, as wide variations can exist between different locations as a consequence of 
timber type, growth rate, moisture content, and means of lamination for glulam or LVL 
construction.

Force-based seismic design is not well suited to timber design as a consequence of 
somewhat irregular hysteretic characteristics, and the lack of clearly definable ductility 
capacity. With the design details discussed above, code drift limitations, rather than 
material strains, are likely to define the performance limit states. Hence DDBD is ideally
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suited to seismic design of timber structures, as has been noted bv various researchers 
(e-g- F9, F10, 7,1).

9.4 CAPACITY DESIGN OF TIMBER STRUCTURES

Often timber structures will essentially be SDOF systems, and the only 
implementation of capacity design principles will be to check that the timber strength is 
adequate to force ductile action into the elements intended to dissipate energy and 
provide strength limits. For multi-storev timber structures, the simplified design rules for 
capacity design proposed in the various structure related chapters of this text may be 
directly adopted. However, analytical research based on timber hysteretic characteristics is 
needed to determine rules specifically relevant to timber structures.



10
BRIDGES

10.1 INTRODUCTION: SPECIAL CHARACTERISTICS OF BRIDGES

Bridges are typically simple structures, in that the number of structural elements (piers, 
spans, abutments) is generally small. On the other hand they often are very irregular, with 
variable column heights, non-uniform span lengths, and sometimes with horizontal 
and/or vertical curvature of the superstructure. Since the structural form is less 
commonly dictated by architectural rather than structural considerations, the designer 
needs to be aware of the structural consequences of decisions made about structural 
form. The scope of this book allows only a brief review of these points. For more 
detailed consideration refer to [P4J and [K6].

10.1.1 Pier Section Shapes

(a ) R ec tan g u la r

(b) S lab

(c) C ham fered  R ectan gu lar

Fig.10.1 Common Section Shapes for Bridge Piers

Figure 10.1 illustrates the principal choices of bridge column section shapes available 
to the designer. The principal choices will be between rectangular and circular sections,

465
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and between single or multi-column piers, with a secondary choice between solid and 
hollow section shapes. Rectangular columns, (Fig. 10.1 (a)), though common in bridge 
design, are less desirable than circular columns because of the difficulty in providing 
adequate restraint by transverse hoops against buckling for the large number of 
longitudinal bars common in typically large column section dimensions. Circular columns 
(Fig. 10.1(d)) are generally confined by spirals or circular hoops, are easy to construct, and 
have the advantage of omni-directional strength and stiffness characteristics. 
Construction can be further simplified, and performance improved by using a continuous 
spiral of unstressed prestressing strand as confinement and shear reinforcement^85!.

A further problem with rectangular columns is that under diagonal seismic response, 
cover spaliing will initiate at lower seismic intensity than when responding in the principal 
directions, because the depth of the compression zone must be larger to provide the 
required compression force, resulting in lower curvatures corresponding to the extreme- 
fibre spaliing strain.

With the chamfered rectangular section of Fig. 10.1(c) the longitudinal reinforcement 
can be confined within a series of interlocking spirals, with the advantage of ease of 
construction noted above for circular sections.

When longitudinal response of a bridge with comparatively few spans is resisted 
principally by abutments an elongated rectangular pier section (Fig. 10.1(b)) may be 
adopted. In the transverse direction the pier acts as a structural wall, but the flexibility in 
the longitudinal direction means that the pier contributes little to longitudinal response. 
Because of this flexibility, which aids in permitting thermal movements, it is generally not 
necessary to provide confinement reinforcement for longitudinal responsetH3l.

When large, long-span bridges have tall bents, hollow columns may be a viable option. 
These have the advantage of reducing concrete mass, thus reducing inertial response of 
the piers as vertical beams spanning between foundation and superstructure, and also 
reducing the tendency for thermally-induced cracking at an early age resulting from heat- 
of-hydration temperature variations. In Europe, hollow sections with large section 
dimension (up to 8m (26ft) maximum section depth or diameter) are common. Fig. 10.1 
includes alternatives based on hollow circular and hollow rectangular sections, suggested 
by the dashed lines representing the inner surface of the hollow section.

Hollow circular sections are less common than hollow rectangular sections despite 
theoretical considerations which would indicate improved seismic performance for the 
circular option, resulting from similar considerations to those noted above for solid 
sections. It has been shown that for hollow circular sections an inner layer of 
reinforcement provides little structural benefit, except as support for additional vertical 
reinforcement. Tests on hollow circular sections subjected to simulated seismic action^1! 
have shown that hollow circular columns with all longitudinal and transverse 
reinforcement placed in a single layer close to the outer surface provide excellent stable 
hysteretic response provided extreme fibre compression strains are less than about 0.006. 
At higher extreme fibre strains, external cover concrete spaliing can result in a sudden 
increase in the depth of the neutral axis, increasing the strain at the internal surface of the 
section to the stage where internal spaliing, resulting in implosion, occurs.
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10.1.2 The Choice between Single-column and Multi-column Piers

The choice between single-column and multi-column piers cannot be made 
independently of the choice of pier/superstructure connection type (see Section 10.1.3). 
With bearing-supported superstructures, the single-column design has the attraction that 
critical seismic response characterisdcs (strength and sdffness) can be made equal in 
orthogonal directions, since the pier will respond as a simple vertical cantilever in all 
directions. The location and performance of the potential plastic hinge will be known to a 
high degree of certainty.

Multi-column piers are more appropriate when monolithic pier/superstructure 
connection details are selected, and also when the superstructure width is large, resulting 
in a potential for high eccentric live-load moments in single-column piers. When the 
column has monolithic connections to the superstructure and foundation, it is again 
simple to make the seismic response characteristics omni-directional. Note, however, that 
if the superstructure is bearing-supported on a multi-column pier-cap, pier response will 
be as a vertical cantilever in the longitudinal direction, and by double-bending 
Transversely, resulting in non-uniform strength and stiffness in orthogonal directions.

10.1.3 Bearing-Supported vs. Monolithic Pier/Superstructure Connection

in-situ box-girders

(a) Bearing-supported Precast 
Beams with In-situ Deck

(b) Monolithic Pier-superstructure. 
In-situ Construction

Fig.10.2 Different Pier/Superstructure Connection Options

Figure 10.2 presents the main options for pier/superstructure connection. With a 
moment-resisting connection, the potential for additional redundancy of energy 
dissipation exists, since plastic hinges can form at top and bottom of the columns, at least 
under longitudinal response. With multi-column piers this advantage also extends to 
;ransverse response. Lateral resistance will thus be increased for a given column flexural 
le n g th , and as a consequence, the column dimensions may be reduced. The fixed-top 
::>nnection detail also allows the designer to consider the option of pinned connections 
between the column base and foundation, when multi-column piers are utilized. A major 
disadvantage of the monolithic connection detail is that seismic moments developed at 
;he top of the pier are transmitted to the superstructure. This adds to the super-structure
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gravity negative moments at the pier, and may also result in positive superstructure 
moments. Resisting these may increase the cost of the superstructure. Clearly the 
monolithic detail is only appropriate when the superstructure is continuous over the pier, 
rather than simply supported. This might be felt to rule out designs where the 
construction uses precast concrete beams for the superstructure. However, connection 
details providing fully monolithic response of bridges with precast superstructures have 
been successfully tested under simulated seismic loadinglH4L

Bearing-supported superstructures have the advantage of minimising the 
problems associated with moment transfer from the pier to the superstructure, and with 
joint-shear and anchorage issues. Different types of bearings may be considered, 
including pot-bearings, rockers, PTFE-stainless steel sliders and elastomeric bearings. 
These are discussed in some detail elsewherel™l. Bearing-supported connection details 
will almost always be chosen when a decision is made to provide seismic resistance by 
seismic isolation (see Chapter 10). Seismic displacements of bearing-supported 
superstructures will generally be larger than those of structures with monolithic 
connection, and the sensitivity to seismic intensity exceeding the design level will also be 
increased as noted above.

10.1.4 Soil-Structure Interaction

Bridges are often required to cross rivers and valleys where foundation conditions are 
less than ideal. As a consequence soil-structure interaction effects frequently require 
special consideration. Figure 10.3 illustrates three different foundation conditions where 
soil-structure interaction and foundation flexibility can be expected to affect the DDBD 
process. In Fig. 10.3(a) the pier is supported on a spread footing. The situation is identical 
to that for structural cantilever walls on spread footings, which has been considered in 
some depth in Section 6.5. The influence on effective damping and ductility demand and 
capacity must be considered. As discussed in Section 6.5.2, the non-linearity of the 
foundation stiffness when partial uplift of the footing on the foundation material occurs 
must be considered when estimating elastic displacements resulting from foundation 
flexibility. A suitable design criterion is that at the design level of displacement response, 
at least 50% of the footing should still be in contact with the foundation material. This 
will ensure that the footing has sufficient overturning capacity to support the maximum 
feasible overturning moment found from capacity-design considerations.

Figure 10.3(b) represents a design where the column of a pier continues into a drilled 
hole in the foundation material to become the single supporting pile. In the example 
illustrated, the pile and column have identical dimensions and the same longitudinal and 
transverse reinforcement. Maximum moments will occur some distance (generally less 
than two pile diameters) below the ground surface. However, the elastic curvature in the 
pile below the location of the potential plastic hinge adds to the yield displacement, again 
affecting the damping, displacement, and ductility capacity.

The pile-supported footing of Fig. 10.3(c) is similar in response to the spread footing 
of Fig. 10.3(a). However, since the soil strength and stiffness are likely to be lower with a
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pile-supported footing, horizontal translation of the pile cap can be more significant. On 
the other hand, if  the piles are supported on a firm stratum, rotation effects may be 
lower.

./10.1.5 Influence of Abutment Design

Different abutment design options are discussed in some detail in^P^]. With shorter 
bridges, of few spans, a monolithic connection between the superstructure and the 
abutment may be chosen. In such cases, effective periods areJijs^ly to be very short, and 
inertial response will be largely dictated by the peak grotmd acceleration. Design of the 
abutments will essentially be on a strength basis, and the concepts of ductile response are 
inappropriate. Damping, however, is likely to be significantly higher than the 5% elastic 
value often adopted for force-based elastic design. Special studies to determine the 
appropriate level of damping should be undertaken.

When the bridge is supported on bearings at abutments, a critical consideration will be 
whether the freedom of movement provided by the bearings occurs in just the 
longitudinal direction, or also in the transverse direction. In the former case, significant 
inertial reactions under transverse response will be transmitted back to the abutments by 
superstructure bending. The dual load path situation imposed by this action (see Section 
1.3.7) requires special attention, and is considered later in this chapter (Section 10.4.2).

^10.1.6 Influence of Movement Joints

Superstructure movement joints are provided to accommodate thermal, creep and 
shrinkage displacements. Current practice is to use the minimum number possible of 
movement joints as they typically require continual maintenance. Movement joints also 
have an influence on the distribution of inertial forces, which primarily originate from 
superstructure inertial response, to supporting piers. Locations of movement joints 
should be considered from the seismic, as well as serviceability view point.

Modelling of movement joints is complex. Although longitudinal freedom is provided, 
impact may well occur across the joint under joint-closing displacements, particularly 
when combined with relative rotation of the superstructure segments on either side of the 
joint. Seismic force-transfer due to bearing stiffness or special seismic lock-up devices 
must be considered. Generally there will be additional damping associated with relative 
joint displacement. See Section 10.4.1 for comments relative to DDBD.

^10.1.7 Multi-Span Long Bridges

Many bridges have considerable length -  often several kilometres. It needs to be 
decided in the design phase if it is realistic to assume that the seismic input to all piers is 
coherent and in phase. There is, however, reasonable evidence based on analyseslP3°l that 
the assumption of in-phase coherent input is conservative provided soil conditions are 
uniform along the bridge, and should be adopted unless special studies are carried oul
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Normally bridges will be designed for transverse seismic response considering 
independent sub-structures, of perhaps five to eight spans (normally between movement 
joints) with simplified representation of the strength and sdffness of adjacent sections of 
the bridge. Where this is adopted, there should preferably be an overlap of spans in 
successive sub-structures designed.

10.1.8 P-A Effects for Bridges

P-A effects related to DDBD have been examined in Section 3.6. The effects are 
particularly important for bridges, as piers are often high, and drift limitations imposed by 
design codes for buildings will not normally be applied to bridges. Thus, although it is 
uncommon for buildings to be designed for drifts exceeding 0.025, bridges may be 
designed for response drifts of 0.04 or higher, generally governed by material strain limits.

10.1.9 Design Verification by Inelastic Time-History Analyses

As a result of the irregularity of many bridge structures, design verification by inelastic 
::me history analyses (ITHA) should be considered, particularly for bridges with 
significant horizontal curvature. Typically the number of members to be modelled will be 
small, and hence the computational effort in data preparation and results interpretation 
will not be excessive. Refer to Section 4.9 for guidance in modelling and analysis.

10.2 REVIEW OF BASIC DDBD EQUATIONS FOR BRIDGES

Most of the basic design equations needed to determine the total design base shear 
rorce are identical to those for other structures and have been developed in Chapter 3, 
and summarized in Section 5.2.1 for frames. The equivalent SDOF design displacement 
:> given by Eq.(5.3) (also Eq.(3.26)), and for effective mass by Eq.(5.4) (also Eq.(3.33)). 
The effective stiffness is defined by Eq.(5.10) (also Eq.(3.1)), and the total base shear by 
Eq.(5.11) (also Eq.3.2)). The total base shear is distributed to the masses by Eq.(5.12) 
also Eq.(3.41)). In Section 4.9.2(e)(iii) it was noted that for ITHA of bridges it will 

normally be adequate to represent the distributed superstructure mass by lumped masses 
. seated above each pier. The same assumption will also normally be adequate for the 
DDBD process. However, the caveats noted in that section should also be reviewed, 
particularly when spans are long or columns are high.

However some aspects need special consideration. In particular the characteristic 
displacement shape (see Section 3.5.2) and the equivalent viscous damping are less 
: Dviously defined than for most building structures. We start by considering design for 
I :>ngitudinal response of straight bridges, and then developing to the more complex case 

: transverse design.
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VlO.3 DESIGN PROCESS FOR LONGITUDINAL RESPONSE

The longitudinal response of straight bridges is simplified by the fact that except for 
very long bridges, the design displacements will be the same at all piers. For very long 
bridges it may be found that axial strains induced in the superstructure by inertia forces 
modify the design displacements to be different at different piers, but in such cases it is 
more appropriate to separately design segments of the bridge between movement joints, 
as noted above. The main issue for longitudinal design will thus be to determine the yield 
displacements and hence the equivalent viscous damping for the individual piers, and to 
combine these to form the system damping for DDBD.

10.3.1 Pier Yield Displacement

The pier yield displacement in the longitudinal direction depends on the degree of 
fixity provided at the pier top and bottom, the pier height, and the secdon yield curvature.

 ̂ (a) Yield Curvatures: Yield curvatures for different solid sections have been 
summarized in Section 4.4.7 (Eq.(4.57)). It is worth noting, however, that these can also 
be used as reasonable estimates for hollow columns. As an example of this it is instructive 
to compare the moment-curvature response of two large-diameter circular columns with 
identical axial load and longitudinal reinforcement content. Both columns have a diameter 
of 4m (13.1ft), but one is solid, and the other is hollow with a wall thickness of 0.4m 
(15.7in), resulting in a net area 36% that of the solid column. Material properties a r e / ^  
= 40MPa (5.8ksi), f ye -  450 MPa (65.3ksi). Transverse reinforcement is provided by 
25mm (lin) diameter bars at 75mm spacing. Axial load is 25MN corresponding to axial 
load ratios of P/pceAg =0.05 and 0.139 for the solid and hollow sections respectively, 
related to the net section area. Longitudinal reinforcement has a total area of 250,000 
mm2 in each case, corresponding to reinforcement ratios of 2% and 5.6% for solid and 
hollow sections respectively. The hollow section represents close to the limits of what 
would be considered appropriate for seismic conditions in terms of thinness of wall, and 
upper bound axial load and reinforcement ratios.

Moment-curvature plots for the two sections are compared in Fig. 10.4. In the initial 
stages of response there is very little difference between the strength and stiffness of the 
two columns. The yield curvatures are found to be 0.001221m'1 and 0.001315m-1 for the 
solid and hollow sections, compared with the value predicted by Eq.(4.57a) of 0.00126. 
The discrepancy from the predicted value is less than 5% in each case. The biggest 
difference between the moment-curvature response of the solid and hollow sections 
results from the limitation of 0.006 on the extreme-fibre compression strain for the 
hollow column, in accordance with the recommendation made in Section 10.1.1. This 
limits the curvature ductility capacity to 4, compared with 16.4 for the solid section. 
However, as will shortly be shown, ductility demands on tall, large diameter columns are 
often rather small, and the limited ductility of the hollow columns will often be adequate.

Similar arguments apply to hollow rectangular columns, for which the yield curvature 
given by Eq.(4.47b) may be used with adequate accuracy.
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Fig.10.4 Comparison of Moment-Curvature Responses of Solid and Hollow 
Circular Columns (D=4m, D’=3.2m, P=25MN, Ast=2500cm2)

(b) Influence ofEnd-Fixity Conditions: End-fixity conditions at both top and bottom 
: :  the pier will affect the yield displacement of the pier. A number of possible conditions 
;:re illustrated in Fig. 10.5. In each case the yield displacement may be defined as

(10.1)

V

'a / s y

A = C A ( H  + L j

where L$p is the total strain penetration and Ct is a constant dependent on end fixity.
In Fig. 10.5(a), the superstructure is bearing supported, and the footing is considered 

r- îd against rotation and translation. The effective height H is measured to the centre of 
:ne bearing, the strain penetration length into the footing, from Eq.(4.30) is 0.022fyedbt 
MPa) units, and the coefficient for Eq.(lO.l) is Cj =1/3.

The footing in Fig. 10.5(b) is also considered rigid, but the pier has a monolithic 
connection to the superstructure. The degree of fixity at the column top will depend on 
:he relative stiffness of column and superstructure. Since strain penetration effects of pier 
reinforcement into both the footing and the superstructure will add apparent flexibility7 to 
:he column, the value of L$p to be used in Eq.(lO.l) is 0.044fyedbt. In most cases the 
superstructure stiffness will be much greater than the column stiffness, and rotation at the 
column top will be negligible. In such cases, the appropriate value of Cj is 1/6. Where the 
flexibility of the superstructure is considerable, the value of Cj may be approximated as

c, =-
l - C

where
2 J

q  — 4£7P(ZS1 • LS2)

! 6/„(tf + £j(£s, + A j
(10.2)
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Fig.10.5 Possible Fixity Conditions for Longitudinal Response

The equation for C2 is found by displacing the pier longitudinally without joint 
rotation, then distributing the out of balance moment at the column top. In Eq.(10.2) EIp 
is the pier stiffness, including effects of cracking and EI$s is the superstructure stiffness 
(normally uncracked, particularly if prestressed). It is assumed that the superstructure has 
contraflexure points at the midpoint of the spans, length L s j  and L s 2 > on either side of 
the pier. Modifications for end spans and spans with movement joints are obvious.

It is instructive to consider a typical example, with a stiff pier and a relatively flexible 
superstructure. The single-column pier has a diameter of 2 m (6.56 ft), and a clear height 
of 8 m (26.2 ft). The column stiffness is assumed to be 0.5EIgross — 0.392E  (metric units). 
The superstructure is 15 m (49.2 ft) wide, has a moment of inertia of 15 m4 and has span 
lengths on either side of the pier of 40 m (131.2 ft). From Eq.(10.2) the correction for 
pier-top flexibility, assuming a total strain penetration length of 0.6m is found to be C2 — 
0.04. This is less than the expected error in the yield curvature, and hence, even for this 
stiff-pier case, the superstructure may be considered effectively rigid.

The situation in Fig. 10.5(c) is the inverse of that in Fig. 10.5(a), with a hinge being 
located at the column base to reduce foundation moments, and a monolithic connection 
to the superstructure. This detail is only appropriate when the pier consists of more than 
one column, since a single-column design with this detail would be unstable transversely. 
Hinge details normally consist of terminating the column longitudinal reinforcement at 
the top of the footing, reducing the column diameter by placing a ring of flexible joint 
material between the column and footing, and placing special vertical hinge reinforcement 
at the centre of the column. Further details are available in [P4].

The example in Fig. 10.5(d) has a flexibly supported footing (either a spread footing 
with soil of comparatively low subgrade modulus, or a pile-supported footing), and a 
pier/superstructure connection that could be either bearing supported or monolithic. The
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situation is directly analogous to that of a cantilever wall supported on a footing, 
discussed in Section 6.5.2, where the additional displacement resulting from foundation 
flexibility can be rewritten as

= {Mb + VBhF )(// + hF)/kvIg S  J  U "  - (10.3)

where Mb and Vb are the design moment and shear at the base of the pier, hf  is the 
footing thickness, kv is the soil vertical subgrade coefficient (kN/m3 or kips/in3), and is 
the moment o f inertia o f the footing soil interface, including possible effects of uplift.

It will be apparent that it is not possible to define a unique coefficient C2 for this case, 
since the structural yield displacement is independent of the final pier strength while the 
additional displacement due to foundation flexibility is directly proportional to the final 
pier strength. Hence, when foundation flexibility effects are significant, an iterative 
approach may be necessary.

The final example, in Fig. 10.5(e) consists of a pile/column design where the pile 
continues into the foundation material as a cast-in-drilled-hole (CIDH) pile. At the top of 
the column, the connection to the superstructure could be bearing-supported or 
monolithic. This situation has recently been studied by Suarez and KowalskyIS4J who 
found that Eq.(lO.l) could be used to predict the yield displacement, with the height H  
replaced by the distance ///<; from the in-ground hinge location to the pile top (see 
Fig. 10.5(e)), and with values for Cj determined from inelastic pushover analyses using an 
inelastic pile supported in the ground by realistic inelastic soil springs. Uniform sand and 
clay foundation materials were investigated. Internal friction values of the saturated sands 
varied from 30° to 37° corresponding to sand coefficients of lateral subgrade modulii 
between 5.5MN/m3 and 33.2MN/m3 (35 -  212 kips/ft3). Clay strengths varied between 
20kPa and 40kPa (3-6 psi).

Results from the parameter study reported in [S4] are summarized in Fig. 10.6, which 
provides information on the distance from the pile top to the in-ground hinge location, 
and the appropriate value of C/ to be used in Eq.(lO.l), for both pinned and fixed 
connections between the pile/column and the superstructure. Heights Hig to the in- 
ground hinge (see Fig. 10.5(e)) are expressed in dimensionless form, dividing by the 
column diameter, and are related to the above-ground height to the superstructure. It will 
be noted that the in-ground depth (Hig H) decreases as the dimensionless above-ground 
height H/D increases. The parameter study found that there was no significant difference 
in the value of Hjg between fixed-head and free-head conditions. As soil strength 
increased, depth to the in-ground plastic hinge decreased. As is clear from Fig. 10.6(a) 
and (b), the relationships between Hj(/D and H/D are essentially linear and can be 
expressed by the following relationships:

Sand, <]) = 30°: (H , G  /D) = 4.39 + 0.82X (///D) (10.4a)

Sand, (f) = 370: (H jG /D) = 3.40 + 0.84x(H /D) (10.4b)
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Clay, pu = 20kPa: ( H IG ID) = 6.38 + 0.69x ( H / D )  (10.4c)

Clay, pu — 40kPa: (H/G ID) = 4.96 +  0.71 X (H ID) (10.4d)

Coefficients Cj to be used in Eq.(lO.l) are plotted in Figs.10.6(c) and (d) against 
column above-ground height. The differences between the relationships for different soil 
strength for pinned-head conditions are small, and for fixed-head conditions are 
negligible. The coefficients in these figures were determined using a bilinear 
approximation to the moment-curvature characteristics of the pile, following principles 
outlined in Section 4.2.6. For the pinned-head cases, the coefficient applies when the in- 
ground hinge develops the yield curvature given by Eq.(4.57a). For the fixed-head cases, 
(monolithic connection between pier and superstructure), the hinge at the top of the 
column develops at a lower displacement than the in-ground hinge. The coefficient in 
Figs. 10.6(c) and (d) applies when the column-top hinge forms. At this stage the in-ground 
hinge may still be some way from forming.

H/D
(a) Sand, Length to Fixity (b) Clay, Length to Fixity

H/D
(c) Sand, Yield Displacem ent Param eter

H/D
(d) clay, Yield Displacem ent Parameter

Fig.10.6 Data for Yield Displacement Calculations for Pile/Columns (after [S4])
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The coefficients in Figs. 10.6(c) and (d) may be compared with the values of 0.333 and 
0.167 applicable for columns fixed at the base, and fixed at base and top respectively. It 
will be seen that the yield displacements for pile/columns of equal above-ground heights 
to fixed-base columns are much larger. This is a consequence of the elastic rotation 
occurring at the position of potential in-ground hinge formation, resulting from soil- 
structure interaction. For short columns, the yield displacement may be as much as three 
times the value applicable to a fixed-base column with similar dimensions.

Suarez and KowalskylS4l found that the data in Fig. 10.6 were applicable for columns 
with reinforcement ratios varying between 1% and 4%, within acceptable errors. The data 
in Figs 10.6(c) and (d) may be represented by the following equations:

sand, pinned head, (j) =30°: C] = 1 .187 — 0.223 In {HID)  (10.5a)

sand, pinned head, (j) — 37°: C, = 1 .137 — 0.230 ln (// ID )  (10.5b)

sand, fixed head, all <p\ 0.3 1 0 — 0.030 \\\(H / D) (10.5c)

clay, p u = 20 kPa: C, = 1.840 -  0.363 \n(H / D)  (10.5d)

clay,pu — 40 kPa: C, = 1.767 — 0.360 ln (//ID ) (10.5e)

clay, fixed head, a llpu C, = 0.447 — 0.055 \r\(H ID ) (10.5f)

(c) Elastically Responding Piers-. In Chapters 5 and 6 it was pointed out that the yield 
displacements of tall buildings may exceed the peak elastic response displacement 
applying for periods larger than the corner period when design seismic intensities are 
moderate. Such structures would thus respond elastically to the design seismicity. Similar 
arguments, with similar conclusions apply to bridge piers. Since it will primarily be tall, 
large-diameter hollow columns with pinned connection to the superstructure that may be 
affected, the discussion is limited to this class of pier.

Based on the yield curvature of circular columns defined by Eq.(4.57a) and the yield 
displacement equation of Eq.(lO.l), the yield displacement can be written as

X/7 C/i ^
A v = </>y (H + Lsp )2 / 3 = 2.25ev (H + Lsp f  / 3D V ,  ̂ ' (10.6)

Figure 10.7 plots the relationship defined by Eq.(10.6) for reinforcing steel with a yield 
strength of 500MPa (i.e., £y — 0.0025). Although Eq.(10.6) strictly applies to solid-section 
piers, it was pointed out in Section 10.3.1 that the error in applying it to hollow-section 
piers is negligible. Because of the similarity between the yield curvatures of circular and 
rectangular sections (see Eqs(4.57)), Fig. 10.7 also applies to rectangular sections within a 
10% error margin.

It is of interest to compare these displacements with the plateau displacements 
predicted by the approximate approach developed in Section 2.2.2, in a similar fashion to 
that used to develop Fig.6.9 for cantilever walls. The results are plotted in Fig.10.8 for 
piers with reinforcement yield strain of 0.0025. Yield displacements are shown for
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cantilever piers with different aspect ratios in Fig.l0.8(a) side-by-side with peak (plateau) 
displacements corresponding to different causative earthquake magnitudes with different 
site peak ground accelerations. As an example of the use of this figure, consider a 
cantilever column of effective height (.H+L$p) — 36m and diameter 4.5m. The aspect 
ratio is 8, and Eq.(10.6) and Fig.l0.8(a) indicate that the yield displacement is 0.544m. 
This displacement is transferred to Fig. 10.8(b) (follow the dashed line), which indicates 
that the yield displacement corresponds to a PGA of 0.4g with a causative moment 
magnitude of Mw = 7.2. Smaller magnitudes with the same PGA, or smaller PGA’s with 
the same magnitude will not be adequate to induce yield displacement.

E ffe c tiv e  C olu m n H eig ht (H + L SP) (m)

Fig.10.7 Yield Displacements of Cantilever Piers with Circular Sections
(£y=0T0025)

The modification to enable consideration of fixed-head columns is obvious, since the 
yield displacements will be one half those shown in Fig. 10.8(a).

J 10.3.2 Design Displacement for Footing-Supported Piers

As noted earlier the longitudinal design displacements for all piers will be normally be 
identical for a straight bridge. While in buildings it is normal for the design displacement 
to be set by drift limits, this is rarely the case for bridge piers. Occasionally there may be 
absolute design displacement limits, normally related to allowable relative displacements 
between superstructure and abutments, but more commonly material strain limits will 
govern the design displacements. P-A moments may also limit design displacements.

As has been noted in Section 3.4.1, when material strains govern the design, the design 
curvature will be found from the more critical (smaller) of the curvatures associated with 
the limit concrete strain and the limit tension strain. Thus:
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A spect R atio (A r =H /D) M om ent m agnitude

(a) Structural Y ie ld  D isplacem ent (b) P lateau D isplacem ents

Fig.10.8 Cantilever Pier Yield Displacements for £y -  0.0025 Compared with
Plateau Displacements

$ \ s , c ~ £ c j J C (a) an<̂  0is,s  =  £ s j s  / { d  ~  C ) (b) 00*7)

where c and d are the distances from the extreme compression fibre to the neutral axis 
and to the extreme tension reinforcing bar respectively.

The limit strains for DDBD are defined in Section 4.2.4. For the damage-control limit 
state, the maximum concrete compression strain is related to the volumetric ratio of 
transverse reinforcement, and is defined by Eq.(4.21), with the maximum reinforcement 
tension strain defined by Eŝ c —0-6esu. Since the curvature associated with the limit strains 
also depends on the neutral axis depth, c, (see Eq.(10.^)), it will not be possible to exacdy 
define the limit curvature, and hence the design displacement, at the start of the design 
process, and some iteration is required. The alternative is to design for a specified drift, 
and determine the required amount of transverse reinforcement to provide the required 
damage control limit strain at the end of the design process. This will only work if the 
concrete strain governs design, which will generally be the case for circular columns.

Analyses indicate, however, that the neutral axis depth is rather insensitive to the axial 
torce ratio and reinforcement content, particularly for circular columns, as is illustrated in 
Fig. 10.9(a). Although the reinforcement ratio will not be known at the start of the 
DDBD process, the axial load ratio generally will be, except for transverse design of piers 
with multi-column bents. Sensitivity to reinforcement ratio is small, and taking an average 
value of 0.02, the neutral axis depth can be approximated as

c/D = 0.2 + 0.65 P/(fceAg) (10.8)
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where D  is again the column diameter.
Design displacements using neutrai axis depths based on Eq.(10.8) will have only 

small errors, which may be eliminated at the final stages of design by small adjustments 
to the final spacing of transverse reinforcement.

Figure 10.9 also includes additional design information in the ratio of confined 
concrete compression strength to expected unconfined compression strength, as a 
function of transverse reinforcement ratio and ratio of transverse reinforcement tension 
strength to expected unconfined compression strength. This is based on Eqs.(4.5) and 
(4.10) and simplifies the solution of Eq.(4.21) to determine the damage-control limit state 
compression strain. High values of fydfce have been included in Fig. 10.9(b) to enable 
values for high strength transverse reinforcement to be considered. Tests of columns 
with unstressed prestressing strand as transverse reinforcement^5! have shown superior 
structural performance compared with mild steel reinforcement for both confinement 
and shear strength.

0.4 —,

1 1 1 1 1
0.01 0.02 0.03 0.04
R ein fo rcem ent R atio (AST/A gross)

0 0.003 0.006 0.009 0.012 0.015
T ransverse re in forcem ent ratio (pv)

(b) C onfined  C oncrete Strength(a) N eutral A xis D epth  

Fig.10.9 Design Aids for Design Displacement of Circular Columns

The design process to determine the damage-control design displacement for 
longitudinal response of circular columns can thus be expressed in the following steps. 
Modification for rectangular columns is obvious, using information provided in Section 
4.2.2.
Step 1: For the critical column, chose the diameter and spacing, of transverse 
reinforcement, and hence the volumetric ratio from

(10.9)
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where Ab is the bar area, and s the spacing of the transverse reinforcement, and Z^is the 
core diameter, measured to the centres of the hoops.
Step 2: From Fig. 10.9(b) or Eqs.(4.5) and (4.10) determine the confined compression 
strength of the core concrete.
Step 3: From Eq.(4.21), reproduced here as Eq.(lO.lO) determine the damage-control 
compression strain:

£dc,c =  0-004 +1.4 Pv^ * £su (10.10)
• f  c c

Step 4: Determine the column axial force ratio.
Step 5: From Fig. 10.9(a) or Eq.(10.8) estimate the neutral axis depth.
Step 6: From E q s . ( l d e t e r m i n e  the critical limit-state curvature. I ^  ^
Step 7: Determine the plastic hinge length from Eq.(4.31), reproduced here as Eq.(lO .ll):

Lp = kLc  + L Sp > 2LSP (10.11)

where L c  is the distance from the critical section to the point of contraflexure, L$p is the 
strain penetration length given by Eq.(4.30) and k depends on the flexural reinforcement 
ultimate/yield strength ratio, given by Eq.(4.31b).

Note, however, the modification below in Section 10.3.4 for pile/columns.
Step 8: Determine the design displacement from Eq.(10.12), where Ay is obtained in 
accordance with Section 10.3.1.

AD= A y + (0ls- 0 y )LpH (10.12)

10.3.3 Design Example 10.1: Design Displacement for a Footing-Supported 
Column

To illustrate the sequence of operations described in the previous section, we consider 
.i footing-supported column monolithically connected to the superstructure, under 
longitudinal seismic response. The column diameter is 2.0 m (78.7 in), has a clear height 
of 12.0 m (39.4 ft), and supports an axial load, including self weight, of 10,000 kN (2250 
kips). Specified material strengths are j^c — 30 MPa (hence, from Section 4.2.5 f ce -  
1.3x30 = 39MPa (5.66 ksi)) and f y = f yh -  420MPa (hence from Section 4.2.5 f ye ~ 462 
MPa (67.0 ksi)). The ratio of ultimate to yield strength of the longitudinal reinforcement 
is 1.35. Longitudinal bar diameter is 40 mm (1.575 in), with 50 mm (1.97 in) cover, and 
the transverse reinforcement is initially selected as 20 mm (0.79 in) diameter at 100 mm 
3.94 in) spacing along the column axis. Small adjustments to the spacing may be made

after final design. Reinforcement strains at ultimate stress are 0.10 and 0.12 for
longitudinal and transverse reinforcement respectively.

(a) Solution, Fixed Connection Case: We follow the steps in Section 10.3.2:
Step //The core diameter is D f— 2000-2x50+20 = 1920 mm. Hence from Eq.(10.9):
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p v = 4 A b!D 's  = 4x314/(1920x100)=0.00654
^  Step 2: From Fig. 10.9(b) with fyiJfce-420/39=10.8, we find/*cc=1.23/,c.e = 48.0 

MPa (6.96ksi).
Step 3: The damage-control limit compression strain is found from Eq.(10.10) as 

g * c =0-00 A + \ A Pv^yf su =0.004+1.4(0.00654x420x0.12)/48.0=0.0136
f  c c

y  Step 4: Column axial force ratio: P I f ' ce Ag =10/(39x3.14)=0.0816 

/Step 5: We estimate the longitudinal reinforcement ratio as 1.8%. From Fig. 10.9(a) 

c/Z> = 0.240

^ Step 6: The damage-control limit-state curvatures are thus, from Eqs.(10.7)

(p[s c — £ c l J  C =0.0136/0.48 =0.0283/m <— governs
’  ̂ y"

<Pis,s = £SJS ! ( d - c )  = 0.06/(1.93-0.48) = 0.0414/m
Step 7: Plastic Hinge Length. From Rq.(4.3 lb) ■ / V'1

k = 0.2(X l f ye - 1) < 0.08 = 0.2X0.35=0.07 j i e  ' ' - ' 1 •’
From Eq.(4.30), with dbi — 40 mm the strain penetration length is

Lsp = 0.022 f yed b, =0.022x462x40 = 407 mm (16 in)

Hence, with the column in double-bending, since it is fixed at the top, Lc— 6.0m, and

Lp = kLc  + Lsp > 2Lsp =0.07x6+0.407 =0.827 m (32.6 in) from Eq.(10.11).

Step 8: Design Displacement: The yield curvature is found from Eq.(4.57a) as

0y = 2 2 5 e y !D  =2.25(462/200,000)/2.0=0.0026/m

Since the column is in double bending, strain penetration applies at both top and 
bottom, and the effective length for yield displacement is thus (H+2L$p). We assume 
both the footing and superstructure to be rigid. From Eq.(lO.l) with Cj— 1/6:

A y = 0 y (H + 2LSP)2 /6 = 0.0026x12.8142/6=0.0712m
The design displacement is then, from Eq.(10.12):

Ad =Ay + ($, -<f)y )LpH  =0.0712+(0.0283-0.0026)x0.827xl2=0.326m (12.8in) 
The corresponding displacement ductility capacity is //a=0.326/0.0712=4.58.

j  (b) Solution, Pinned-Connection Case: Note that if the column was pinned at the top, 
the yield and damage-control curvatures would be unaffected. The plastic hinge length 
would be increased to 0.07x12+L$p — 1.247 m (49.1 in), and the effective height for yield 
calculation would be 12.407m (40.7ft). The yield displacement would increase to
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A y = 0 y(H + LSPf  / 3 =0.0026X12.4072/3=0.133m, and the design 

displacement to 
A D = A y + (</)ls -</>y )LpH  =0.133+(0.0283-0.0026)xl.247x12=0.518m (20.4 in)

The corresponding displacement ductility is j la — 0.518/0.133=3.90. It should be 
noted that the displacements calculated for the pinned-head pile/column have been 
based on the assumption that relative displacement between superstructure and column 
top does not occur. If a translational bearing is supplied at the column top, superstructure 
displacement will be increased, and columns may not reach yield capacity if the bearing
lateral strength is low compared with column strength.

These data will be used again in Design Examples 10.2 and 10.3.

10.3.4 Design Displacement for Pile/Columns

Most of the material presented in the previous section also applies to pile/columns 
(see Fig.l0.5(e)). However, for pinned-head pile/columns, the plastic hinge forming in- 
ground is not affected by strain penetration, and may be approximated by the following 
equation, based on analyses by ChaitC7h

LP/D = \ + 0 . l ( H - H cp)/D<\.6  (10.13)

The nomenclature of Eq.(10.13) is clarified in Fig. 10.10 for a fixed-head pile/column.
When the pile column is pinned to the superstructure, Hep — 0.

Fig.10.10 Moments in a Pile/Column with Monolithic Superstructure Connection
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For fixed-head pile/columns the in-ground hinge will rarely govern design since the 
column-top hinge typically forms first, and has a shorter plastic hinge length, given by 
Eq.(lO .ll) with Lc — Hcp̂ Suarez and KowalskylS4J report average values of Hcp/Hjc — 
0.52 and0j 7  for sand and clay_resgectively. —  -

T h e  sequence of steps for determining the design displacement of a pile/column are 
thus as follows:

Step A: Determine the height Hjq from the in-ground hinge to the superstructure 
using the appropriate plot from Fig. 10.6, or from Eq.(10.4).

Step B: Follow steps 1 through 6 for a footing-supported pier, as outlined above.
/ Step C: Determine the plasdc hinge length. For a pinned connection to the super

structure, rotation of the in-ground hinge is required, and Eq.(10.13) applies, with Hep — 
0. For a fixed connection to the superstructure, the in-ground hinge is not critical, and it 
is the rotation of the plastic hinge at the top of the column that governs. Equation (10.11) 
applies, with Lc — Hep.

Step D: Determine the design displacement:
Pinned-connection: A 0 = Aylc + {t/)h -  (py)Lp JGHIC (10.14)

Fixed connection: A D = A F + C3 {(j)h — (j) L̂p t Hig (10.15)

The coefficient C3 results from the changing moment pattern down the pile/column 
as the inelastic rotation develops at the column top. Values of C3 — 1.68 and 1.54 have 
been recommended for sand and clay respectively!84!. Values for the yield displacement 
are found in accordance with the information provided in Section 10.3.1(b).

10.3.5 Design Example 10.2: Design Displacement for a Pile/Column

The data from Design Example 10.1 (Section 10.3.2) are now used to determine the 
design displacements and ductility capacities for two pile/colurrai designs, one with a 
pinned connection and the other with a fixed connection to the superstructure. The 
height from the ground surface to the superstructure remains at 12m, as for the footing- 
supported example, and the soil is dense sand.

(a) Solution, Pinned-Connection Case: We follow the sequence of calculations 
outlined in the previous section:

 ̂Step A : With dense sand, the height from in-ground hinge to superstructure is given 
by Eq.(10.4b):

(H/c/D) = 3.40 + 0.84x(///D ) = 3.4+0.84x12/2=8.44. Hence H,G=\6.88m

v Step B: The referenced steps to Section 10.3.2 result in the numerically identical 
values for yield and limit-state curvatures to those of Design Example 10.1

Step C: Plastic Hinge Length: From Eq.(10.13), with Hep — 0:

Lp/D = \ + 0AH/D = 1+0.1x12/2=1.6. Hence LP = 3.2m
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 ̂Step D: Design Displacement. First we calculated the yield displacement. From 
Eq.(10.5b) the coefficient to be used in Eq.(lO.l) is

C, = 1.137-0.2301n(///£>)._= \A3n - 0.231n(6)=0 ^25
Hence , from Eq.(10.1)^with Lsp— 0

A ylc  = C $yH)G =0.725x0.0026xl 6.882 = 0.537m 

The design displacement, from Eq.(10.13) is

A d = A y lc + (4 - <py ]LPIGH lc = 0.53^+(0.0283-0.0026)x3.2x16.88= 1.925m

This corresponds to a displacement ductility capacity of — 1.925/0.53"7 = 3.6. Note 
that both the yield and limit-state design displacements are very large, and it is unlikely 
that the column would be designed to respond at such large displacements. It is probable 
that P-A moments would be excessive.
(b) Solution, Fixed-Connection Case: Design in this case is governed by the column- 
top hinge.

yStep A: The height from the in-ground hinge to the superstructure is unaffected by 
the column-top fixity, and Hjc — 16.88 m again.

Step B: The yield and limit-state curvatures are the same as in the pinned-connection 
case.

, Step C: For sand, an average value of Hep =\0.52) Hjc —0.52x16.88 = 8.78m applies. 
Hence from E q .(l0.11) ! // ! ^  ^

-Vp Lp = kL c + LSP > 2L SP =0.07x8.78+0.407 = 1.022m ^  y ’
Step D: From Eq.(10.5c) or Fig.10.6c) the displacement coefficient to be used in 

Eq.(lO.l) is
C, = 0 .310 -0 .0301n (/ / 7Z ))= 0 .31  - 0.031n(6)=0.256

The yield displacement is hence, from Eq.(lO.l):

A vF = C $ y (H,c + L SPf  =0.256x0.0026(16.88+0.407)2= 0.199 m 

The design displacement is thus, from Eq.(10.15) 

A d = A yF + C 3(0k - 0 y )Lp'TH IG =0.199+^l2)(0.0283-0.0026)xl.022x16.88 

=0.642 m.
The displacement ductility capacity, related to yield of the top plastic hinge is JUa ~ 

0.642/0.199 = 3.23. Again the displacements are very much larger than for the footing- 
supported column of Design Example 10.1.

10.3.6 System Damping for Longitudinal Response

(a) Member Damping; Fixed-Head Piers Supported by Footings'. When piers have 
a moment resisting connection to the superstructure, and are supported on rigid
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foundations, computation of the individual pier damping is straightforward. If the 
potential plastic hinges at top and bottom of the columns have equal flexural strength, 
and rotations of footing and superstructure can be neglected (the usual case), then the 
displacement ductility is found direcdy, as in Design Example 10.1 above, and the 
corresponding pier damping from Eq.(3.17a). When flexibility exists in the footing 
and/or the superstructure, the plastic hinges may not form simultaneously, and the 
equivalent yield displacement, found from the intersection of the initial elastic, and post
yield stiffness response, as shown in Fig. 10.11 should be used to determine the effective 
pier ductility.

!>  P

P i

Ay Displacement AL$

Fig.10.11 Yield Displacement of a Pier with Successive Hinge Formation

■ (b) Member Damping, Pinned connection Between Pier and Superstructure. If
the pier is connected to the superstructure in such a way that relative longitudinal 
displacement between the pier top and the superstructure cannot occur, then the 
estimation of displacement ductility and hence damping is again straightforward,
following the principles of the previous section. However, it is more likely in such cases 
that the superstructure will be bearing-supported on the pier cap, and the superstructure 
displacement will be significantly larger than that of the column top. Depending on the 
type of bearing, it is possible that the shear transmitted through the bearing will be 
insufficient to cause the pier to develop a flexural hinge at the base. This, of course, is the 
basic intention when the bearings are seismic isolating bearings, as discussed in some 
depth in Chapter 11. Hence only the case where the lateral strength of the bearing 
exceeds that of the pier, with the consequence that the pier responds inelastically to the 
design-level seismic excitation, will be discussed here.

The situation is described in Fig. 10.12, where the superstructure is supported on the 
pier top by an elastomeric bearing (Fig. 10.12(a)). At yield, the lateral flexibility of the
bearing, which is designed to accommodate thermal and creep movements, results in
bearing displacements Ag which in this case are similar in magnitude to the flexural
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deformations Ays of the pier. At the limit-state response, the lateral force is essentially the 
same as at yield, and hence the bearing deflection remains unchanged, while the pier 
deformation increases by A/>, the plastic deformation associated with the limit strains.

(b) Displacem ent Profiles

Fig.10.12 Damping for a cantilever pier with Elastomeric Bearing

The structural force-displacement hysteresis response is described in Fig. 10.12(c). The 
damping associated with this can be estimated from the structural displacement 
ductility demand JU& -  1+Ap/A^, using Eq.(3.17a). There will also be damping ^  
associated with the hysteretic response of the bearing itself. The value will depend on the 
characteristics of the elastomeric material, but is likely to be in the range 5% -l2% unless 
high-damping rubber is used. The effective damping from the combined action of pier 
and bearing is directly analogous to the flexible foundation case discussed in Section 
3.5.4(b), and can thus be found from Eq.(3.40c) as

£ = -
(A >, + £B̂  L
A + A,p + Ab

(10.16)
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(c) Member Damping, Pile/Column: With pile/column designs (Fig. 10.5(e))
additional damping comes from inelastic response of the soil. Typically this initiates at 
response levels lower than structural yield, and can significantly enhance the total 
effecdve damping of a pier. Suarez and KowalskylS4l investigated this phenomenon by 
carrying out non-linear time-history analyses of free-had and fixed-head piers with clay 
and sand foundation material represented by appropriate hysteredc springs. The 
characterisdcs included the slackness associated with gapping (formation of a permanent 
hole around the pile) on unloading. Structural hysteresis was modelled by the “Fat” 
Takeda model (see Section 3.4.3) since the hysteredc response of the in-ground hinge 
would not be subjected to pinching from shear effects (shear is zero at the in-ground 
hinge). Results for the hysteretic component of equivalent viscous damping, including 
both the soil and structural hysteresis, but not any elasdc damping are plotted in 
Fig. 10.13. The effects of elastic damping, in accordance with Eq.(3.15) must be added to 
these plots for DDBD.

2 3 4
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Fig.10.13 Hysteretic component of Equivalent Viscous Damping for

Pile/ColumnslS4l

Taking the recommendations of Table 3.2 for the total effective damping for the 
eight cases represented in Fig.10.13 is as follows:

sand, pinned head, 0= 30°: £p = £,■// 0313 + 0.094 + 0.112

sand, fixed head, 0= 30°: gp =£,•// 0,313 + 0.024 + 0.102

U - \ ' (10.17a)
I  V J

1

f / ^ - 0 (10.17b)
I a  J

(10.17c)
{ m j
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sand, fixed head, 370: °'313 + 0.020 + 0.096
a

clay, pinned head, 20kPa: £ = £ ■ ju~03n + 0.158 + 0.094| ——-
I M

clay, pinned head, 40kPa: gp = ■ jU °'3 3 + 0.137 + 0.109 M-

clay, fixed head, 20kPa: 

clay, fixed head, 40kPa:

= £er  +0.067 + 0.081

£p = L 'M
- 0 .3 1 3 -0.056 + 0.087

M
f ̂ l x

I  M  J

r M-\

M

(10.17d) 

(10.17e) 

(10.17£) 

( 1 0 . 1 7 g )  

(10.17h)

The value of the elastic damping to be added in Eqs.(10.17) needs some careful 
consideration. Since foundation damping was direcdy modelled in the determination of 
the equivalent viscous damping values presented in Fig.10.13, and there is no interaction 
between structural and non-structural components (two of the three reasons for adding 
elastic damping to analyses (see Section 3.4.3(b)), only additional damping for the elastic 
range of structural response can be justified. Thus only a low value of elastic damping 
would be justified, we recommend 2-3%.

(d) System Damping: When all piers have the same characteristics in terms of height, 
strength and foundation conditions, and the abutments are free to move longitudinally 
with negligible friction, the system damping for longitudinal response will be the same as 
the member damping. However, when pier strength and or damping are not uniform 
along the bridge, and/or significant friction exists at the abutments, a weighted average of 
damping values will be needed. Since the displacements of all points during longitudinal 
response are essentially equal, the damping values are simply weighted by lateral shear 
force transmitted. That is:

£ »= ■
X K f,
m____ (10.18)

where F; and are the shear force and equivalent viscous damping of the /h pier 
abutment, and there are m supports (piers or abutments).

10.3.7 Design Example 10.3: Longitudinal Design of a Four Span Bridge

(a) Fixed-Head Design: The four-span bridge of Fig. 10.14 has a superstructure depth 
of 2 m (6.56 ft) and monolithic connections between the piers and superstructure. 
Superstructure mass averages 190 kN/m (12.7 kip/ft) (including the weight of an internal
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Fig.10.14 Bridge for Design Example 10.3

cap beam, but not the column weight). Initially we assume that the abutments are free to 
move longitudinally on frictionless bearings. The 2 m (6.56 ft) diameter single-column 
piers are based on the data for Design Example 10.1 (Section 10.3.3).

The design spectra, corresponding to a PGA of 0.6g are taken from ATC3^  for a 
medium ground condition, and are shown in Fig. 10.15. Note that the displacement 
spectrum is not linear in this example, and there is no corner period.

Period (sec)
(a) Acceleration Spectrum (5%)

Period (sec)
(b) Displacement Spectra

Fig 10.15 Design Spectra for Example 10.3

J Solution: First we check that the column axial loads are compatible with the assumption 
of 10MN in Design Example 10.1.

Central Pier C: Using a tributary length of superstructure of 50m, and a self weight of 
3.14m2x23.5kN/m3 =73.8kN/m the axial loads at top and bottom of the column are 

Column top: P =50x190 = 9,500kN (2136kips)
Column base: P =9500+12x73.8 = 10,400 kN (2338kips)

 ̂Piers B and D: With a tributary superstructure length of 45m, the axial loads are 
Column top: P = 45x190 = 8550 kN (1922kips)
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Column base: P = 8 5 5 0 + = 9 7 0 0  kN (2181 kips)
These are all close enough to 10MN to justify the calculated value for depth of neutral 
axis of 0.48m (18.9in) used in Example 10.1

Design displacement: The displacement of the 12m central pier will govern. From
Design Example 10.1 A# = 0.326m (12.8in). The displacement capacity of piers B and D
will exceed this, and hence do not need to be calculated.

y Yield displacements: The yield displacement of pier C has already been calculated as
0.0712m. (2.8in)The yield displacement of piers B and D is

Piers B and D: Aj: = <py(H + 2LSPf  /6 =0.0026(16+2x0.4(y7)2/6=0.123m (4.84in) 

PierC : A, = 0.0712m (2.8in)

Displacement ductilities:

Piers B and D: //a = 0.326/0.123 = 2.65 
Pier C: jUA = 0.326/0.0712=4.58

- Pier damping: From Eq. (3.17a):

Piers B and D: t;BD= 0.05 + 0.444f H -\ '
jlK

= 0.05 + 0 . 4 4 4 x - ^ -  = 0.138 
2.65 n

PierC: Fr =0.05 + 0 . 4 4 4 x ^ ^ -  = 0.160
bc 4.58* \

System damping: We chose to have the same flexural reinforcement ratio for all 
^iers. As a consequence the flexural strength of all piers will be essentially the same, with 
small differences at top and bottom, as a consequence of differences in axial load, and 
jiso (smaller) differences between piers as a consequence of different levels of strain- 
hardening associated with different ductility demands. These can be resolved in the final 
design stage.

With equal moment capacities, the shears carried by the piers are in inverse proportion 
:o their height. Hence Vc = 1 .3 3 3 ^  etc. From Eq.(10.18):

. _ 2x1.0x0.138 + 1x1.333x0.160
- 2 + 1.333

m
Spectral reduction factor: From Eq.(2.8) the spectral reduction factor, to be applied 

:o the 5% damped displacement spectrum is

' 0.07 '
0 .5

-1'  0 . 0 7  ^
0 .5

“ 1v 0 . 0 2  + 0 . 1 4 7  j
= 0.647

The displacement spectrum for the 14.^% damping is included in Fig. 10.15(b).
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Effective period: The effective period of response is found entering with a 
displacement of 0.326m, and intersecting the spectrum for £sys =0.147, as shown by the 
dashed line, yielding Te -  1.761 sec.

Effective mass: All of the superstructure mass will participate in the only longitudinal 
mode of significance. Reference [P4] recommends that 1/3 of the column mass be added 
to the mass lumped at the superstructure level. Hence the effective weight is

me.g = (190kN/m)xl80m + 0.333(12+2x16)x73.8kN/m =35,300kN (7936kips)

Effective stiffness: From Eq.(3.1):

„ \k  V  An2 -35.3 . . . . . . . ,K =  z —-----------------  = 45.9 MN /m
Te2 9.805 xl.7612

Base shear force: From Eq.(3.2):
VBase = Ke&D = 45 .9x0 .326  = 14.95MN (3360kips)

This base shear is distributed to the columns in inverse proportion to their heights. Thus:
Vb = VD =14.95/3.33 = 4.49MN —> MB = MD = 4.49x8 = 35.9MNm (318000kip.in)
^  = 1.33x14.95/3.33 = 5.97MN -> Mc = 5.97x6 =35.8MNm (317000kip.in)

P-A check: With bridge designs, the P-A moment should always be checkb^, in 
accordance with the recommendations of Section 3.6.3. From Eq.(3.45) the Stability 
Index is r A

o = = 1 0 x 0.326 = Q 09]
A Md 3 5 .8 ^  _

As this is less than 0.10, the recommendadons of Section 3.6.3 indicate that P-Aeffects 
can be ignored.

Moment-curvature analysis indicates that with an axial load of 10MN, this moment 
can be provided, at a peak compression strain of 0.0136, by 91,200 mm2 of flexural 
reinforcement (2.9%). The neutral axis depth, of 540mm is close to the assumed value of 
480mm, though the hoop spacing may need to be reduced in the final design to provide 
the required design curvature. The required number of 40mm dia. bars is 72.6. This might 
be increased to 74 when the moment capacity of the longer columns is checked, because 
of their reduced axial load, and lower ductility demand.

(b) Pinned Connection to Superstructure: The design is repeated for a bridge where 
the piers and the superstructure are fixed against relative longitudinal displacement, but 
relative rotation is permitted. That is, the superstructure is supported on rotational..potj 
bearings. The information provided in Design Example 1 (b) applies. Since the procedure 
is essentially identical to that of the fixed head design carried out above, only a summary 
of the results is provided.

Solution: Design displacement: From Design Example 10.1(b), Ao -  0.518m
(20.4in)
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Yield displacements: Piers B and D: Av = 0.233m; Pier C: Av — 0.133m
Displacement ductilities: Piers B and D: JUa = 2.22; Pier C: fl& -  3.89
Pier damping: Piers B and D : p̂ — 0.133; Pier C: >̂ = 0.155
System damping: £sys = 0.133
Spectral reduction factor: — 0.657

J Effective period: The damped displacement spectrum for 13.3% damping is included 
m Fig. 10.15(b). Entering with a design displacement of 0.518m, the effective period is 
tound to be Te — 3.0sec (follow dashed lines).

Effective stiffness: Ke -  15.8MN/m
Base shear force: Vnase =8.18 MN. (1839 kips)
Column shears: Piers B and D: VBfD =2.46 MN; Pier C: Vc =3.27MN
Column base moments: M  — 3.27)^12^= 39.2MNm (347000kip.in^ ^
Stability index: 0A = 10x0.518/39.2 = 0.132 0 ? ^  j j ,
Since this exceeds 0.1, we add 0.5PA — 0.5x10x0.518 = 2.6MNm to provide a total 

design moment of 41.8MNm. This is 17% higher than for the fixed connection case,
requiring 114,000 mm2 (177 in2) of flexural rebar, equivalent to a reinforcement ratio of
3.6%, which is at the upper limit of acceptable. This would require 92 bars 40mm dia.
bars, which would need to be placed in two concentric rings to provide adequate spaces
between bars. Again, reduced spacing of transverse reinforcement would be required to 
increase the ultimate compression strain, since the neutral axis depth wiLFbe larger than 
rhe 0.48m assumed, and hence the damage-control curvature will be less than assumed.

(c) Pinned Connection to Superstructure, Considering Abutment Friction: A third 
design is considered, where the ends of the bridge are supported at the abutments on 
PTFE sliding bearings. Although these have low friction under gradual movements such 
as creep and thermal movements, the fricdon factor under seismic velocities is much 
higher — typically about 8-12%, unless special lubrication is provided, and maintained. We 
assume 10% in this design. Hysteretic response of the sliders will be essentially elasto- 
olastic, with the elastic flexibility arising from displacements of the abutment. We assume 
:hat this is 25mm (1 in), though the actual value has little influence on the design.

The apparent ductility at the abutments will be Ha = 0.518/0.025 = 20.7. From 
Eq.(3.17e): y

' u - 1  ̂ 19 7
^ = 0.05 + 0.67---- —  = 0.253 ^

20.7 n
^AE - 0 .0 5  + 0.67

jj,n

Axial load on bearings:The tributary length is 20m, hence P a= Pe = 20x190 =3800 
The friction force is thus 0.1x3800 = 380 kN (85.4kips) at each abutment.

System damping: At this stage we do not know the exact relative lateral forces 
oetween the piers and abutment, but we conservatively assume that the total base shear 
remains constant at 8.18 MN, and hence the total shear carried by the three piers is 8.18 -
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2x0.38 -7.42M N  (1670kips). The approximate shears per pier are then VB = VD = 
2.23MN, and Vq — 2.97MN. The system damping is thus:

K _ 2x2.23x0.133 + 2.97x0.155 + 2x0.38x0.253
Y y , ~ ' 8 .i8  ”

m

This is essentially the same as for the fixed connection case.

^ Effective period: Again entering Fig. 10.15(b) at a displacement of 0.518m, and 
reading the period from the intersection with the 0.147 damping curve (actually these are 
found by interpolation in a tabular form of Fig. 10.15) the period is found to be Te -  
3.16sec.

l Effecdve stiffness: We thus find: Ke -  14.2MN/m
^ Base shear force: VBase -  14.2x0.518 =7.36MN (1655kips)
/ Pier shear forces: VBD= (7.36~0.76)/3.33 =1.98MN (445kips)

N =i«MN (59,^ )  ,
Column base moment: Af=31.6MNm (280000kip.in) ^  X  ̂ ) !

A further iteration could be made to refine the damping, but is hardly warranted. Again 
the stability index for P-A effects exceeds 0.1, so we add 2.6MNm to provide a design 
moment of 34.2MNm (303,000kip.in). This is less than for the fixed connection detail, 
and can be provided by 85,000 mm2 of reinforcement (2.7% reinforcement ratio).

It will be noted that the benefits in terms of structural efficiency in designing for a 
monolithic connection between pier and superstructure are comparatively minor (note 
that some reduction in the design moments for the fixed connection will be possible if 
abutment friction is considered, but the percentage reduction will be less than for the 
pinned case), and would need to be weighed against the possibly increased design 
moments for the superstructure resulting from resisting the pier-top moment, and 
increased complexity of the pier/superstructure joint detailing.

.  10.4 DESIGN PROCESS FOR TRANSVERSE RESPONSE

Transverse response of multi-span bridges is inherently more complex than 
longitudinal response. Consequently, the design process requires careful consideration. 
However, it will be shown in Section 10.4.6 that in many cases, transverse design 
requirements, though more complex, will be less critical than longitudinal design 
requirements for bridge piers.

The following special issues must be considered for transverse DDBD:
• Transverse design displacement profiles.
• Dual seismic load paths.
• Effective system damping.
• Degree of fixity to column top provided by superstructure rigidity.
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Bridge transverse seismic design using DDBD procedures has been discussed in some 
detail in recent research papers (e.g. [A4, D3, P32]. The following sections draw on these 
earlier studies, extending and in some cases correcting the informadon provided.

10.4.1 Displacement Profiles

Displacement profiles for transverse response of bridges were briefly introduced in 
Secdon 3.5.2(c), where it was pointed out that the profile shape was strongly dependent 
on the degree of restraint provided at the abutments. This is further illustrated in Fig. 
10.16, where six different situations are represented for continuous bridge superstructures 
(SS).

(a) Symm.j Free at abuts, (b) Asymm., Free at abuts. (c) Symm., free at abuts.
Rigid SS translation Rigid SS translation+rotation Flexible SS

(d) Symm,. Restrained at abuts, (e) Internal movement joint (f) Int. movement joint, 
Flexible SS Rigid SS, Restrained at abuts. Free at abuts; Flex SS

Fig.10.16 Different Possible Transverse Displacement Profiles for Bridges

If the superstructure is constructed of simply-supported spans with rotational flexibility at 
the movement joints about the vertical axis, then it is reasonable to consider the design of 
each pier individually, based on the tributary superstructure mass and the pier
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displacement capacity. Essentially the design becomes a series of individual SDOF 
designs, similar to that presented in Design Example 3.3 (Section 3.4.6).

With continuous superstructures, as illustrated in Fig. 10.16, a major distinction will be 
whether or not the superstructure can be considered effectively rigid, when compared 
with the stiffness of the piers. If the superstructure is effectively rigid, then the 
displacement profiles are simplified, as illustrated in F igs.l0.16(a), (b), and (e). The 
difference between these figures is that in F ig .l0.16(a) the substructure is symmetric, and 
hence the displacement profile is characterized by rigid translation of A at all piers and 
abutments, while in F ig .l0.16(b) the pier height are non-symmetric, and hence the 
superstructure displacement is a combination of rigid translation and rotation, with 
different displacements at each pier. In F ig .l0.16(e) a superstructure movement joint 
close to the central pier means that the displacement profile is comprised of two rigid 
segments. Note .that in  p igs.10.16(a) and (b) the superstructure displacement at the 
abutments is considered to be unrestrained, and hence the, design. di-splacem.entSL_will be 
governed by the displacement capacity of the piers. However, similar displacement 
profiles, though with smaller magnitude could also result if the abutments were partially 
restrained. In this case, it is likely that the displacement capacity of the abutment bearings 
or abutment structure would define the design displacement. The displacement profile of 
Fig.10.16(e) is based on the assumption of partially restrained abutments, but 
modification to consider free abutments is obvious.

Three cases with flexible superstructures are included in F ig .l0.16. In Fig. 10.16(c) the 
bridge is unrestrained at the abutments. Together with the short central pier this results in 
the displaced shape shown, with end displacements a maximum, and central displacement 
a minimum. The more common example of F ig .l0.16(d) is laterally restrained at the 
abutments, and has a displacement shape that can be approximated by a sine or parabolic 
function. The end displacements at the abutments will depend on the support 'detail” 
provided. If lateral shear keys are provided, the displacement will essentially correspond 
to that of the abutment structure, and in many cases can be assumed to be zero. The third 
example, in Fig. 10.16(f) is unrestrained at the abutments, and has a flexible super
structure, and an internal movement joint close to the central pier. The displacement 
profile consists of two essentially parabolic segments meeting with an angle change at the 
internal movement joint. A further possibility, with flexible superstructure, internal 
movement joint and restraint at abutments is not shown, but will be intermediate 
between the profiles shown in Fig. 10.16(d) and (e).

It will be apparent that it will not be possible to exactly define the displacement profile 
at the start of the design process, and hence some iteration will be required. This is 
discussed in some detail subsequently. If the shape of the profile (i.e. the inelastic first 
mode shape: see Section 3.5.1) can be reasonably approximated, then the magnitude of 
displacements at the piers and abutments can be identified by comparing the 
displacement capacities of the individual piers and abutments with the modal displace
ments, to determine which pier or abutment governs the design. The displacement 
profile is then given by Eq.(3.17), reproduced here for convenience as Eq.(10.19):



Chapter 10. Bridges 497

(10.19)

where $  is the inelastic mode shape, and Ac and 8C are the design displacement and modal
value at the critical mass, a  The substitute SDOF structure design displacement is then 
given by Eq.(3.26), reproduced here as Eq.(10.20):

where m, are the masses at the n mass locations, including the appropriate contribution 
of pier mass.

Some guidance as to when the superstructure may be considered to be rigid for 
purposes of determining the expected displacement profile is provided in [D3], where a 
relative stiffness index, RS relating the superstructure stiffness Ks to the sum of the 
pier stiffness EA/> is defined. The superstructure is assumed to be uncracked, while the 
pier stiffness is based on cracked-section stiffness. The superstructure stiffness is based 
on the assumption of pinned abutments and a uniformly distributed force calculated to 
give unit displacement at midspan, while the individual pier stiffness is calculated to 
produce unit displacement at the pier top. Thus, for a bridge with n piers, and assuming 
equal moduli of elasticity for superstructure and piers, the relative stiffness index is 
defined by

where Is and L$ are superstructure transverse moment of inertia and length respectively, 
and Hpj and //>; are pier effective height and moment of inertia respectively. Cpj is a 
coefficient dependent on the fixity provided at the pier top by the superstructure and is 
equal to 12 and 3 for fully fixed or free pier tops respectively. For a bridge with

considering the abutments as movement joints).
It was found in [D3] that for bridges without restraint at abutments and with fixed 

bier tops, the superstructure could be considered effectively rigid if  RS>0.6, though some 
variation was found depending on the distribution of pier heights along the bridge. For 
bridges with restraint at abutments it was difficult to define an effective stiffness index 
above which the displacement profile could be considered to be dominated by rigid body 
Translation and rotation.

(10.20)

(10.21)

movement joints, the length Ls should be the distance between movement joints (also



498 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design of Structures

10.4.2 Dual Seismic Load Paths

The concept of dual seismic load paths was introduced in Section 1.3.7 where it was 
shown that for a bridge with lateral restraint at abutments some of the seismic inertia 
forces would be carried back by superstructure bending to the abutments, with the 
remainder being transmitted to the pier foundadons by column bending. Since the 
superstructure would normally be required to respond elastically to all levels of seismic 
intensity, while the piers would normally be designed for ductile response, at least for 
Level 2 (damage control limit state) and Level 3 (collapse prevention) seismic intensities, 
the ratio of lateral force carried by the two load paths is expected to be a function of 
intensity, with the portion of lateral force carried by the superstructure increasing as 
intensity increases.

The superstructure lateral stiffness will normally be known at the start of the seismic 
design, but the pier effective stiffnesses will depend on the pier strengths and ductilities, 
and hence will not initially be known. This again implies that an iterative design approach 
will be needed, as outlined subsequently in Section 10.4.5. Note that the possibility of 
cracking of the superstructure under transverse seismic response will have to be carefully 
evaluated when determining the appropriate value for superstructure stiffness.

10.4.3 System Damping

Determination of the effective system damping to be used in the SDOF design model 
also requires special attention. Different piers may carry different shear forces, have 
different design displacement ductility demands (and hence different equivalent viscous 
damping levels) and be subjected to different displacements. The inertia force carried by 
the superstructure will normally have low associated damping, but any displacement of 
the abutment structure may have high associated damping. The generalized effective 
damping approach defined by Eq.(3.37), which involves weighting the individual damping 
components by the work done applies. This equation is reproduced here as Eq.(10.22) for 
convenience:

where there are n different structural elements contributing to the seismic resistance.
This is illustrated with respect to Fig. 10.17 where a typical four-span bridge with 

continuous superstructure responds transversely to seismic excitation. It is assumed that 
the displacement shape has been established, either as an initial estimate, or as the final 
profile following the iterative procedure described subsequently in Section 10.4.5. It is 
also assumed that the piers are comprised of single columns of circular section, with 
diameter D constant for the three piers.

Lateral inertia forces Fj to F5 are applied to lumped masses concentrated at the 
abutments and the pier tops, as discussed in Section A.92(e)(iii). For initial stages of the
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design it will be the relative proportions of the inertia forces, rather than the actual 
magnitudes that are assumed.

Reactions induced at reaction points (abutments, and pier bases) are V\ to Vs, as 
shown in Fig. 10.17.. If we assume that the columns have the same vertical reinforcement 
ratios, and hence eqi>al moment capacity, then provided all piers yield at the design 
seismic intensity, and pier mass is small enough such that self-weight inertia forces can be 
neglected, the pier shears V2y Vj and V4 will be in inverse proportion to height Hj. We 
note that for equilibrium X V\ — X /i We finally assume that the fraction of total lateral 
inertia force carried back to the abutments by superstructure bending is x, that is:

r, + Ys = * - t , Fi/ = 1
and the pier shear forces are

i= 1

The pier yield displacements are

A yi = Cr <Py -H?

f  1 4 1 A _ L / y _ L
H, & H ,

(10.23)

(10.24)

(10.25)

where is the yield curvature, given by Eq.(4.5"7), Hj is the effective column height 
including strain penetration effects, and Cj is the coefficient dependent on end fixity 
conditions (Cj =1/3 and 1/6 for vertical cantilevers and columns fully fixed at base and 
:op respectively; refer to Section 10.3.1(b) for other end conditions).

The displacement ductility demands for the three piers are given by

A  = V A ,/

.ind hence the pier damping values can be found from Eq.(3.17).

(10.26)
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If the superstructure lateral displacements at the abutments are small compared to the 
displacements at the piers, then it can reasonably be assumed that the superstructure 
damping is 5%, and the superstructure displacement is equal to the system displacement, 
Ad given by Eq.(10.20). The equivalent system damping is thus found substituting into 
Eq. (10.22) as

xA, x 0.05 + (1 -  J t  4r ■ A,<?,]/£
\ i~i h , J //,■

£ = ------------------------- , :  . ~\ :  .— L (!o-27a)
xAd + {\ -x )

(J

However, if the bridge displacements at the abutments are significant, due either to 
support on flexible bearings or to lateral displacements of the abutment structure itself, 
then the components of damping associated with the superstructure flexure and end 
displacements should be separately considered. A lower value of damping (say 2%) 
should be considered for the superstructure, and a higher value adopted for the end 

j ' displacements. Thuj^_ ... , a \q
/T\ ✓ '\* ( ■ \ N ■ i

^  ^  I ’E i r
£  = ---------      (10.27b)

, ( A , - A j + xA fl + ( l - x ( x ^ - A ,  / S - ' -
J ) . V ' = 2  J  i = 2 M i j

- — y i o a S i  S k t o y  i$ S C ' ^  ^ r  ^
where and £a are the damping values assigned to the superstructure and abutments 
respectively, and Aa (=0.5(Ai+As) in Fig. 10.17) is the average displacement of the bridge 
ends. Generalization of Eq. (10.27) to bridges with different numbers of spans is obvious.

J  10.4.4 Design Example 10.4: Damping for the Bridge of Fig.10.17

The procedure outlined above is illustrated by putting numeric values to the bridge of 
Fig.10.17. Span lengths are 40m, 50m, 50m, 40m (131ft, 174ft, 174 ft, 131ft), and the 
effective bridge weight, including contributions from bridge piers and end diaphragms is 
200kN/m (13.7 kip/ft). Table 10.1 includes the effective weights, Wh at the ends and pier 
tops. The cantilever columns at piers 2, 3 and 4 each have a diameter of 2.4m (7.87 ft) 
and have effective heights to the centre of the superstructure, including strain penetration 
at the column bases of 10m, 12m, and 8m respectively. The specified yield strength of the 
steel reinforcement is f y — 400MPa (58 ksi) and hence, in accordance with the 
recommendations of Section 4.2.6, the design strength is 440MPa, and the yield strain is
£y = 0.0022.

The design profile is initially estimated as indicated in Table 10.1 (Ai) based on a 
maximum drift of 0.035 at the central pier. Note that an end displacement of 50mm (2in)
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is assessed as the maximum acceptable abutment displacements. The strength of the 
abutments will be based on the results of the design. Based on experience it is initially 
assumed that 40% of the inertia force will be carried back to the abutments bv 
superstructure flexure. From Eq.(10.20) the design displacement is found as

= 3246/9690 = 0.335m (13.2m)
/=1 /=!

Table 10.1 Calculations for Design Example 10.4 (lm=39.4in, lkN=0.225kips)

Support Height
(m)

Weight
(kN)

At
(m)

WiAi WiAi2 Ayi
(m)

Hi &

Abut 1 4000 0.05 200 10
Pier 2 10 9000 0.30 2~700 810 0.068" 4.3" 0.159
Pier 3 12 10000 0.42 4200 176.4 0.0989 4.25 0.158
Pier 4 8 9000 0.27 2430 656.1 0.0439 6.14 0.168

AbutS 4000 0.04 160 6.4
, Sum = 9690 3246

Note that seismic weights, rather than masses have been used in the above calculation.
Yield displacements, based on </̂ — 2.25^/D = 2.25x0.0022/2.4 = 0.00206/m (from 

Eq.4.57a) are calculated from Eq.(10.25) with C — 1/3, and are listed in Table 10.1 for 
:he three piers. The displacement ductility demands, //,, from Eq.(10.26) and the pier 
damping values (from Eq.(3.17a) are also listed in the table.

It is assessed that the displacements of the abutments are sufficiently small to allow 
rhe superstructure and abutment damping to be lumped together and estimated at 5%. 
Pier flexural reinforcement will be the same for the three piers, and hence the system 
damping can be estimated directly from Eq.(10.27a):

*A, x 0.05 + (1 -  * { £  - A ,f,] / £

£ = '
i-1 i=2

^ ( l - x ^ - A , ) / ^
I /=? t l , j-2 11;\i=2

a , a ac a , ,0 .3x0 .159  0.42x0.158 0.27x0.168 V f  1 1 10.4x0.335x0.05 + 0.6 ------------- + -----------  —  + ---------------- / — + — + -
1 0 __________12__________8_____j l l O  12 8

a a A „ c A 0.3 0.42 0.27V f  1 1 10.4x0.335 + 0.6 ----- 1-------- 1------- / ------ 1-----1—
10 12 8 ) I 10 12 8

= 0.116
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10.4.5 Degree of Fixity at Column Top

Four different pier-top conditions are illustrated in Fig. 10.18. If the pier consists of 
two or more columns (Fig. 10.18(a)) it can be considered fully fixed at the top under 
transverse response, with equal moments at top and bottom of the columns, as shown to 
the right of the figure. Although the pier geometry of F ig .l0.18(a) is based on an integral 
cap beam, the same conclusion applies for multi-column bents with separate cap beams 
supporting the superstructure via bearings.

M

(a) Multi-column Pier

. . . . h r l .
\ t ^ — * /

T

]

(b) Single Column, Single Bearing

^ v - ° , r ~

(c) Single Column, Multiple Fearing (d) Single Column, Monolithic 

 ̂ Fig.10.18 Transverse Response of Bridge Piers

The single-column bent of Fig. 10.18(b) supports the superstructure on a single bearing 
with rotational freedom. Clearly for the bridge to be stable under transverse response the 
superstructure must be restrained against rotation about the bridge axis. This restraint 
would normally be provided at the abutments, and the superstructure torsional stiffness 
would have to be high -  typically a closed box-girder section would be required. If these 
criteria are met the bridge acts as a true vertical cantilever under transverse response with 
the vertical distribution of bending moments as shown in Fig. 10.18(b).

Although the pier illustrated in Fig. 10.18(c) has a single column, the superstructure is 
supported on two or more bearings. Under transverse response the axial force 
transmitted through the bearings changes as a consequence of the inerda force being 
applied at a height above the bearings. This results in a moment M\ being applied at the
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height of the bearings, which could be of the same, or of opposite sign to the moment at 
the column base. If the superstructure is rotationally flexible, then the transverse response 
is that of a simple vertical cantilever, with the point of load application at the centre of 
lateral force, as shown by the solid line in the moment pattern to the right of the figure. If 
the superstructure is rotationally sdff about the longitudinal axis, then an incompatibility 
will develop between the rotation of the pier cap and the superstructure, which will tend 
to transfer the gravity load to the left bearing, for the direction of loading force shown in 
the figure. Assuming a lateral force F\ and a distance L between the outer bearings, the 
maximum moment at the height of the centres of the bearings will be M\ — WssL/2, 
where Wss is the superstructure weight supported on the pier.

Finally, in Fig. 10.18(d), a single-column bent with monolithic connection to the 
superstructure is shown. Although it would appear that behaviour would be that of a 
simple cantilever, moments of either positive or negative sign could be developed at the 
centre of mass. If the superstructure is torsionally stiff, and is restrained against uplift at 
the abutments, then moment reversal may develop over the height of the pier, as 
suggested by the dashed line in the moment pattern. On the other hand, if  the super
structure is flexible, but has considerable width, as will often be the case, then torsional 
mass inertia will mean that moments of either sign could be developed at the height of 
the centre of mass, since the pier must be considered as a two-mode system. In the first 
case (torsionally stiff superstructure), the moment reversal should be directly considered 
in the DDBD process. With the second case, the moment may be considered to be zero 
.it the pier top for the DDBD procedure, but the possible influence of the higher modes 
must be considered when determining the maximum feasible shear force in the column 
during capacity-design checks.

It is important to correctly model the expected moment pattern in the piers during the 
design process, as it will affect the yield displacement (and hence the displacement 
ductility demand), and the plastic hinge length (and hence the displacement capacity 
corresponding to a given limit state).

10.4.6 Design Procedure

As discussed earlier, an iterative design procedure will be necessary in many cases, 
incorporating two initial assumptions: the fraction of load carried by superstructure 
bending back to the abutments, and the displacement profile. The procedure follows the 
following steps, which for convenience are related to the example of Fig. 10.17:

1. Estimate the fraction of lateral force, x, carried by the superstructure bending 
load path. Generally this will be based on experience. In the absence of guidance, 
assume x — 0.5 for restraint at abutments, and x — 0 for unrestrained bridge 
ends.

2. Estimate the initial displacement profile. This will involve choosing a 
displacement shape (inelastic mode shape) and determining the limit-state 
displacement capacities of the piers. The displacement profile is thus given by
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Eq.(10.19). A parabolic or sine-based mode shape may be assumed for the initial 
iteration.

3. Determine the SDOF system displacement from Eq.HO.20.)—————-------- •
4. Deierm iae the----effective mass from F q .n .3 3 )'in c lu d in g  the appropriate

^contribution from j2ie^Diass((typically 1 / 3 ^
5. Determine the yield displacements oF all piers (Eq.(lO.l)), and hence their 

displacement ductility demands (Eq.(10.26)), and equivalent viscous damping. 
Note that it is possible that some piers will respond elastically, in which case the 
pier damping should be taken as £ — 0.05.

6. Determine the ratios of shear force carried by the piers. If it is assumed that all 
piers have equal flexural reinforcement, and that all piers yield, the shears will be 
approximately in proportion to the inverse of the pier height. For the example of 
Fig.(10.17), Eq.(10.24) applies. If any of the piers are expected to remain elastic, 
at less than the yield capacity, then the proportion of force carried by that pier 
should be reduced from 1 /Hj to //,-///,* where /Hj <1. The proportion carried by 
yielding piers remains unchanged.

7. Determine system damping, from Eq.(10.22), treating superstructure damping as 
recommended in Section 10.4.3.

8. Determine effective period, effective stiffness and total base shear Vgase from the 
design spectrum, Eq.(3.1) and Eq.(3.2) respectively, in the usual manner.

9. Distribute base shear as forces to inertia mass locations using Eq.(3.41), 
reproduced here for convenience as Eq.(10.28):

F, = VBaAmA ) l  Z  (WA  ) (10-28)

10. Estimate the effective stiffness for each abutment and pier for the structural 
analysis model. This will require an estimate of the shears carried by piers and 
abutments based on the assumption for x. For the example of Fig. 10.17, 
Eqs.(10.23) and (10.24) apply, where JLF\ — Vgase- Since the displacement of each 
pier or abutment, A/ is known from Step 2, and the shear V\ is known from this 
step, the effective stiffness of each pier or abutment is known from Kt — V JA/. 
The superstructure translational and torsional stiffness will also be known, and 
remain constant throughout the analysis iterations.

11. Analyse the structure under the lateral forces F, to estimate the displacement of 
the critical pier or abutment.

12. The displacement of the critical pier or abutment is compared with the limit state 
displacement. If the analysis indicates that the displacement of the critical pier 
exceeds the design limit, then the assumption for x, the fraction of total inertia 
force carried by superstructure bending is too high. More force needs to be 
allocated to the piers, which will increase their effective stiffness, and hence the 
total system effective stiffness. The displacements will thus be reduced. If the 
displacement is less than the design limit, then xis  too low. Revise the estimate
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for x  upwards. This process will result in an increase or decrease in the shears 
carried by the individual piers (see Eq.(10.24)), and hence a change in the pier 
stiffnesses. Iterate, revising the value for x  until the displacement of the critical 
pier or abutment from analysis equals the design value. If the abutment
displacement differs from the design assumption, then the abutment stiffness can 
be adjusted to improve agreement. This will have little effect on pier 
displacements. However, the influence of higher modes on abutment forces, 
discussed in Section 10.5.2(b) needs to be considered.

13. The value of x, and the displacement profile resulting from Step 12 are now used 
as new estimates for Steps 1 and 2 above, and the procedure iterates through 
Steps 3 to 12, until convergence for x, and for the design profile is achieved.

The procedure described above generally converges rapidly. It can also be 
programmed with Matlab, Mathcad or Excel to proceed through the iterations
automatically (see [A4 or D3] for example).

It should be noted that in some cases it will be found that even with x  = 1.0 the
displacement of the critical pier will be less than the design limit. This means that the
stiffness of the superstructure is such that it dominates the response. Typically this occurs 
with short bridges of just a few spans. In such cases, the pier strength will be based on 
gravity load considerations. Ductile detailing may still be necessary, however, and an 
inalvsis using the known stiffnesses of superstructure and piers should be carried out to 
determine the expected displacements of the piers. A reduced level of transverse 
reinforcement may then be provided to ensure that the reduced displacement demand is 
provided, using a procedure similar to that adopted in Design Example 4.1 (Section
- 5.1).

10.4.7 Relative Importance of Transverse and Longitudinal Response.

It will be appreciated from the above discussion that determination of the correct 
resign solution for transverse response is considerably more onerous than for 
longitudinal design. In many cases, however, it will not be necessary to carry out the 
Transverse design, as it will be obvious that longitudinal design is more critical. This will 
particularly be the case when the bridge is free at the abutments to move longitudinally, 
put is restrained laterally, and when the fixity of column to superstructure is the same for 
both longitudinal and transverse response. That is, the connection can be considered 
cither fully fixity or fully pinned for both longitudinal and transverse response. A further 
proviso for the longitudinal response to govern is that the pier has omni-directional 
strength and stiffness (i.e. either circular or square cross section).

To confirm the validity of the above statement, a series of four-span continuous 
pridges with three different pier height configurations, as shown in Fig. 10.19(b), were 
designed for both longitudinal and transverse response. The piers had a circular section, 
,\nd the heights of the piers were either equal, or varied in the ratio of 1:2, as shown. The 
critical pier (always the shorter one) was separately designed to achieve a displacement
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ductility of fl — 4 under both longitudinal and transverse response, and the resulting 
required design shear forces for this critical pier compared. Under longitudinal response it 
was assumed that end bearings had low friction and their contribution to seismic 
resistance could be ignored. The design displacement was dictated by the displacement 
capacity of the critical (short) pier or piers.

Superstructure Shear Ratio, x

TXT
m

(1,2,1)

I
(2 0 .3 8 6

(a) Column Transverse/Longitudinal Shear Ratio (b) Confis

Fig.10.19 Transverse/Longitudinal Design Shear Force Ratio for Critical Column
of Four-Span Bridges

Under transverse design, the bridge ends were considered to be fully restrained (i.e. 
zero lateral displacement), with different fractions, x, of the total lateral inertia force 
carried by superstructure bending back to the abutments. For simplicity, a simple 
parabolic displacement shape was adopted for transverse response, anchored to the limit 
displacement corresponding to /I — 4 for the critical pier. Thus for the 1,1,1 and the 2,1,2 
configurations (see Fig. 10.19(b)), the displacement of the central pier governed, while for 
the 1,2,1 configuration, the side piers governed. Note that the parabolic shape assumed 
will not be exact, but will have little influence on the results.

Results of the analyses are shown in Fig. 10.19(a), which plots the transverse/ 
longitudinal ratio of the required design shear force for the critical pier against x, the 
fraction of total inertia force carried by superstructure bending, for the three bridge 
configurations. In all cases the transverse/longitudinal design shear force ratio is less than
1.0, even when no shear is carried by the superstructure. In fact, this is a small error 
induced as a result of the assumed parabolic displacement shape. If no shear is carried by 
the superstructure, it will not influence the displaced shape, and hence the parabolic
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shape will be inappropriate. The conclusion, that critical transverse design shear force will 
be less than the longitudinal shear force, is still, however, valid, since in this case the 
superstructure can be considered totally flexible in the transverse direction, and each pier 
will support its tributary weight of superstructure. It can readily be shown that this 
implies lower tributary mass for the critical pier than under longitudinal response.

It is of interest that the 1,2,1 configuration results in significantly lower transverse 
design force than the other two configurations. This is because the displacement profile 
tor this case is governed by the side piers, with the result that the central displacement, 
and hence the design system SDOF displacement is larger than for the other two 
configurations. This translates into a lower design base shear force for the SDOF system 
see Eq.(3.24), e.g.).

10.4.8 Design Example 10.5: Transverse Design of a Four-Span Bridge

The four-span bridge designed for longitudinal response in Design Example 10.3 and 
shown in Fig. 10.14 is now designed for transverse response. As noted in Section 10.3.6 
the bridge is supported on single-column piers, and we assume the support condition 
corresponds to that depicted in F ig .l0.18(c). The superstructure is considered to be 
torsionally flexible, and hence the effective height is taken to the centre of the 
superstructure. This adds 1.0m (3.28ft) to the column heights, which are thus 17m 
55.8ft) for Columns B and D, and 13m (42.6ft) for Column C for transverse design. 

Superstructure transverse moment of inertia is 40m4 (4630 ft4).
The bridge is restrained by shear keys at the ends, and the abutment structure is 

required to remain essentially elastic under the Level 2 earthquake defined by F ig .l0.15. 
An abutment lateral displacement of 40mm (1.6in) is permitted. As this is small compared 
with the pier displacements, the superstructure and abutment damping levels are not 
separated, and a value of % — 0.05 is assumed for the component of lateral force carried 
bv the superstructure.

The solution below follows the steps outlined in Section 10.4.5

Step 1 Estimate fraction o f lateral force carried by superstructure bending: A
value of x — 0.5 is selected as an initial guess for the fraction of lateral inertia force 
transmitted to the abutments.

Step 2  Estimate the initial displacement profile: The initial displacement profile is 
assumed to be parabolic with the displacement at piers B and D equal to 70% of the 
displacement of pier C. The magnitude of the displacement profile will be determined by 
the critical abutment or pier displacement. As described in the problem statement, the 
permitted displacement for abutments A and E is 40mm. The permitted displacements 
for piers B, C, and D will be a function of the strain-based damage criteria. From 
Example 10.1, the section yield curvature is given by:

</)y = 2 .25  e v/D =2.25(462/200,000)/2.0=0.0026/m 

while the limit state curvature, which is controlled by the concrete compression strain,
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was given by:
= £c j J c =0.0136/0.48 =0.0283/m 

With a strain penetration length given by:
Lsp = 0 .022 f yed b, =0.022x462x40 = 407 mm (16.0 in), 

the yield displacement for piers B and D is given by:
A y = <|>̂ (H  + LSP f  / 3 = 0.0026x17.4072/3=0.263m (10.4 in)

while for pier C, where the height is 13m, the yield displacement is 0.156m (6.1 in). From 
Eq.(lO .ll), the plastic hinge length for piers B and D is:

Lp = kLc + Lsp > 2LSP =0.07x17+0.407 =1.597m (62.9 in)
Similarly, for pier C, the plastic hinge length is 1.317m (51.9 in). The strain-based 
displacements for piers B, and D are then obtained from Eq. (10.12):

Ad = Ay +{(/)ls -</>y )LpH = 0.263+(0.0283-0.0026)xl.597x17=0.961 m (37.9 in)
while for pier C, the strain-based limit displacement is 0.596m (23.5 in). For this example, 
it is clear that pier C will control the displacement profile as the initial estimate of 
displacements of piers B and D are 70% of 0.596m = 0.417m, which is less than the 
strain-based displacements for those piers. While for this example it was not necessary to 
determine the strain-based displacements for piers B and D as they clearly could not 
govern the magnitude of the displacement profile, it is likely that in some cases, it will not 
be immediately evident which pier will govern the profile. For example, if the central pier 
had been much taller than the two side piers, the side piers would likely govern the 
overall magnitude of the displacement profile. The initial displacement profile for this 
example is thus as follows: Aa — AE = 0.04m; AB — AD — 0.417m; Ac = 0.596m.

Step 3  Determine the SDOF system displacement: In order to determine the 
SDOF system displacement from Eq. (10.20), the inertia weight for each abutment and 
pier must first be defined. The inertia weights are assumed to include the tributary 
superstructure weight (190kN/m) and 1/3 of the weight of each pier. For abutments A 
and E, the inertia weight is m A — m E — 20m X 190kN/m =  3800kN. For piers B and D, 
the inertia weight is mB -  mjy =  45m X 190kN/m +  16/3 X 73.8kN/m =  8944kN. For 
pier C, the inertia weight is m e  — 50m X 190kN/m + 12/3 X 73.8kN/m = 9795kN. The 
SDOF system displacement from Eq. (10.20) is then:

2 x 3 8 0 0 x 0 .042 + 2 x 8 9 4 4 x 0 .4 17 2 + 9795x0.5962 A NA . = ------------------------------------------------------------------------- = 0.485 m (19.1 in)
2 x 3800 x 0.04 + 2 x 8944 x 0.417 + 9795 x 0.596

Step 4 Determine effective mass: From Eq. (3.33), the effective mass is:

2x3800x0.04 + 2x8944x0.417 + 9795x0.596 n .A m . >m  ------------------------------------------------------------= 2856 tonnes (3149kips)
0.485x9.81

Step 5  Determine p ier displacement ductility, and equivalent viscous damping: 
Pier yield and target displacements were calculated in Step 2. Therefore, displacement
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ductilities for the three piers are

0.417
Ha = = 1.59 (Piers B and D) 0-596 ,= 7TTT7 = 3.82 (Pier C)

0.263 ‘ “ 0.156
The equivalent viscous damping for the Piers follows from Eq. (3.17a):

' 1 .59 -1£ = 0.05 + 0.444 x

£ = 0.05 + 0.444 x

1.59;r .

3 .8 2 -1
3.82;r

: 0 .102  for Piers B and D

= 0.154 for Pier C

Step 6 Determine the ratios o f shear force carried by the piers: From Eq.(l 0.24), 
the shear force the piers is given by:

V = (1 - 0 .5 )x - 17 ^ . = 0 . 1 5 1 x £ f ; .  for Piers B and D
2 x  — + — i=l 

17 13

F = 0 .1 9 8 x ^ f ; for Pier C

Step 7 Determine system damping: Since the superstructure and abutment
damping are not treated separately, the system damping follows from Eq. (10.27a):

0.5x0.486x0.05 + 0 i 2x0-4l7x0-102 + °:596x0- ^ l / A  + l l
£  = ------------------------------1 ,  17---------------- ^ -------  I 17 13j = 0.089

AC t\ ao £ A /  2X0.417 0.596 V f  2 10.5x0.486 + 0.5 ------------+--------  / — + —
{ n  13 J 13

Step 8 Determine effective period\ stiffness, and design base shear: From Fig. 
(10.15b), entering with the target system displacement of 0.485m and interpolating for a 
damping of 0.089, the effective period is esdmated as Te — 2.31 seconds. The effective 
stiffness, Ke, is obtained from Eq. (3.1) as shown below.

_ 4k 2 x2856 _ 21 jg 3 
2.31

The base shear, from Eq. (3.2) is then
B̂ase — 21183 x 0.485 = 10282 kN (2312 kips)

Step 9 Distribute base shear force to inertia mass locations: Utilizing Eq. 
(10.28), the base shear force to each of the five inertia mass locations is obtained. For 
abutments A and E, the applied lateral force is:
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F = 10282x-------------------------3800x0.04---------------------------= 115kN (25.9kips)
2 x3800x0 .04  + 2x8944x0 .417  + 9795x0.596

Similarly, the forces applied at the tops of Piers B and D are each 2820 kN (634 kips), 
while at the top of Pier C it is 4413 kN (992 kips).

Step 10 Estimate abutment and p ier effective stiffness: In step 9, the forces 
applied to each inertia mass location were determined. In step 11, these forces will be 
applied to a structural analysis model. In this step, the properties for the analysis model 
will be obtained. In order to accomplish this, the shear forces carried by each abutment 
and pier must be estimated. From Eq. (10.23):

VA+VE— 0 .5x10282 = 5142 kN(1156kips)
Therefore, the shear force in each abutment may be estimated as 5142/2 = 2571 kN. 
From Eq. (10.24), the shear force in Piers B and D is given by

1

V = ( l -0 .5 )x  10282x ------^ — -  = 1554 kN (349kips)
2 x  —  + —

17 13
Similarly, for Pier C, the force is estimated as 2033 kN (457kips). The effective stiffness 
of each abutment and pier can then be obtained by dividing the shear force in each 
member by the displacement of each member from Step 2. For abutments A and E, the 
effective stiffness for the analytical model is 2571/0.04 = 64300 kN/m. For Piers B and 
D, the effective stiffness is 1554/0.417 = 3730 kN/m, while for Pier C, the effective 
stiffness is 2033/0.596 = 3410 kN/m.

Step 11 Analyze the structure under the applied lateral force vector: A structural 
analysis model incorporating the data from Step 10 for abutment and pier stiffness is 
developed. Applying the lateral force vector from Step 9 results in the following 
abutment and Pier displacements: Abutments A and E achieve a displacement of 
0.0426m, Piers B and D achieve a displacement of 0.3826m, and Pier C achieves a 
displacement of 0.5724m.

Step 12 Revise the value o f x, i f  needed: In Step 1, it was assumed that the 
abutments would carry 50% of the applied lateral force. Comparing the displacements 
from Step 11 with those from Step 2, which were: Aa -  AE ~ 0.04m; A# = Ad = 0.417m; 
Ac = 0.596m indicates that the assumption of x  — 0.5 is slightly low as the displacement 
of the central pier is somewhat less than the target. In order to increase the central pier 
displacement, the force resisted by the abutment will need to be increased, thus resulting 
in reduced pier strength and stiffness and hence an increase in the pier displacement. A 
value of x -  0.54 is selected. Past experience has indicated that to speed convergence, a 
value equal to twice that needed from scaling of the actual to desired displacements is 
appropriate. For this example, the calculation is shown below:
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Ac 2 x (5 9 6 -5 7 2 )  Ac . . .x = 0.5 +---- -̂----------- -x0.5 = 0.54
572

We then return to Step 10 to determine the revised estimate for abutment and pier 
stiffness. This results in abutment shear forces of 2776 kN, shear forces in Piers B and D
of 1430 kN, and a shear force of 1870 kN in Pier C. For abutments A and E, the
effective stiffness for the analytical model is then revised to 2776/0.04 = 69400 kN/m.
For Piers B and D, the effective stiffness is 1430/0.417 = 3430 kN/m, while for Pier C, 
:he effective stiffness is 1870/0.596 = 3140 kN/m. The structure is then re-analyzed with 
:he same lateral force vector from Step 9 and the displacements compared with the target 
values. The results from this analysis result in the following displacements: A^ = Ae — 
0.041m; AB = AD = 0.396m; Ac — 0.593m. As the central pier displacement is now much 
closer the to target value of 0.596m from Step 2, the abutment forces due to 
superstructure bending have been correctly estimated resulting in a value of x — 0.54.

Step 13 Conduct additional iterations: The displacement profile is revised by 
scaling the profile from Step 12 to the target central pier displacement of 0.596m, while 
keeping the abutment displacements at 0.040m. The revised displacement profile is then 
\A -  AE -  0.04m; AB — AD -  0.398m; Ac = 0.596m. The value of x — 0.54 is also used 
:n the second iteration. Steps 3 through 12 are then repeated until convergence is reached 
:or the displacement profile and x. The calculations for Steps 3 through 12 are shown in 
Table 10.2 below. After the second iteration, convergence has been reached for both the 
value of x and the displaced shape, and the design is complete.

Table 10.2 Second Iteration for Example 10.5

Step 3 Ad = 0.477m
Step 4 me — 2834 tonnes
Step 5 (Ia = 1-52 (Piers B and D); |Ia -  3.83 (Pier C) 

£= 0.098 (Piers B and D); £=0.154 (Pier C)
Step 6 5 5

V = 0.\39x'^ F j (Piers B and D); K = 0 .1 8 2 x ^ f ) .  (Pier C)
/=1 /=l

Step 7 £  = 0.085
Step 8 Te = 2.20 sec; K, = 23191 kN/m; VBme =11061 kN
Step 9 Fa = Fe - \ 2 1  kN; Fr = FD — 2969 kN; Fc = 4869 kN
Step 10 VA= VE= 2987 kN; VB= VD = 1538 kN; Vc= 2012 kN

Ka = Ke = 74664 kN/m; KB = KD= 3865 kN/m; Kc= 3375 kN/m
Step 11 Aa = A£= 0.039m; Ag = A/>= 0.406m; Ac = 0.613m
Step 12 x = 0.51

VA= VE = 2821 kN; VB = VD= 1639 kN; Fc= 2143 kN
KA ~ KE = 70516 kN/m; KB = KD= 4117 kN/m; Kc= 3595 kN/m
Aa = Ae= 0.040m; Ab = Ad= 0.395m; Ac= 0.595m
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The solution developed in this example can be expected to provide good displacement 
control for the piers. However, as discussed in the following section, and illustrated in 
Design Example 10.6, the first-mode design solution, which is the basis of the DDBD 
approach will need to be modified for superstructure moments, and abutment reactions.

10.5 CAPACITY DESIGN ISSUES

Capacity design issues are discussed in general terms in Sections 3.9 and 4.5 to 4.7. 
The purpose of capacity design is to ensure that undesirable modes of inelastic 
deformation, such as plastic hinges at unintended locations, or shear failure, cannot 
occur, and that the influence of higher-mode effects is properly represented. This is 
effected by ensuring that the dependable strength of the action (shear; flexure etc) at a 
specific locadon exceeds the maximum feasible action under seismic response.

The general requirement for capacity protection is defined by Eq.(3.61), which is 
reproduced here as Eq. (10.29) for convenience of reference:

</)sS D > S R =<p°0)SE (10.29)

where S e  is the value of the design action being capacity protected, corresponding to the 
design lateral force distribution found from the DDBD process, (ft is the ratio of 
overstrength moment capacity to required capacity of the plastic hinges, CO is the 
amplification of the action being considered, due to higher mode effects, So is the design 
strength of the capacity protected action, and <ps is a strength-reduction factor relating the 
dependable and design strengths of the action. Further background is given in Sections 
3.9 and 4.5.

With bridge structures there are two separate areas to be considered -  capacity design 
related to actions in the piers, and superstructure consideration.

10.5.1 Capacity Design for Piers

The primary concern is determining the maximum feasible shear force that can be 
developed in the piers. With reference to Eq.(10.29), it is primarily the overstrength factor 
(p° that is involved, with dynamic amplification playing no, or at most a lesser part in
amplifying the design shear force. The overstrength factor can be determined as
suggested in Section 4.5. Dynamic amplification related to higher-mode effects can, 
however be significant in the following cases:

• When pier mass is a significant proportion of the total mass contributing to
lateral inertia forces on a pier, then higher-mode response resulting from
response of the pier as a distributed-mass vertical beam may increase column 
shears, and even curvature ductility factors, above the level corresponding to the 
SDOF distribution of design forces, and should be considered.

• It was mentioned in relation to F ig .l0.18(d) that the torsional mass inertia of a
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wide superstructure supported by a cantilever pier may induce a significant 
second mode response. This will be apparent in a potential variation in the height 
at which the column moment drops to zero. The position at which this occurs 
may be above, or below the centre of superstructure mass, and is best 
determined by nonlinear time-history analysis. If this is not carried out it is 
suggested that the maximum shear force be evaluated assuming that the point of 
zero moment (see Fig. 10.18(d)) is dropped 15% below the centre of 
superstructure mass, thus corresponding to a 17.6% increase in the capacity 
design shear force.

• With flexible superstructures higher mode response may increase the response of 
piers at some distance from the bridge centre. For example, the four-span bridge 
of Fig. 10.14 has a stiff central pier, and flexible outer piers. The displacement 
response of these piers may be increased by higher modes. Note, however, that if 
the bridge is symmetric about its centre, as is the case in Fig. 10.14, the second 
mode, which is anti-symmetric will have a zero participation factor under 
transverse excitation, and displacements of the symmetric third mode, which 
would have the central pier displacing in the opposite direction from the two 
outer piers will induce small displacements. Since the main effect will be a small 
increase in the displacement ductility demand of the two outer piers, which will 
not be critical for design, this effect can generally be ignored.

.All of these effects can be determined by the effective modal superposition approach 
^escribed in Section 10.5.3 below.

10.5.2 Capacity Design for Superstructures and Abutments

Both overstrength at plastic hinges and higher mode effects may have a significant 
--.fluence on the maximum transverse moments developed in the superstructure, and on 
-_hc maximum abutment reactions. These are discussed separately in the following 
-rctions.

(a) Overstrength Capacity o f Plastic Hinges: The situation with structures with dual 
seismic load paths is opposite from that occurring with single-load path structures. In the 
:cse of bridge structures with part of the inertia load being carried by ductile columns and 
ta tt bv an elastic superstructure, an increase in the strength of the ductile columns 
resulting from material overstrength will result in an increase in the effective secant 
' “ ffness of the columns at design level response. Since the superstructure stiffness 
remains unchanged at the elastic value, this means that the total stiffness of the structure 
r.as increased, and displacements, as a consequence will be decreased. The superstructure 
::  rces, and abutment reactions will thus reduce. It is thus clear that the (jp value 
: :  rresponding to flexural overstrength at plastic hinges should not be applied when 
r'nmating superstructure forces. As discussed below, it is in fact appropriate to use an 
rsnmate of plastic hinge capacity lower than the design level in determining the 
'uoerstructure demands.
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(b) Higher Mode Effects: It has been fo u n d s , that higher mode effects are generally 
less significant for bridges than with building structures. As already discussed in relation 
to F ig .l0.18(d), the width of the superstructure may mean that with monolithic single
column/superstructure designs, the moment at the top of the column may be 
indeterminate, since the pier/superstructure is essentially a two-mode system. Analyses of 
typical designs indicate that pier moments at the height of the superstructure centre-of- 
mass will rarely exceed Mt = +O.2M2 (see Fig. 10.18(d)). This value could be used if 
detailed analyses are not carried out. The principal influence of this uncertainty will be a 
possible increase in the design shear force in the pier, as already discussed.

The second region where higher mode effects may be significant are in the 
superstructure transverse moments, and consequent abutment reactions, which are of 
course directly related to the superstructure moments in the end spans. Generally 
superstructure transverse seismic moments are not of great concern, as adequate capacity 
will normally be provided as a consequence of gravity load design. They should, however, 
be checked. Our analyseslA4l have indicated that the higher-mode amplification of 
superstructure transverse moments is normally not critical for bridges with four spans or 
less, when span lengths are 50m (164ft) or less.

Figure 10.20 shows results of displacement-based design and analysis of an irregular 
six-span bridge, where higher mode effects might be expected to be significant. The 
design displacement profile, following the procedure outlined in Section 10.4.5, is shown 
as the solid line in Fig. 10.20(b). The short central pier is the critical design element. 
Average results from non-linear time-history analysis using a suite of seven spectrum- 
compatible accelerograms are shown as a dashed line in Fig. 10.20(b). The agreement with 
the design profile is good, particularly at the critical central pier, but we note that 
displacements of piers P4 and P5 significantly exceed the design profile, presumably as a 
result of higher-mode effects. Note that this excess of displacement will not be critical, as 
all piers except the critical central one have displacements significantly less than the 
design limits.

The envelopes of superstructure transverse moments resulting from the single-mode 
DDBD procedure, and from the non-linear time-history analyses are shown in 
Fig. 10.20(c). The single-mode design results, using the analysis procedure of Section 
10.4.5 are again shown by the solid line. The results from time-history analysis are shown 
by the dashed line (the central of the three profiles shown). It is seen that the 
superstructure moments from midspan to the right abutment significantly exceed the 
values from the single-mode design approach, indicating that higher-mode effects are 
indeed important. Note, however, that the peak superstructure moment from time- 
history analysis is less than 10% higher than the peak DDBD value.

Of greater importance is the influence on abutment reactions, which are needed for 
determining the required strength of the abutment structure. These, of course, are direct!v 
provided from the time-history results, but can also be estimated from the slope of the 
moment profiles in the end spans. It will be seen at both the left, and particularly at the 
right abutment the slope of the transverse moment profile from the time-history results is
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much higher than that from the DDBD process, and hence abutment forces, and 
displacements will have been underestimated by the first-mode design approach.

T

(a) Bridge Configuration; H = 12.5m

DDBD Displacement x ^q5

s i
7 ° e -  ch

DDBD Deck Moments

(b) Displacements ^  ^  Superstructure Transverse Moments

Fig. 10.20 Higher Mode Effects for an Irregular Six-Span Bridge ̂  ̂  
(Solid line =DDBD; Dashed =THA; Dotted =EMS) f c a  C% 0 u.

(c) Estimation o f Higher Mode Effects: Although bridges are often highly irregular, 
they are often comparatively simple in a structural sense, in that they are comprised of 
comparatively few structural elements. It is thus often feasible to carry out non linear 
ume history analyses to verify the design displacements, and to determine the influence 
of higher mode effects. The reader is referred to Section 4.9.2.

An alternative is to use simplified methods to account for higher mode effects, as have 
been provided in previous chapters dealing with building structures. In other chapters 
these have been in two forms: modified methods of modal superposition, and simple 
conservative design rules. Because of the potential for irregularity in bridge structural 
form, it appears, at this stage, difficult to develop simple conservative design rules that 
could be generally applied. However, it has been found that a modal superposition 
approach that is similar to that proposed in Section 6.6.1 for cantilever walls, and in 
Section 7.3.1 for dual wall-frame structures gives satisfactory results. In both of these 
approaches, the inelastic first-mode design forces from the DDBD process were 
combined with the elastic forces from the higher modes, using appropriate combination 
rules (SRSS or CQC). The difference between the two approaches was in the structural 
modelling. For the cantilever walls, an elastic structural representation was used, based on 
effective cracked-section stiffness at yield. For dual wall-frame structures, the higher 
mode contributions were based on a structural model where very low stiffness was 
provided at potential plastic hinge locations.

For bridge structures an alternative approach, which is fully compatible with the 
DDBD philosophy has been investigated^4!. For this, the structural representation was
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such that stiffness of members with potential plastic hinges (e.g. piers) was taken as the 
secant stiffness to peak displacement response, while elastic elements (e.g. the 
superstructure) were modelled by initial-stiffness values. This conforms with the analysis 
model used to distribute the inertia forces described in Section 10.4.5, Steps 10 and 11. It 
was found that combining the higher-mode elastic forces from such analyses with the 
DDBD inelastic first-mode approach following the modified-modal superposition 
approach of Section 6.6.1 gave an excellent representation of force-envelopes. This 
procedure has been termed the Effective Modal Superposition approach (EMS) to 
distinguish it from the Modified modal superposition approach of Section 6.6.1. 
However, it is emphasised that the difference between the two approaches is solely in the 
values for stiffness of inelastic members used in the modal analyses.

Results using the EMS approach for the six-span bridge of Fig. 10.20(a) are included 
in Fig. 10.20(c) and shown by the dotted (top) line. It will be seen that this agrees closely 
with, and is slightly more conservative than, the average of the nonlinear time-history 
results (THA). The agreement noted in Fig. 10.20(c) is typical of the results of the 
extensive range of bridges analysed in [A4].

It would appear that the EMS approach should also provide a better representation of 
higher-mode effects for building structures than does MMS. This has not, however, been 
verified at this stage, though we are rather confident of its success.

10.6 DESIGN EXAMPLE 10.6: Design Verification of Design Example 10.5

The design for transverse response of the four-span bridge of Design Example 10.5 is 
now subjected to design verification with inelastic time-history analysis using the program 
“Ruaumoko” provided in the CD with this book. The structure was represented as a 3- 
D structure, with the superstructure represented by an elastic member, while the piers 
used “Thin” Takeda hysteretic characteristics with a 5% second slope stiffness (see 
Section 4.9.2(f)). Elastic damping was represented by 5% tangent-stiffness damping. The 
abutments were represented by lateral springs with different properties in different 
analyses, as discussed subsequendy. Each span was divided into five segments, with 
tributary mass distributed to the superstructure nodes.

Three spectrum compatible earthquake records were generated using wavelet 
theorylsl°J, using the three accelerograms (Kobe, Sylmar and Whittier) described in 
Chapter 2. These adjusted records are included on the CD provided with this book.

An initial set of analyses was carried out based on the design resulting from Design 
Example 10.5. Pier yield strength was reduced from the design strength at design 
displacement response based on the 5% post-yield stiffness, and the design displacement 
ductility. Since the design assumed elastic response of the abutments, the abutments were 
initially modelled as elastic elements. Results, in terms of response displacements and 
superstructure moment envelopes are compared with the design profiles in Fig. 10.21 (a). 
The design profiles are shown as solid bold lines, and the results from the individual 
records by light lines. The average of the three analyses is shown as a dashed bold line. It
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will be noted that the agreement between the design and analyses profiles is verv good, 
and that the scatter between the results of the records is small.

Distance (m) Distance (m)
(a) Design, Elastic Abutm ents(D isplacem ent envelopes; M om ent envelopes)

Distance (m) Distance (m)
(b) Design, Elasto-plastic abutments (Displacement envelopes; M oment envelopes)

Distance (m) Distance (m)
(c) Revised, Elasto-plastic abutments (Displacement envelopes; M oment envelopes)

Fig.10.21 Displacement and Moment Profiles from Design Example 10.6
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The average central displacement is 4% larger than the design value of 0.595m, and 
peak superstructure moments are very close to the design values. However, though not 
very apparent in Fig. 10.21 (a), the displacements at the abutments, at an average of 
68.5mm (2.7in) are 71% higher than the design value of 40mm (1.6in). It might be felt 
that this is an acceptable excess, as it only represents a small ductility demand. To provide 
further investigation of this, it is decided to rerun the analyses, with the abutments 
modelled as elasto-plastic springs, with the design strength from Example 10.5. Results 
from this set of analyses are shown in Fig. 10.21 (b), where for clarity only the average of 
the three analyses is compared with the design values. The peak displacement at the 
central pier is essentially unaffected (the excess is reduced to 3%), but the lateral 
displacements at the abutments are increased to 118mm (4.6in). This increase above the 
design value is due to higher-mode effects, as explained in the previous section. It might 
still be considered an acceptable result, but we decide to attempt to reduce the 
displacements to the design level. As discussed in the previous section, this could be 
based either on an EMS analysis or on time-history results. Since we have the results of 
the time-history analysis, we use them directly.

The initial elastic analyses indicated that the design forces in the abutments, including 
higher mode effects, were 71% higher than the design levels (note: this abutment 
insufficiency was also observed in an independent analysis run with the program 
“SeismoStruct”, the results of which may be found in the Structural Analysis CD). This 
implies that the stiffness and strength of the abutments should be increased by a dynamic 
amplification factor of at least wa — 1.71 if the displacements are to be constrained to the 
design level of 40mm. However, increasing the stiffness is likely to further increase the 
design forces, so, based on experience we chose to increase the abutment stiffness and 
strength by 100%.

A new set of analyses were run based on this assumption, (and with the abutments 
modelled as E-P elements) and the results are plotted in Fig. 10.21 (c). The displacement 
profile is now almost perfect, with a peak central displacement less than 2% above the 
design value, and the average abutment displacement is 37mm (1.5in), indicating elastic 
response. The higher-mode effects are clearly apparent in the slope of the moment 
profile at the abutment.

Data files for the analyses carried out in this example are included on the CD provided 
with this book.



11
STRUCTURES WITH ISOLATION AND ADDED 
DAMPING

11.1 FUNDAMENTAL CONCEPTS

11.1.1 Objectives and Motivations

The reasons for considering the possibility of isolating a structure are treated in detail 
in several books N3< S81 and will only be summarized here. Essentially, ail the main 
issues may be condensed in a single objective: i.e. modification of global response to 
improve structural performance. This might be effected in a number of ways (see 
conceptual examples in Fig.11.1), resulting in the choice of:

• Protecting part of the structure, assuring its elasdc response;
• Shifting the main period of vibration to a convenient value to modify both 

acceleration and displacement demand;
• Increasing the global energy dissipation capacity of the structure, thus 

reducing the displacement demand;
• Regularizing the response, modifying the relative effective stiffness and 

strength of different parts of the structure.
It is well known that the insertion of isolation and dissipation (I/D) devices generally 

results in an increase of both the period of vibration of the fundamental mode and the 
energy dissipation capacity of the system, but the two effects may have a significantly 
different relative importance.

For example, when an isolation system is inserted at the base of a building or of a 
stiff structure (Fig. 11.1 (a)), the main effect is the period shift, which generally results in 
lower elastic acceleration response and larger displacement demand. As discussed in 
Chapter 2, a reduction of the displacement demand may result from the added damping, 
due to the energy dissipated by the devices. However the local added damping rarely 
implies corresponding global equivalent viscous damping larger than 20% and 
consequently the increased displacement demand due to period shift is rarely 
compensated by the reduction due to the increased dissipation (see Fig. 11.2). Clearly, this 
larger displacement demand will usually be concentrated at the isolation system level,

519
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(a) base isolated rigid tank (b) frame with dissipative bracing

(c) deck—isolated regular bridge

j

1 J? 1
(d) partially isolated irregular bridge

laye

Deck

(f) rocking bridge bent

Fig.11.1 Conceptual Examples of Location of Isolation/Dissipation Devices
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P e r io d  (s) P e rio d  (s)

(a) Acceleration Spectra (b) Displacement Spectra

Fig.11.2 Examples of Acceleration and Displacement Demand Variations due to 
the Combination of Period Shift and Added Damping (Refer to Section 11.1.4)

while the internal deformation demand of the structure is limited within values not 
exceeding the yield drift.

On the other hand, the insertion of dissipative braces in a frame building 
(Fig.l 1.1(b)) or of dampers between pier and deck of a cable-stayed bridge normally 
results in minor modification of the main period of vibration and possibly significant 
local energy dissipation that may result in local equivalent viscous damping larger than 
50% (e.g. for hydraulic dampers, see Section 11.2.4; note, however, that the additional 
structural deformation will imply a lower global equivalent viscous damping).

There are cases where only part of a structure is isolated (e.g. the deck of a bridge, as 
m Fig. 11.1(c)) so that the shear force transmitted to the top of the pier is limited by the 
capacity of the device. In some cases it is conceivable to insert the devices only on shorter 
piers, if an elastic, or near-elastic response is expected for the taller ones (Fig.l 1.1 (d)). In 
this case, one of the objectives may be a regularization of the expected response of the 
structure, with a more uniform distribution of the total shear.

A fundamental aspect that should be emphasized is the general objective of 
concentrating the whole inelastic demand within the I/D system, protecting the entire 
structure from inelastic demand, and from the consequent damage, by the application of 
concepts of capacity design that will be discussed later.

It is also noticeable that the general idea of isolation and added dissipation can be 
translated into a number of possible practical solution that may include not only specially 
designed devices, but use of foundation or internal rocking and sliding soil layers as 
shown in Figs.11.1(e) and (f), where solutions adopted for the Rion-Antirion Bridge^35!) 
and for the South Rangitikei Bridge^10! are conceptually visualized.

I/D devices allow for increased control of structural response and are largely 
sensitive to displacement, rather than force, demands, making them particularly suited for 
displacement-based design concepts.
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11.1.2 Bearing Systems, Isolation and Dissipation Devices

As discussed in greater detail in Section 11.2, I/D devices can be characterized for 
design purposes in terms of their main properties, which are defined and briefly 
commented on below.

(a) Capacity for Carrying Gravity Loads'. Normally dampers have no capacity of 
carrying vertical loads and may be used in combinadon with bearings. Vertical capacity of 
isolators may interact significantiy with other parameters such as horizontal stiffness and 
therefore create important design constraints.

(b) Displacement Capacity. This is possibly the most fundamental parameter, 
particularly in a displacement-based design approach. Clearly, different displacement 
values should be considered in reladon to different performance levels and structure 
displacements, but the basic design philosophy will always require that the maximum 
feasible displacement, under the largest earthquake considered, is within the displacement 
capacity of the device.

(c) Horizontal Force Capacity. This may be relevant to protection of other parts of the 
structure (low values generally desirable) or to increase the proportion of the energy 
dissipated by the system with respect to the structural damping (higher values preferred).

(d) Equivalent (Secant) Stiffness-. Again, appropriate values will depend on the limit 
state considered. However it should be noted that in design the required horizontal 
strength will result from the accepted displacement level and resulting period and not 
vice-versa (see Section 3.1).

(e) Equivalent Viscous Damping As shown in Section 3.4.3(c), equivalent viscous 
damping may be determined from the area of the hysteresis loops which is generally quite 
large for dampers and normally much smaller for isolators. Damping capacity may be 
reduced by re-centering requirements. In general, the global damping of the isolated 
structure will result from a combination of isolator and structure response and may be 
significantly lower than that of the device damping.

(f) Re-centering Capacity. Re-centering capacity may be'^consiaered a fundamental 
response parameter, particularly with regard to post-earthquake evaluations. It often 
depends on the post yield stiffness in essentially bilinear devices. To increase it may 
therefore imply a reduced energy dissipation capacity and correspondingly a lower 
equivalent viscous damping, since the equivalent viscous damping decreases as the post
yield stiffness increases.

(g) Post-elastic Response*. In most cases, devices will respond non-linearly, allowing the 
definition of an equivalent yield-point in a bilinear approximation of response. The post 
yield stiffness may affect the re-centering capacity (higher slope favourable), the 
equivalent viscous damping (lower slope favourable), and the protection of other damage 
modes (lower slope favourable).
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(h) Post-ultimate response. Softening, hardening, quasi-rigid impact and total 
disruption may have completely different consequences in terms of expected 
performances for larger than expected events and consequendy imply different protection 
factors.

(i) Specific problems', may include high sensitivity to (1) axial force variation, (2) heat 
problems and (3) high sensitivity to environmental conditions or aging.

11.1.3 Design Philosophy/Performance Criteria

Although the general design philosophy will not differ from the approach generally 
presented in Chapters 1 and 3, it is appropriate to briefly discuss a few specific issues 
related to isolated structures.

(a) Design Displacement: As usual, the first step consists of defining the design 
displacement, which will result from a combination of the structural and the I/D device 
displacements. The design displacement of the structure is usually governed, essentially 
w ithout reference to the limit state of interest, by the assumption of maintaining a quasi- 
elastic response, corresponding therefore to the yield displacement reduced to allow for 
possible overstrength of the devices. For a serviceability limit state, the structural 
displacement may correspond to a drift limit consistent with the desired limitation of 
non-structural damage, but it is often found that the two values (displacements 
corresponding to structure yielding and non-structural damage limitation) do not differ 
roo much.

The isolation system displacement capacity is normally relevant for a damage-control 
or near-collapse limit state, and may be derived from considerations related to the device 
svstem capacity or from global displacement limit as produced by the combination of 
srructure and device system displacement.

(b) Equivalent Viscous Damping: The evaluation of the equivalent viscous damping 
is the second step. This is normally obtained by calculating the device damping and 
combining it with the structural response. The procedure outlined in Section 3.5.4, with 
reference to the influence of foundation flexibility on effective damping, which led to 
Eq.(3.40) may apply for serial systems, such as those obtained from base or deck 
isolation, but may be inapplicable when it can not be assumed that the same force level 
characterizes the structural and the device systems. In these cases, where similar 
displacement demand between structure and device exists, more fundamental concepts 
derived from the evaluation of relative hysteretic energy dissipation should be applied. An 
example of such a case is presented in Section 6.8, with reference to coupled structural 
■vails. Assuming that the wall displacement is limited to its yield value and inserting 
coupling dampers instead of concrete beams, from Eqs.(6.54) and (6.66), Eq. (11.1) can 
be derived to evaluate the approximate equivalent viscous damping of the entire system
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where %Di and Mjyi are the damping and overturning moment components associated 
with each damper and M o t m  is the total overturning moment (this subject will be more 
extensively discussed in Section 11.3.3). Once the appropriate damping level has been 
selected, DDBD follows in the usual manner.

While the application of capacity design principles to the relative strengths of I/D 
systems and structural components to assure that the structure will remain elastic is 
normally simple, in some case it may not be trivial to derive the properties of each single 
structural element from the global response parameters, including the appropriate 
dynamic amplification factors.

It should be noted, however, that the displacement-based design of conventional base 
isolated buildings is normally even simpler that designing a non—isolated building.

11.1.4 Problems with Force -  Based Design of Isolated Structures

The advantages of displacement-based over force-based approaches for seismic 
design have been discussed in Chapters 1 and 3. It has to be noted, however, that in the 
case of isolated structures some more specific reasons to prefer displacements to forces 
as fundamental design variables apply.

The first basic point is related to the long period of vibration that is normally 
considered to be a fundamental feature of base isolated structures, in order to reduce the 
spectral acceleration ordinates. It has often been indicated that periods in the range of 2 — 
3 seconds should be considered as reasonable target values for buildings, while similar or 
larger values are appropriate for bridges.

To make the point, we consider design of a stiff structure with an initial (non
isolated) period of 0.4 sec. in a relatively high seismicity region, which has a design peak 
ground acceleration equal to ag -  0.5 g, including local soil amplification effects, with the 
plateau of the elastic acceleration spectrum terminating at a period value of 0.5 seconds. 
The isolation system has rigid/perfectly plastic characteristics (e.g. a coulomb slider), and 
thus does not affect the elastic period. The elastic acceleration response would thus be Sae 
-  0.5x2.5=1.25g, since the response is on the plateau, and an amplification factor of 2.5 
is appropriate (see Fig.11.2, and Section 2.2). The corresponding displacement response 
would be

A ae =  = 1-25x9.805x0.4  = Q m 6 m  (49 6mm> 1-95in)
4 n 4 n

We investigate design of the isolated system to have a response period of either 2sec 
or 3sec. The period change is thus a factor of 5 or 7.5 respectively. With an elasto-plastic 
response, appropriate for a friction slider, the implied ductility demand is the square of
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the period shift, corresponding to ductilities of 25 and 56 respectively -  not a problem for 
a slider, which has no material strain limits. Using conventional force-based thinking, and 
the equal-displacement approximation, the implication is that the structure could be 
designed for lateral force levels of Sae !jJ ~ 0.05g and 0.022g for periods of 2 and 3 sec. 
respectively, while the displacement would remain at the elastic value of 49.6mm.

With displacement-based design, and target periods of 2 and 3 sec., we recognize that 
the equivalent viscous damping is unlikely to be significantly higher than 20%. From 
Eq.2.8, this represents a reduction factor of — 0.564 to be applied to the elasdc 
displacement spectrum, as shown in Fig. 11.2. The elasdc acceleradons at 2 and 3 seconds 
are respecdvely

Sae<2 = 1 -25g - y  = 0.313g and ^  = 1.25g ̂  = 0.208g

while the corresponding elasdc displacements are

0.313x9.805x22 , A 0.208x9.805x32
A 2 = ------------- --------- = 311 mm  and A 2 = ------------ --------- = 429mm

4 k  ' An

Incorporadng the reduction factor of 0.564, the design force levels are 0.111 g and 
0.117g respectively, with corresponding design displacements of 175mm (6.9in) and 
242mm (9.5in). The corresponding design points are shown in Fig. 11.2. Note that if the 
equivalent viscous damping were increased to 30%, which is effectively an upper bound, 
the design force and displacement levels would only be reduced by a further 17%.

It is therefore evident that designing from a conventional force-based approach 
would be entirely inappropriate, and unconservative. This is recognized is some design 
codes which require design for isolated systems based on effective, rather than initial, 
stiffness, and modified damping (e.g. [X4]).

Note that for base-isolated rigid structures (Fig. 11.1(a)) the structural displacement 
corresponds to the device displacement and the global equivalent viscous damping 
corresponds to the isolation system damping. It is therefore possible, for this specific 
case, to attain equivalent viscous damping values as high as 20 -  25 %.

Finally, even more difficult problems may arise when concepts of isolation and added 
dissipation capacity are applied to complex structural systems, where, for example, the 
devices may be located internally to the structures and the structure flexibility can not be 
neglected (Fig. 11.1(b)).

As a relatively simple example, consider the case of bridges with an isolation system 
between the piers and deck (Fig. 11.1(c) and (d)). In this case, the objective may be to 
protect relatively low-mass piers and their foundations, reducing the shear force produced 
by the oscillation of the deck mass. Clearly, however, controlling the relative displacement 
demand between deck and piers is also an issue.

It is shown in Section 11.3.3(b) that considering as basic design parameters the deck, 
isolators and piers displacement capacities and demands will lead to a simple and effective
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design approach which will only require the application of capacity design principles to 
protect piers and foundations. In contrast, a series of inconsistencies and ill-conditioned 
problems will arise from the application of standard force—based procedures, which will 
again imply an arbitrary selection of the assumed period of vibration.

11.1.5 Capacity Design Concepts Applied to Isolated Structures

It can be stated that capacity design (CD) principles may pursue one or more of four 
fundamental objectives:

• to avoid any possible brittle failure mode, protecting it by inducing some 
preceding weaker but more ductile force—limiting mechanism;

• to control the post—elastic deformed shape of the structure, increasing its global 
displacement capacity;

• to increase the energy dissipation capacity of the structural system, inducing a 
uniformly distributed inelastic demand in a large number of ductile elements;

• to assure an optimum proportionality between action intensity and induced 
damage, avoiding situations where a minor change in the action may induce 
catastrophic consequences.

In the case of isolated structures, the application of these objectives leads to a basic 
fundamental decision, that is: all essential non-linear phenomena should take place in the 
isolation or added-damping system, while the structure should respond quasi-elastically.

Taking the simplest case of a base-isolated rigid structure (Fig.l 1.1 (a)), the required 
strength of the superstructure may be limited either by the equivalent response force of 
the isolation system or by the elastic spectral force corresponding to a low estimate of the 
equivalent period of vibration. Clearly, the same principles apply for the protection of the 
foundation system.

In the second case, i.e. when elastic response is assumed for the isolation system, the 
whole response is essentially linear and the residual displacement is close to zero.

In all cases, some care should be used to evaluate the possible coupling between the 
structure and the isolation system response, particularly for relatively flexible structural 
systems, in which case it will also be required to consider higher mode effects.

The case of a deck-isolated bridge (Fig.l 1.1(c) and (d)) is obviously more complex, 
since the isolation system can limit the force transmitted from the deck to the piers, bur 
the pier inertial response still contributes, unmodified, to the shear and bending moment 
demand at the critical section at the base of the pier. For tall piers this inertial response 
may consequently govern the design of both pier and foundation system. For relatively 
tall and massive piers it is not uncommon to end up with shear force levels at the pier 
base for which as much as 70 % results from pier inertial response. Clearly in these cases 
a modification of the isolation system properties has only a modest effect on the design 
of the critical section at the base of the pier and of the foundation system. However, CD 
principles should still be applied to avoid shear collapse modes and foundation damage.

The case of a braced frame with added dissipative elements (Fig.l 1.1(b)) will imply a 
limiting force in the dissipative braces, that may be defined by imposing an elastic
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response at the serviceability limit state action. When the demand exceeds this limiting 
value the dampers will start working, with the structural response becoming a controlled 
inelastic mechanism. As a consequence, the forces in all structural elements will not 
increase significantly and may be used to define the strength of capacitv-protected 
elements.

In the above qualitative and preliminary discussion, it has been assumed that the 
device response is properly known and can therefore be dependably quantified. A 
detailed knowledge of the actual properties, including estimates of the coefficient of 
variation of the theoretical deterministic values or of dependable lower/upper limits 
under operational conditions is obviously important. With this information, appropriate 
capacity design factors to be applied to the nominal strength values and displacement 
demands of the isolated structure can be determined.

11.1.6 Alternative Forms of Artificial Isolation/Dissipation

It has to be noted that the broad class of structures employing isolation or added 
damping concepts to control the seismic response includes several non—conventional 
design solutions aimed at (1) limiting the forces to be transmitted between different parts 
of the structures (2) dissipating energy and (3) elongating the equivalent response period 
of vibration.

Since the 1950’s it has been observed that foundation rocking could be regarded as a 
possible way to survive large earthquakes for structures with favourable characteristics, 
such as elevated water or storage tanks, characterized by large masses at some distance 
from the ground and comparatively narrow bases. For example after the Arvin Tehachapi 
earthquake (California, July 1952) it was found that a number of tall petroleum—cracking 
rowers had escaped more serious damage by stretching their anchor bolts and rocking on 
their foundation pads fH5L The first fundamental studies of the rocking response of a rigid 
block showed that the period of vibration of the rocking response increases with 
increasing amplitude of the motion and recognized that much of the advantage for a 
rocking structure depends on the efficiency of the mechanism in dissipating energy that 
may be obtained from impact on the ground, from friction between piles and soil, from 
yielding of pile reinforcement, from pull-out and/or yielding of connecting bolts, and 
from added devices specifically designed to modify response.

Simplified approaches to predict the response of rocking bridge piers are presented in 
[P4] where it is shown that equivalent viscous damping values deriving from soil impact 
are normally rather low and inversely proportional to the tendency of the structure to 
rock at relatively low values of excitation.

It is possible to conceive, design and construct structures that will rock in controlled 
wavs at appropriate locations while providing dependable and adequate levels of energy 
dissipation. A very interesting case where these concepts have been successfully applied is 
the South Rangitikei bridge!00! which has been designed to respond with a controlled 
rocking mechanism activated at the level of rocking pads that are inserted in the double 
legged piers close to their base along with shear keys and torsional—beam steel dampers
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providing for a calibrated level of equivalent viscous damping. The concept is shown in 
luK.l 1.1(0.

The concept of internal relative rocking between different parts of a structure can be 
extended to more complex response types, where rocking may occur over several 
interfaces. This concept can apply to segmental bridge piers f™] designed with vertical 
post tensioning as well as precast concrete frames (as discussed in Section 5.11).

Examples of modern alternative forms of dissipation may include the combination of 
post tensioned and conventional reinforcement, such as used in the joints of precast 
frames, or the insertion of steel dampers at the vertical interface of shear walls discussed 
in Section 6.7 with reference to Fig.6.28 and 6.29.

An interesting recent example of the application of capacity design principles based 
on soil—structure interaction is offered by the design of the foundation of the Rion— 
Antirion bridge (see Fig. 11.1(e), and Fig. 11.3 f1"35]), where a carefully calibrated gravel layer 
located between the pier base and the soil limits the value of the shear force that can be 
transmitted, consequently allowing relative sliding movements between soil and structure 
for larger demands.

(a) Section at Base of Pier (b) Base shear vs Sliding Displacement

Fig.11.3 Rion—Antirion Bridge: A Calibrated Gravel Bed between Foundation and 
Soil Allows Relative Movement when the Force Reaches a Limit Value[p35l

11.1.7 Analysis and Safety Verification

The most relevant aspects of the response of an isolated structure in relation to the 
selection of appropriate models and analysis tools is the expected concentration of 
essentially all the non-linear response features in a few specially designed elements 
(isolators or dampers). In addition, these elements have well known properties including
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their expected range of potential variability, not only for their equivalent vield force and 
displacement, but also for the entire force—displacement response.

Performing a full nonlinear analysis is therefore in general considerably easier than in 
the case of non-isolated structures, where one of the design objectives is often the widest 
and most uniform damage distribution, resulting in extensive distribution of the nonlinear 
response.

As a simple example consider the case of a base-isolated rigid structure, whose 
response is essentially reduced to that of a single degree of freedom spring (linear or non 
linear). It has to be noted, though, that in this case there is little need of a nonlinear 
analysis, because of the high reliability of the results obtainable using an equivalent linear 
design model, as discussed later.

However, if  it is uncertain that the structure can really be considered as rigid, i.e. if the 
response of the structure can influence the response of the isolation system and vice- 
versa and the design of the isolation system has been conducted for simplicity assuming a 
rigid condition, a series of time-history7 analyses should be required in order to verify the 
design assumptions and the potential impact of higher-mode effects, which are difficult 
to estimate by simple methods. Note, however, that the Effective Modal Superposition 
(EMS) procedure described in Sections 6.6.1(c) and 10.5.2(c) can be applied for 
determining higher mode effects.

It has to be noted that for a well-designed structure the consequence of an 
appropriate application of capacity design principles will in general result in a single 
critical parameter, i.e. the displacement capacity of the isolation system, or of its 
components. The verification of the ratio between demand and capacity of these critical 
parameters may end up being the crucial objective of the whole nonlinear analysis and 
may assume a different meaning and require different protection factors depending on 
the expected consequences of the attainment of the considered limit state, as anticipated 
in Section 11.1.2.

11.2 BEARING SYSTEMS, ISOLATION AND DISSIPATION DEVICES

11.2.1 Basic Types of Devices

In this book, the wide variety of available devices will be divided into three 
fundamental classes, with reference to their essential features.

The first class will include simple bearings not necessarily designed for a reduced or 
controlled seismic response. Such bearings have been used for years for bridges or even 
for buildings when it has been necessary to allow relative movements with a relatively low 
transmission of forces. Normally, bearings may be based on the contact of two surfaces 
covered with low-friction material or on low-stiffness pads. In general, bearings transmit 
the vertical load and dissipate energy through friction or moderate viscous damping, 
however with little or no control of the horizontal relative displacement, of the dissipated 
energy and possibly without any re-centering capacity. In seismic design they are 
therefore usually coupled with additional devices.
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The second class includes bearing devices capable of transmitting the vertical load, 
while being designed to control or reduce the horizontal seismic response. This category 
of devices may allow the definition of appropriate stiffness, dissipation capacity, 
equivalent yield force and displacement, post—yield stiffness, ultimate displacement or 
ductility level, and unloading stiffness.

The third class includes dissipation devices that are not intended to allow the 
transmission of vertical forces, being designed to control and reduce the response of 
structures, that may, or may not, be isolated using other kinds of bearings. The design 
variables are similar to those briefly addressed in the previous case.

In the following sections, a brief description of the main types of devices available will 
be presented, with emphasis on main features, common applications and potential 
problems. The focus will obviously be on the conceptual and design aspects related to 
displacement-based design rather than on technological issues. For this purpose, specific 
attention will be devoted to strength and geometric limitations and to the potential for 
displacement and energy dissipation capacity, discussing the relevant issues to define 
design displacements and equivalent viscous damping. The systems described should be 
regarded as useful examples to illustrate specific design problems and to allow extensions 
to other similar cases. More detailed treatment of this topic is available elsewhere IC11> N3>
S8j _

11.2.2 “Non-Seismic” Sliding Bearings

Typical sliding bearings not specifically designed for seismic response are based on a 
friction—type response where the equivalent yield level depends upon the coefficient of 
friction (JĴ ) at the sliding interface and the normal force (ATstj) acting on that surface. 
Considering the standard case of flat sliding surfaces, the force transmitted through the 
device may therefore be expressed as:

vd=  MjNsdsign(d) (11.2)

NXlnere d  indicates here the relative displacement and its derivative is the relative 
velocity, which gives the sign to the force.

As discussed in Chapter 4, a low, but realistic value of the transmissible force should 
be used for design, while a maximum value should be used for capacity protection. The 
maximum value of the transmissible force should be evaluated considering an appropriate 
upper value of the friction coefficient and the expected maximum normal force, including 
the effects of the seismic response, which may induce significant normal-force variations, 
due to horizontal response and the vertical component of the seismic input. The shape of 
the hysteretic cycles is therefore rectangular, as shown in Fig. 11.4 only if  no variations of 
normal force and of the friction coefficient (which may depend on velocity) are assumed.

Typical bearings are manufactured using low friction material for the contact surfaces, 
such as PTFE on polished stainless steel, in which case the friction coefficient is 
normally in the range 0.02—0.03 (depending on possible lubrication) for very low slip
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rates, such as in the case of temperature or creep movements. For non-lubricated devices 
this value may increase to values of the order of 0.10-0.15 at typical earthquake velocities. 
This high potential variability results in the need for recommending great care in using 
this kind of bearings for seismic isolation, particularly for what concerns a proper 
application of capacity design principles.

ISOl y I S O r

7

Force

G lobal R esponse 

____
__________  I S O r

______________ I S O l

A j Displacement

Y  ^ h

Fig.11.4 Typical Hysteretic Cycle of a Friction Bearing, if No Variation of 
Friction Coefficient is Assumed

The displacement capacity is virtually unlimited and depends on geometry only, the 
local equivalent viscous damping tends to be extremely high (the energy—based damping 
is theoretically 64 %) and there is no re-centering capacity.

The main alternative to sliding bearings to carry the vertical load is offered by simple 
rubber bearings, which will not be discussed here, since they are implicitly described in 
■he next section.

11.2.3 Isolating Bearing Devices

(a) Low and High Damping Laminated Rubber Bearings: In laminated rubber 
bearings, steel plates are inserted in a vulcanized piece of rubber to confine the rubber 
■aterally, reducing its tendency to bulge and therefore increasing its vertical stiffness and 
improving its stability under horizontal forces. This type of bearing shows a substantially 
linear shear response, governed essentially by the rubber properties (see Fig.l 1.5).

The fundamental characteristic of this type of bearing is the interdependency of 
vertical load capacity, period of vibration and displacement capacity, essentially because 
the local horizontal shear strain in the rubber is governed by both the maximum vertical 
stress, which induces shear strain by bulging, and the shear deformation. The vertical load 
capacity is usually expressed by the following equation:
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W < A GgS y
( i (11.3)

where: W — allowable weight
y — allowable shear strain (of the order of 1)
A ' = mimimum permitted overlap of top and bottom area of the bearing at 
maximum displacement (usually approximately taken as one half of the 
horizontal section, i.e. A/2)
Gr = shear modulus of rubber (of the order of 1 MPa (145 psi))
S — shape factor (loaded area/force free area, e.g. for a circular disc of 
diameter Z>and thickness £, S=  D/Ajq] ^  ' 1

C om p ression  5 -
sid e

A n g le  o f D efo rm atio n  (d e g re e )

Fig.11.5 Typical Monotonic and Cyclic Response of Rubber

Considering for simplicity a bearing with a circular section, it can immediately be 
verified that Eq.(11.3) implies that the maximum average vertical stress on the gross 
section should be approximately equal to:

f
J  ax

G r D
(11.4)

8/ -2 ^
where t is the distance between two steel plates. For normal geometries the maximum 
stress is in the order of 10 MPa (1450 psi) (i.e. t>  2?/80).

The maximum displacement should be limited considering both the maximum shear 
strain and the geometric limitation implied by the proportion of A 9 to A, as discussed 
above. It may thus be controlled by the bearing diameter or by the bearing height, as 
follows:

(11.5)

Anax < k
where h is the total height of the bearing.

(11 .6 )
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Eq.(11.4) and (11.5) imply that, for bearings with an aspect ratio h/D larger than 0.5, 
the maximum displacement depends on vertical stress (fj and rubber layer thickness (/), 
according to the following relation:

A max< - f  (11.7)
^ R

It is thus obvious that this type of bearing may have severe limitations regarding 
selection of vertical load and maximum displacement.

The response of the bearings to horizontal force is essentially linear, with a horizontal 
stiffness Kb typical of pure shear deformation:

Kb= ^ r  (n-8)h
The period of vibration of the system can therefore be computed as:

W
T» = 2* J - r  a  1-9).gK

and thus:

^  .  \ Wh
(IU0)

where ^ is  the acceleration of gravity.
For the case of relatively slender bearings, with h/D > 0.5, designed to support the 

maximum compatible load, E q.(ll.lO ) may be modified considering Eq.(11.3), and 
consequently the period will not depend on the plan dimensions, but only on the total 
height and the shape factor, according to the following equation:

Th=2K f 2^  (1U1)

Typical relationships between period and height for this specific case are depicted in 
Fig.11.6.

(i) Displacement capacity: As discussed above the maximum displacement capacity of this 
class of devices may be limited by either plan or height dimensions. Typical design 
capacities range on the order of 200 mm (7.9 in), with ultimate capacities up to 300 mm
11.8 in).
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Height (mm)

Fig.11.6 Typical Period of Vibration (T̂ ) vs. Total Height (h) for a Laminated 
Rubber Bearing Designed to E q .(ll.ll)

(ii) Damping: For this class of devices the only available damping has a viscous nature and 
depends on the properties of the rubber. Standard bearings show a viscous damping of 
the order of 5% while special high damping rubber bearings (HDRB) can reach values 
on the order of 15 — 20%, related to secant stiffness.

(in) Re-centering capacity: The obvious consequence of a quasi—elasdc response is a complete 
re-centering capacity, with no residual displacement.

(iv) Maximum force: Again, since there is no equivalent yielding, the maximum transmissible 
force depends on sdffness and maximum displacement.

(v) Response at failure: At increasing displacement demand, two forms of instability might 
occur depending on the type of connection to the structu red : Euler instability in the 
case of bolted bearings, which are able to sustain tensile stresses and are prevented from 
rotating at each end, and rollout instability with recessed (or doweled) devices (F ig .ll .7). 
Although some tests have shown that rubber may be capable of sustaining quite high 
tensile stresses, the displacement capacity given by standard design equations implies the 
conservative assumption of adopting the rollout value as the displacement limit, even 
when bolted connections are used. This assumption implies a significant potential for 
sustaining larger displacement demands without dramatic consequences.
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Fig.11.7 Euler (left) and Rollout Instability (right)

/ /  Problems ivith axial load: The complex relations between vertical and horizontal 
response of this class of devices may become a source of difficulty when the device is 
required to carry relatively low loads associated with a relatively large need for 
displacement capacity. In this case the bearing diameter is likely to be governed by the 
required displacement capacity, the average vertical stress is likely to be quite low, and a 
considerable height may be needed to obtain the desired period of vibration. As shown 
numerically in example (a) of Section 11.3.1, it is convenient, whenever possible, to 
design the devices with an average vertical stress reasonably close to their capacity, in 
order to limit the height of the device and reduce the cost of construction.

In addition, it has to be fully realized that for this class of devices the potential for 
ignificant vertical response amplification cannot always be neglected. The vertical 
tiffness {IQ) of a typical device is normally between 500 and 1,500 times the horizontal 
tiffness, showing a high variability as a function of the 5  factor. The vertical stiffness can 

be calculated according to the following equation, where the sum of the deflection due to 
:he rubber shear strain and to the rubber volume change is considered:

_ 6GRS 2Ak
K, -

(6 GRS 2 +k)h

-.■. here all symbols have already been defined, with the exception of the bulk modulus of 
:he rubber, k ~ 2,000 MPa (290 ksi).

The resulting value for the vertical period of vibration is on the order of 0.06 to 0.1 
see (i.e., ~3% of the horizontal one) and may imply some interaction between vertical 
.mcl horizontal response, particularly for relatively low values of the shape factor.

(b) Lead—Rubber Bearings: Lead-rubber bearings are low-damping laminated rubber 
bearings with a lead plug inserted in the core of the device^3!. The purpose of inserting 
:he lead plug is to increase both the stiffness at relatively low horizontal force levels, and 
:he energy dissipation capacity. The resulting horizontal force—displacement curve is a
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combination of the linear response of the rubber bearing, as discussed in the previous 
section, and the essentially elastic—perfecdy plasdc response of a confined lead plug.

The lead plug -shrcws-an initial shear modulus Gi approximately equal to 130 MPa 
(18.9 ksi) (i.^.Gi ~ 130 GR)^kd a yield shear strain yyi  of approximately 7.7 %. This 
implies tha^jji^ ii^efSM ^ora lead plug with section equal to AL — AD//?, where AD is the 
origin^area of the rubber and n is possibly in the range 10 -  20, produces an increased 
initial stiffness equal to:

g  _ Gr(A d -  Al ) + GlAl _  ADGR(\29 + n)  ^  ^
' \ h nh

K LR _ \29 + n 
K r n - 1 (11.14)

This is in the range of ten times larger than the initial stiffness of the original rubber 
bearing (KR is the stiffness of a rubber bearing with area= Ajy-Aj).

The yield displacement of the bearing will be governed by the height of the lead plug 
(i.e., by the height of the device):

AyL -  0 .077h (11.15)

The maximum displacement will be still governed by the allowable shear strain in the 
rubber or by the global stability of the device under vertical load, as expressed by 
Eqs.(11.5) to (11.7). Assuming that Eq.(11.6) governs, it results immediately that the 
maximum displacement will be approximately 13 times the yield displacement, with a 
corresponding value for the displacement ductility.

The post-yield stiffness will obviously correspond to the original stiffness of the 
rubber alone, reduced in proportion to the reduction of the section. The unloading 
branch of the force—displacement curve will be approximately parallel to the initial 
stiffness branch, up to yielding of the lead plug in the opposite direction.

With typical geometries and proportion between lead plug and rubber, the yield force 
will be in the range of one half of the ultimate force and the post-yield stiffness in the 
range of one tenth of the initial one.

Displacement capacity, response at failure, sensitivity to vertical input will be similar to 
those described for the case of rubber bearings.

(i) "Equivalent stiffness and period of vibration: As briefly described and shown in Fig.l 1.8, the 
initial stiffness of a lead-rubber bearing will be approximately 10 times higher that that of 
a rubber bearing of similar size (and consequently the initial period of vibration will be 
reduced by a factor of about 3-4). After yielding, stiffness will be similar to that of the 
original device. As discussed in section 3.2 with reference to Fig.3.1(b), it is of interest to 
define an equivalent secant stiffness to the ultimate design displacement, that will be in 
the range of two times larger than that of the rubber bearing, with a corresponding
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reduction of the equivalent period of vibradon of the order of 1.4 times. It is also 
important to note that the secant stiffness to the ultimate displacement is approximately 
equal to 20% of the initial stiffness, with a corresponding period elongation of more than
:oo%.

, /VAc'l

V 1,z

Fig.11.8 Typical Hysteresis Cycle of a Lead-Rubber Bearing

:ij Damping: It is evident from the discussion above that the global response of a device 
•.vill imply significant energy dissipation due to hysteresis, as discussed in Section 3.4.3. 
For bilinear systems, the energy-based (or Jacobsen) damping coefficient equivalent to 
:he dissipated energy can be calculated by applying Eq.(3.10), obtaining:

ĥyst K
1---

V.

s K

vhere jl  — Atl/Ay. It has to be noted that this is not the equivalent viscous damping to be 
.:sed for displacement-based design. The relationship between Jacobsen damping and 
equivalent viscous damping is discussed in Section 3.4.3 and graphically summarized in 
rie.3.15. However, for the expected level of ductility of this kind of device, the reduction 
rector to be applied in order to obtain the proper value of the equivalent viscous damping 

expected to be in the range 0.8 -  1.0.
Equation (11.6) implies that an increase in strain hardening will result in a lower 

equivalent viscous damping coefficient, as a consequence of the reduced area of the 
r.vsteresis loops.

The curves resulting from Eq.(11.16) are shown in Fig. 11.9, where it is evident that 
r’asnc-perfectly-plastic (EPP) systems have an asymptote at ^  = 64%, that for 
displacement ductilities larger than 5 the curves tend to show only minor variations, and 
ir.at for the typical values under consideration an equivalent viscous damping coefficient 
: the order of 20 -  30 % might be expected.
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Alternatively, an appropriate form of Eqs.(3.12) or (3.17f) could be used, having care 
of considering an appropriate r  value (r gives the ratio of post yielding versus initial 
stiffness and for this kind of devices may range between 0.1 and 0.2).

2 4 6 8 10 12 14
D isp lacem en t D u ctility  (|I)

\ J  Vy = 1.75 

Vu/ Vy = 2.00 

\ J  v y = 2.25 

Vu/ Vy = 2.50

Fig.11.9 Energy—Based (Jacobsen) Equivalent Damping Coefficient for 
Bilinear Systems, as a function of Displacement Ductility and Force Ratio VJ Vy

(Hi) 'Re-centering capacity: The re-centering capacity of lead-rubber bearings depends on the 
ratio between post-yield and initial stiffness and on the ratio between ultimate and 
yielding strength. The residual displacement depends essentially on the loading history, 
with a natural tendency to re-center when some significant strain-hardening is shown^3! 
due to the different distance to yielding when reloading starts from a displaced position 
(i.e. a lower force is needed to reach yielding when the force is directed towards the 
original position: it is essentially the opposite effect of that shown in Fig.3.24(a)).

However, a measure of the re-centering capacity of a device could be expressed as a 
function of the maximum possible residual displacement, as shown in Fig. 11.10. For bi
linear systems as in the present case, the maximum residual displacement (Apmax) can be 
expressed as follows:

^ R  max y
V VF » ,

K LR -1
V

f o r - ^ < 2
Vy

= 4.
KLR

k b

V
fo r  —  > 2

V., (11.18)

As expressed in Eq.(11.17) — (11.18) and shown in Fig. 11.10, the maximum residual 
displacement is constant if V J Vy > 2. It can be shown that for the typical range of values
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for the variable involved, Vu/ Vv ~ 2 and Aĵ max/A„ ~ 0.8. Note that some slow recovery 
of part of the residual displacement has to be expected, because of creep of lead.

'n) Maximum force: Clearly the theoretical maximum transmissible force depends on the 
assumed displacement demand. However, it should be noted that the initial higher

respect to the previous elastic case. Amplification factors for CD protection may thus be 
lower than in the case of rubber bearings.

(c) Fricdon Pendulum Devices: The friction pendulum systems of isolation (FPS) are 
based on the properties of a pendulum motion, as obviously implied by their name iZ2L 
The concept is simple, and can be illustrated with reference to Fig.l 1.11. The structure to 
be isolated is supported on an articulated teflon-coated load element sliding on the inside 
of a spherical surface. Any horizontal movement therefore implies a vertical uplift of the 
supported weight. If friction is neglected the equation of motion of the system is similar 
to that of a pendulum with equal mass and length equal to the radius of curvature of the 
spherical surface.

For a pendulum with weight IF and radius of curvature Rc it is well known that the 
period of vibration (Tp) and the associated stiffness (Kp) are:

V

V

Fig.11.10 Maximum Residual Displacement for Bilinear devices

stiffness and the presence of some equivalent yielding reduces the potential variation with

(11.19)

(11.20)

where ^ is  the acceleration of gravity.
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The expected force-displacement response of an FPS bearing is therefore rigid, for 
horizontal load lower than the resisting friction force at the contact between slider and 
surface of the bearing, and proportional to Kp for higher loads. If the horizontal force 
exceeds the friction force level the structure will oscillate with a period of approximately 
Tp for large displacements (the agreement is exact only if friction is zero).

The resisting friction force can obviously be expressed as a function of vertical load 
and friction coefficient (///), as:

V̂ tl>W (11.21)
The force—displacement curve is thus of the kind shown in Fig.11.12, where clearly 

both the corner point and the inclination of the second branch of the curve are linear 
functions of the vertical load, while the fundamental design variables are the radius of 
curvature and the material friction coefficient.

Clearly, there is relatively little control of the friction coefficient, which may normally 
vary between 2% and 5%. The radius of curvature is in principle a free variable, but its 
limits are actually a function of acceptable period of vibration, isolated stiffness or 
maximum residual displacement, often defined by codes of practice. Assuming for 
example that the pendulum period of vibration should not be longer than 6 sec (as 
prescribed in [XI3]), Eq.(11.19) implies that the radius of curvature should not exceed 9 
m (29.5 ft).

Note that there is no theoretical limit to the vertical capacity, since the contact surface 
between slider and spherical surface can be adjusted to the accepted level of stress, which 
should be relatively low to avoid unacceptable local deformations and to reduce the risk 
of high temperatures, as discussed later.

PTFE Bearing 
material — Articulated 

Friction Slider

:x

Spherical Concave Surface of hard 
dense Chrome over Steel

Articulated Slider
R

u=R^ sin0,

Rc c o s0

Spherical Surface 

r v = R c ( l-c o s 0 ^

Fig.11.11 Typical Section of an FPS device and Description of Static 
Equilibrium in Displaced Configuration
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G) Displacement capacity: From the discussion above it is clear that there is no theoretical 
limit to the displacement capacity of an FPS system, provided that a device of the 
required dimensions can be manufactured. Devices with displacement capacity of the 
order of 1 m and radius of curvature of the order of 10 m (32.8 ft) have been successfully 
manufactured. An implicit limit to the horizontal displacement capacity is related to the 
acceptability of the corresponding vertical displacement, which is a function of the radius 
of curvature.

Fig.11.12 Typical Force — Displacement Cycle for an FPS Device, Neglecting
any Axial Force Variation

a i) Equivalent viscous damping: The area—based equivalent viscous damping can be evaluated 
as discussed in Section 3.4.3, calculating first the energy—based equivalent viscous 
damping and then applying the appropriate correction factors. The area of a full cycle is 
in this case equal to:

Ah = 4 / ^ 4 ,

The maximum force Vm is equal to:

+
V R■c J

(11.22)

(11.23)

and Eq.(3.10) thus becomes:
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Note that in the equations above / I f is used to indicate the friction coefficient, not the 
ductility (the latter is not definable since the equivalent yielding displacement is equal to 
zero).

It has to be noted that the value of the friction coefficient (Jlj) has a limited variability, 
say between 2% and 5%, and that the ratio between A,„ and Rc has to be limited to 
relatively small values to avoid excessive vertical displacements. Reasonable values may be 
between 7% and 15%. Considering these limits, possible values of the energy—based 
equivalent viscous damping are depicted in Fig. 11.13, as resulting from the above 
discussion. It may be noted that reasonable values of the energy—based equivalent viscous 
damping obtainable from FPS systems are not larger than 20%. Also in this case, the 
correction factor discussed in Section 3.4.3 is expected to be close to unity and neglected.

F riction  C oeffic ien t (|i)

Fig.11.13 Equivalent Damping of an FPS Device, as a Function of Friction 
Coefficient and Ratio between Displacement Capacity and Radius of Curvature

(in) Re-centering capacity: FPS systems exhibit favourable self-centering characteristics and 
calculation of the maximum possible residual displacement is straightforward. With 
reference to Fig. 11.12, it is obvious that the maximum residual displacement does not 
depend on the maximum displacement demand, nor on the characteristics of the 
accelerogram, but only on the values of the equivalent yielding force and of the post- 
elastic stiffness, provided that the displacement demand is large enough to produce a 
force variation due to the pendulum stiffness larger than the equivalent yielding force. It 
is thus possible to express the maximum residual displacement, AR,max9 according to the 
following equations:
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A *m .x=T^ (11-25)
K P

and considering Eq.(11.20) and (11.21):

Atfmax = fJ-fR-c 01-26)

As already discussed, maximum horizontal displacements should be less than 7 — 15 % 
of the radius of curvature. This implies that the maximum residual displacement may be 
in the range of 20% to 50% of the displacement capacity. For standard cases, the 
maximum residual displacement will therefore be approximately 50% lower than for the 
case of lead-rubber bearings. Again, and for the same reasons, the actual residual 
displacement will generally be considerably smaller, and will depend on the actual input. 
Also in this case there is a natural tendency to re-center for subsequent cycles, due to the 
positive post—elasdc stiffness. Some additional re-centering may also be expected during 
the final phases of motion, due to lower friction coefficient at lower velocities.

However, FPS system would not act as re-centering devices towards slow action such 
as thermal induced displacements, since the friction will keep the device in the deformed 
position.

(iv) Axial action effects: Considering Eq.(11.20) and (11.21), it is obvious that both 
equivalent yielding force and post—yielding stiffness directly depend on the supported 
weight, or, to state it more properly, on the axial force, which may vary significantly 
during the response.

A study on this subjectfci4l, dealing with bridge structures, has shown that a proper 
consideration of the effects of axial force variation is generally not relevant for 
determination of displacement demands, but may have significant effects on the shear 
force transmitted through the device, with variations that could exceed 60% to70% in 
curved bridge configurations, and/or when the vertical component of the ground motion 
is considered.

If not recognized in the design phase by appropriate capacity protection, such 
variations may result in undesired deformation modes, including shear and torsion failure.

For the case of bridges, these variations depend mainly upon the geometric 
configuration of the bridge and the magnitude of the vertical ground motion. In 
particular, large values are expected (i) as the bridge horizontal radius of curvature 
decreases, (ii) the pier/deck mass ratio decreases, and (iii) the vertical component of the 
record is considered.

(ij Heat problems: FPS systems may be particularly sensitive to problems related to increase 
of temperature due to high values of power per unit surface produced at the contact 
between roller and spherical surface. Some discussion of this issue is presented in Section 
11.2.5.
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(vi) Response at failure: FPS systems do not show any specific failure mode, since their 
response is unvaried up to the displacement capacity limit. Because of this reason, a 
limiting device in the form of a circular ring is normally provided. This implies that 
reaching the displacement capacity results in a sudden increase of the transmitted force. It 
is therefore appropriate to be conservative in defining the design displacement.

11.2.4 Dissipative Systems

(a) General: Typical passive energy dissipation devices considered in this text can be 
grouped in two main categories: (1) hysteretic or (2) viscoelastic devices. Devices of the 
first kind are normally based on metallic yielding, and consequently their dissipation 
capacity depends essentially on relative displacements. Devices of the second kind are 
based on deformation of viscoelastic polymers; their dissipation capacity is therefore a 
function of both relative displacements and velocities. Dampers based on different 
principles have been developed in the past, such as lead-extrusion dampers, and more 
recently, such as magneto-rheological and electro-inductive devices. They will not be 
explicitly addressed here, since no essential difference arises from a design point of view. 
Their properties and basic principle are extensively presented elsewhere P4’ X15l. Active 
dampers will not be examined in this book, since their potential for convenient 
application to seismic problems is still questionable. A comprehensive presentation of 
energy dissipation devices is given in [H6].

Dampers have the common property of modifying the structural response by 
increasing the energy dissipation, and consequently the equivalent viscous damping, with 
the insertion of a controlled system of internal forces. In general dampers are not capable 
of transmitting forces in directions other than the one of action and, therefore, cannot be 
used as isolating systems.

(b) Steel Dampers: Typical metallic dampers are characterized by a force-displacement 
law similar to the stress—strain relation of the material (normally steel) used to produce 
the device. Many types of dampers have been designed, with the common aim of 
maximizing the dissipation capacity, by having similar levels of strain throughout the 
damper. In the case of a flexural response this objective can not be achieved, since in 
each section the strain will vary linearly from the outer fiber to the neutral axis. It is 
however possible to reach the yield strain at both outer fibers of each section at the same 
time assuring that practically all material will plasticize. Consider the case of a cantilever 
element (Fig.l 1.14) where the goal is to determine the optimal shape to maximize the 
energy absorption, while requiring that full plasticization in each section occurs at the 
same value of applied load F

If it is assumed that section depth varies only on the side perpendicular to the 
direction of the applied load (as in Fig.l 1.14(a)), the following equations apply (symbols 
refer to Fig.l 1.14):
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V (11.27)

ia ha X V  r xA/ p  — A4 da — f v
Px P0 H 4 H

bx=b0 — 
x 0 //

(11.28)

(11.29)

(11.30)

As a result, a linear variation of the side dimension is obtained.

H

(a)R ectan gu lar; u n i-d irectio n a l (b) C ylind rical, om n i-d irectio n a l

Fig.11.14 Optimal Shape for Cantilever Steel Dampers

If secdon depth varies only on the horizontal direction parallel to the direction of the 
applied load, equations similar to Eq.(l 1.27) — (11.29) will lead to:
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The resulting dimension of the section should vary with the square root of the height, 
a shape which is often defined as an “hour-glass”.

If both sides are varied, at any level x  the following hyperbolic relation between the 
sides would define the optimal shape:

dX  = di)bl  7 7  - » =  const( x) 0 1 32 )H
where const(x) indicates a linear function of x. Analogously, if  a conical shape is 
adopted, as in Fig. 11.14(b), the diameter should vary along the height of the device 
according to the following relation:

( V/3
D* =DA j j )  t11-33)

A linear variation of the diameter (as in Fig. 11.14(b)), or of both sides of a square 
section, is generally considered an acceptable approximation of the optimal shape. A 
conical shape is clearly the only viable solution if the direction of the load is unknown.

This kind of reasoning has resulted in the production of a number of different 
dampers, based on flexural, shear or torsional response shaped in a variety of geometries.

In all cases, the allowable number of cycles is a function of the strain amplitude, as 
shown in Fig. 11.15. Typical limit values for the material tension strain are in the range of 
a few percent, therefore allowing several tens of cycles at maximum amplitude.

Cycles

Fig.11.15 Fatigue Life for the Steel used for a Typical Damper

(i) Displacement capacity: As previously noted, the displacement capacity is essentially 
governed by the accepted material strain, but as a consequence of the possibility ot 
defining any sort of geometry that suits the specific problem to be faced, there is no 
inherent limit.

As an example, consider again the case of the cantilever device shown in Fig.l 1.14(a . 
The top displacement can be computed as the section curvature (^ ) multiplied by the
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height (a), integrated along the height:

A , = \"<px -xdx
Jo

(11.34)

with the curvature computed as two times the extreme fiber strain (£x) divided by the 
section depth d' constant over the height:

This equation will apply for both the yield displacement (with £x ~ 0.2%) and the 
ultimate displacement (with £* possibly ~ 3%, i.e. a ductility of the order of 15). Note that 
H  and d  will determine displacement capacity and stiffness, but they cannot be 
considered completely free parameters, since they have to be compatible with the 
required moment and shear capacity, which may be unknown at this point in the design 
phase.

(ii) Damping: The hysteresis loops of a steel damper are normally similar to those of the 
material itself Since mild steel is normally used and the maximum strain is limited by 
fatigue problems, strain hardening is minor and apparent only when approaching the 
design displacement. As a consequence, very “fat” cycles are obtained, that may lead to 
the assumption that the hysteretic component of the equivalent viscous damping should 
be close to that of an elastic—perfectly—plastic system. Actually, for such cases, the 
discussion presented in Section 3.4.3 suggests that large correction factors should be 
applied, both to the viscous and to the area-based hysteretic component of the equivalent 
viscous damping. As a consequence, it is not easy to exceed values on the order of 30%.

As an example, consider that applying Eq.(3.12), and using the data given for a 
Ramberg—Osgood curve, with ductility equal to 15 and period equal to 2 second, the 
hysteretic component of the equivalent viscous damping equals to approximately 24 %. 
From Eq.(3.16) a correction factor for the elastic component of about 0.2 or 0.85 is 
computed, respectively for the tangent and initial stiffness case .

(Hi) 'Re-centering capacity: The shape of the hysteresis cycle, discussed above, implies that 
steel dampers have poor re-centering capacity, unless coupled with spring-type elements, 
which will have the obvious consequence of modifying the combined loop shape. Clearly, 
this does not apply to low-level actions, such as small earthquakes and thermal effects: in 
such cases yielding is unlikely to take place and full re-centering capacity should be 
expected.

(ip) Response at failure: The limitation of the strain corresponding to the design 
displacement, already discussed, and the strain-hardening that should be expected at 
larger displacement values, imply that a good response should be expected for larger than 
expected demand. Failure will take place only for demands that should exceed

(11.35)
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approximately two times the design displacement.

(c) Viscous Dampers: Viscous dampers are characterized by a constitutive law where 
the force (F) is a function of velocity (v):

F -  Cva (11-36)

In the above equation, C is a constant expressed in units of a force divided by a 
velocity (kNs/m), and OC is also a constant, normally in the range of 0.1 -  0.3. The 
resulting curves are depicted in Fig. 11.16, where it is evident that a lower value of Of will 
result in a force that tends to be less dependent on the velocity.

Theoretically, for this class of devices the actual transmitted shear force cannot be 
calculated a priori, since it depends on the effective velocity of the system, but if the value 
of OCis kept reasonably low (a value of CC — 0.1 is commonly used), the shear force tends 
to be similar to C.

It may be noted that for large CC values (greater than 2) the forces transmitted tend to 
be very low for low-velocity relative movements and to increase rapidly to very large 
values for increasing velocity. This is typically the case for lock-up devices, used for 
example in bridge movement joints, when slow movements due to temperature variations 
are permitted and relatively high-speed displacement demands (due for example to 
vehicle breaking forces) should be limited.

Velocity (m /s)

Fig.11.16 Axial Force in a Viscous Damper, as a Function of its Basic 
Parameters CC and C (both axes are expressed in the same velocity units)

Viscous dampers are normally mounted in parallel with some other device or in 
structural locations where some elastic re-centering force is provided.
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If (X — 1, the force—displacement loop corresponding to Eq.(11.36) is an ellipse (see 
Fig. 11.18), described by the following equation:

F
A dC co

= ±a/i - ( a/a J 2 (11.37)

/here CO — 271/ T is the circular frequency, and Ad is the maximum displacement.
If CC <  1 is introduced, the ellipse tends to become closer to a rectangle.
The maximum force can be derived from Eq.(11.37), for A = 0 as:

Fd = A dCCO = (11.38)

(/) Displacement capacity: There is no inherent limit for the displacement capacity of 
hvdraulic dampers. Specific limits will only depend on the length of the device. However, 
it has to be noted that the force to be transmitted may be limited by buckling potential. 
This is often not an issue, since in most cases this class of devices is used when there is a 
need for accommodating relatively large displacements combined with limited forces. In 
rhe case of the Rion—Antirion bridge!12! devices with a stroke of 1750 mm (68.9 in) and a 
force capacity of 3.5 MN have been manufactured and mounted to connect the cable- 
stayed deck to the piers (four for each pier), as shown in Fig. 11.17. Note that five devices 
are present: the fifth one is a locker fuse, which does not allow any relative movement 
between deck and pier for relatively low shear forces. In the case of an earthquake, it 
breaks and the four dampers become operational. Similar devices, with a stroke of 2600 
mm (102.4 in) were mounted at the transition piers at both ends of the bridge.

di) Viscous stiffness and damping: The typical steady—state force—displacement loop for a 
hvdraulic damper is depicted in Fig. 11.18. The large amount of energy dissipated per 
cvcle is immediately evident, corresponding to the area included in the loop. The area of 
the loop can be calculated by integration, giving, for the purely theoretical case of CC -  1:

A„ = * f o4 >  =  * E M  (11.39)

where T is the period of vibration, that may vary from cycle to cycle, depending on the 
excitation, and all other symbols have already been defined. For CC «  1 ,  the area of the 
loop tends to become closer to 4FqAd.

In this case it is not appropriate to talk of hysteretic damping, since the dissipation 
mechanism is actually of a viscous type.
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Fig.11.17 Viscous Dampers and Locker Fuse Connecting Deck and Pier of the 
Rion-Antirion Bridge (courtesy of FIP Industriale)

Fig.11.18 Variation of a Typical Force-Displacement Loop of a Viscous Damper
as a Function of the arValue.

As already pointed out, however, some structural or artificial elements normally 
provide some elastic force in parallel with the viscous damper, as shown in Fig.l 1.19(a). 
The resulting global loop is depicted in Fig.l 1.19(c) and its actual shape depends 
essentially on the ratio between damper maximum force Fp (corresponding to zero 
displacement) and elastic maximum force F$, corresponding to the maximum 
displacement, equal for the two systems (i.e. As = Ap).

Considering Eq.(11.39) in combination with Eq.(3.10), the area-based equivalent 
viscous damping for GC~ 1 is:
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r Aj JiA^Fq  F q
^ 7 7 7  = 7 7 7  = ^ 7  (11'40a)2jrFeAs 2nFsAs 2 Fs

When a  is small, say a  < 0.2, the damping hysteresis loop is closer to a rectangle than 
to an ellipse (see Fig. 11.20). In this case it is more reasonable to base the effective 
stiffness on the sum of the elastic and damping forces: i.e. Ke -  (Fs + FD)/As. 
Conservatively estimating the loop area to still be given by Eq.(11.39), the area-based 
equivalent viscous damping will then be

F
£ = -------- ^------  (11.40b)

2 ( F s + F d )

Fig.11.19 Typical Force -  Displacement Loop Resulting from the Combination 
of a Spring Element and a Viscous Damper

It is therefore clear, once more, that the equivalent viscous damping diminishes with 
rhe increase of the re-centering force. A graphical explanation of Eq.(11.40) is depicted in 
Fig. 11.20 for the common case of OC ~ 0.1, with the viscous damping approximated as a 
rectangle. A 25% equivalent viscous damping is obtained for F$ -  FD> in which case little 
re-centering should be expected at the end of the time history, while for Fs — 2FD the 
damping is reduced to 16.7%, while the residual displacement is halved.

Clearly, and as already discussed, these damping values are appropriate for the 
response of the isolator system, comprising damper plus spring element, alone; when 
combined in a structural system, there will be additional structural deformation and 
possibly additional (frictional) force. As a consequence, the structural damping coefficient 
may be lower.

It is noted that the force, and hence the acceleration, of the damper is higher at small 
displacements, being therefore out of phase with respect to the structure response force.
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Fig.11.20 Combination of Viscous and Elastic Response for Various Values of
Fd/Fs

As already noted, for the normal case of dampers with low CCtht evaluation of the 
equivalent secant stiffness is:

F  + FI S  __ e  D

K ‘ — r ~
(11.41a)

While for a -  1 it is:

(11.41b)

(Hi) Re-centering capacity: Devices of this kind are obviously unable to provide any re- 
centering, unless prestressed, or mounted in parallel with some spring-like element. As
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noted, in this case there is a significant reduction of the damping and the re-centering 
capacity' at the end of the ground motion can become significant with low expected 
residual displacements. Note, however, that when coupled with a spring element, the 
residual displacement will tend to diminish and become negligible for any value of the 
elastic force, since the spring force will tend to slowly reposition the damping device at 
the end of the ground motion.

(d) Electro-Inductive Devices: The response of these devices is based on a rotating 
svstem basically composed of two plates with permanent magnets and a conductive non
magnetic material and an endless screw to convert the linear earthquake motion into a 
rotation of the plates. The consequence is a generation of electrical power from vibration 
due to earthquake, which limits and damps the motion. The relative rotation velocity can 
be modified by a suitable selection of the ratio between linear and rotational motion. 
Their response is expressed by the same equation as hydraulic dampers (Eq.(l 1.37)).

Advantages of these devices are low maintenance, no ageing effects, no limitations on 
Life cycles, low variability of the response and no temperature sensitivity. Though verv 
promising for the future, no actual application is yet known.

(e) Electro and Magneto-rheological Dampers: Electro and magneto-rheological 
dampers typically consist of hydraulic cylinders containing micron-sized dielectric or 
magnetically polarizable particles suspended within a fluid. With a strong electric or 
magnetic field, the particles polarize and offer an increased resistance to flow. Varying the 
magnetic field strength has the effect of changing the apparent viscosity, allowing 
different non-linear, force—displacement loops to be obtained. These devices have to be 
used within a semi-active system and for this reason are simply mentioned here.

(f) Shape Memory Alloys Dampers: The development of devices based on shape- 
memory alloys has not yet reached sufficient maturity to allow them to be recommended 
for any practical application. However it is of some interest to briefly introduce the main 
features of devices that may be developed in the near future from shape-memory alloys.

They are based on binary or ternary metallic alloys that can be found in two different 
stable phases (austenite and martensite) at different thermo-mechanical states. The 
lustenitic phase is stable before the application of stress; at a critical stress level the 
martensite becomes stable, yielding and showing a stress plateau; at larger strains the 
stiffness increases since they cause the martensite state to respond quasi—elastically.

The resulting typical force displacement loop is of the kind shown in Fig.l 1.21, with a 
strong tendency to recover the initial shape as soon as the external action is removed (a 
similar effect can be produced by an increasing temperature).

The resulting loop shape is of the flag-type, discussed in Section 3.4.3 (see Fig.3.9), 
.vith an optimal response in terms of re-centering capacity and an equivalent viscous 
damping of the order of 10%, as expressed by Eq.(3.17d).
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Fig.11.21 Typical Force—Displacement for Shape Memory Alloy Devices 

11.2.5 Heat Problems

Any kind of device dissipating energy obviously produces heat, which will result in an 
increased temperature of the device itself before it is dispersed in the environment. A 
significant variation of the temperature may result in modified properties or may induce 
damage and possibly failure, as already mentioned for the case of friction pendulum 
systems. It is therefore of interest to briefly address the problem of evaluating the 
potential temperature increment for different device typologies.

To allow some comparison, we assume in all cases a period of vibration equal to 2 
sec., a maximum displacement of +250 mm (9.8 in) and we further assume 5 full reverse 
cycles at maximum amplitude. ~ \ / 1 C ?

■ J j - ' c r 0  ^
(at) Steel Damper: Consider first the case of a steel damper working in pure flexure and 
in single bending, shaped like the conceptual device shown in Fig.l 1.14(a). The side of 
the rectangular section will therefore vary along the height, according to the expressions 
of Eq.(11.30) and the total height of the device will be equal to H. As discussed with 
reference to Fig.l 1.14, the strain at the extreme fiber of each section will be always equal. 
We assume a yield stress equal to fy — 350 MPa (50.7 ksi), no strain—hardening and a 
design strain equal to £d — 3%.

The energy dissipated per cycle (i?c) can be estimated according to the following 
equation:

 ̂ _  _  
where Mx and (f>x are the plastic moment and the maximum curvature (corresponding to
the design strain) of each section:

j2

Ec = A ^ M x(pJx J  \  (11.42)

f y bA  J  O

4

M x = ^ ± _  , (11.43)
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2 eH
d0x

The numerical result depends on the shape of the device (Eq.(11.30) to (11.33)). 
Assuming a linear variation of the sides and substituting we obtain:

E ,= 2  f,e ,b „ d .H  < ---------  (11.45)

The temperature increase per cycle, assuming zero dissipation to the environment, can 
be evaluated as follows:

K  6 / X  ^
A T = ---- —̂ = — ■—  Y  (11.46)? * ' \ ^ c , Pvh c,p .....— f ■

where Ct is the thermal capacity of the steel (= 0.502 kJ/kg°C), p  is the mass densitv, 
”,850 kg/m3) and Vis the volume of the device (F a s  well depends on the shjp e ; for a 

linear variation: V = bodoH/3). The resulting temperature increase is equal = 5 .25 j
ZC per cycle, or 26.3 °C total for five cycles, a value with no practical consequencesT"-------

(b) Lead-Rubber Bearing: Consider now the case of a lead-rubber bearing, assuming 
that the dissipation will take place in the lead plug only, with a yield shear strength of Ty ~
10 MPa (1450 psi) and a design shear strain tan/= 1. I ' ' j ^  C J ^

The energy dissipated per cycle per unit volume is now: ^  ^   ̂ ,

Ec/V = 4 r ); tan y  ! (11.47)
md the temperature increase per cycle, as in the previous case, is: f  f/ X

, 7 . /  C t y
A T = ^ ^ ~  (n.48)

C}p  —■ ^

with Ct — 0.129 kJ/kg°C , a n d 11,34dQJ<^/m3/[n the case of lead. The resulting 
■emperature increase is equal to T — 27.3 °C per cycle} or 136.5 °C total for five cycles, 
a value that raises some more corTed̂ fis- H^arrTri:he previous case, since at this 
Temperature level the mechanical properties of lead are significantly changedtR3L

(c) High-Damping Rubber: In the case of a high damping rubber bearing, we assume 
a viscous damping ratio equal to %  =0.16, a shear modulus of rubber equal to G r  = 1.4  
MPa (203 psi) and a design shear strain tan^= 2.

The energy dissipated per cycle can be obtained deriving .A/, from Eq.(3.10):

I -
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where A and h are the area and the height of the device (and therefore GA/h is the shear 
stiffness) and the design displacement is equal to 2/?, considering the assumed shear 
strain.

The temperature increase per cycle can be calculated as in the previous cases, 
considering for the case of rubber IrS—k j/kg°C_jmd p — 1,100 kg/m3. The
temperature variation is thus equal tc^AT* = 6.4 °C per cyclej) or 32 °C total for five 
cycles.     —

(d) FPS Bearing: Finally, take into consideration the case of a friction pendulum device 
(FPS). The total energy to be dissipated can immediately be calculated as the product of 
the average friction force (JUW) and the total cumulative displacement between the two 
faces of the device. The potential for temperature increase, however, is essentially related 
to the produced power, whose average value is the energy divided by the total duration 
time, since the limited time would not allow any significant heat dispersion.

The crucial issue for an FPS is to keep the local pressure (or stress fn) low enough to 
avoid too high values of produced power per unit of surface (/?„), that can be computed 
as follows:  ̂ j m_ , r

p„ -  x  '  .. (i i.50)

where, // is the friction coefficient and vm is the average velocity during a full cycle.

D istance from  friction su rface (m )

Fig.11.22 Temperature Increase with Distance from Contact Surface between 
Roller and Spherical Surface of an FPS device (data given in the text)

For example if it is assumed that fl -  0.05, fn — 35 MPa (5076 psi), vm =0.5 m/s (19. 
in/s), the resulting power per surface unit is equal to 0.87 MW/m2.
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The variation of the temperature in the device can be approximately calculated 
assuming that the heat produced at the contact between roller and spherical surface 
partially propagates into a cylindrical element supporting the roller, without any external 
dispersion. If it assumed that 50% of the produced power (thus in this case 0.435 
MW/m2) is transformed into a thermal flux, and the following properties for stainless 
steel are used: thermal capacity Ct -  All  J/kg°C, conductivity A = 14.9 W/m°C, mass 
per unit volume p — 7,850 kg/m3, the results obtained solving the Fourier equation are 
depicted in Fig.l 1.22. It is there evident that the local expected increase in temperature 
for a duration (At) of 10 seconds is larger than 200 °C. Since high temperatures may 
produce local damage to the coating of the spherical surface, it is generally 
recommendable to perform full scale dynamic testing, with appropriate input to verify 
performance. s? > ^ J  ^

11.2.6 Structural Rocking as a Form of Base Isolation

(a) Typical Response: If a controlled rocking at the base of a structure is permitted, the 
structural response can be regarded as a form of base-isolated response, since the base 
bending moment cannot increase beyond the values at which rocking starts. The effective 
stiffness and period of vibration depend essentially on the rocking motion characteristics, 
and effective damping may be produced by radiation into soil or by ad hoc devices.

Consider as an example the structural wall shown in Fig.l 1.23, where all symbols used 
in the following are also defined. Applying an external force F a t  a height He, and 
assuming that it is large enough to induce rocking, the equation of equilibrium in a 
displaced position can be written as:

where R, is a force restraining uplift, located at a distance c from the wall end. Assuming 
a -  0.1 7m,, the previous equation can be simplified as: .

„  fr(0.45/,v -A )+ ^ (0 .95/ ,,-c )  .... (X-- ^  ^ 7
H +’1) 4SI A 77 ^   ̂ ‘ ' ' (11.o2)+ 0^40^ A / M e j -   Nv y  p  LS>

The second term of the denominator of Eq.(11.52) is normally less than 1% of He,
-nd can therefore be neglected. Equation (11.52) can thus be rewritten as the equation of
.i in a plane F-A , as shown in Fig.l 1.24: ^ ^

/  r ®  '

H‘ H-
Note that the tensile force Rt can be proportional to the rocking displacement, totally 

: - partially (e.g. when provided by unbonded restraining cables, with or without
O r

■___ s  • j o  Z i  / J ! t b
f



558 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design of Structures

prestressing). In this case the corresponding term will not be constant and will affect the 
slope of the line rather than its initial point.

Fig.11.23 Equilibrium of a Rocking Wall in a Displaced Position

(b) Displacement Capacity: From Eq.(11.53) and from Fig.l 1.24, the displacement 
corresponding to zero force may be evaluated as:

j 1 ' 4 ,= 0 .45/ w + (0.95/w- c ) ^ -  t A e w  ( I - *  (11.54;

An acceptable design displacement can therefore be defined as a fracdon of Aw, sav
0.3AM, that also corresponds to the accepted strength decrease with respect to the force 
initiating the rocking motion. Note, however, that the design displacement resulting from 
non-structural damage limitation will govern in most cases; only for very slender walls 
(.H/lw > 20) can the maximum displacement be limited by the rocking motion.

(c) Damping: The equivalent viscous damping resulting from radiation damping^4) is 
generally very small, and therefore negligible, except for squat walls, in which case it is 
unlikely that the earthquake will induce rocking. The damping can become significant if 
dissipating devices are introduced, for example as ductile tensile restraints. In this case the 
equivalent viscous damping will depend on the device characteristics.
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Fig.11.24 Force -  displacement domain for a rocking wall, as a function of tensile 
force capacity (Rf) and total weight ( W)

11.3 DISPLACEMENT-BASED DESIGN OF ISOLATED STRUCTURES

11.3.1 Base-Isolated Rigid Structures

The simplest design case is that of a structure whose fundamental isolated period is 
several times longer than the fundamental period of the structure alone, assuming a rigid 
base. This case may correspond to simple one or two-storey buildings, to concrete tanks 
"but in this case care should be used in evaluating the interaction between the response of 
the isolated structure and the sloshing modes of the contained liquid), to reactor 
buildings, etc. In such cases a rigid structure approximation, i.e. based on a SDOF 
system, with natural period and damping ratio corresponding to those of a model made 
by the isolation system and the mass of the building, gives accurate results in terms of 
prediction of displacement and force demands on the isolation system. In this context, 
"rigid structure” means that the period of vibration of the isolated model where the 
structure is simply considered as a rigid mass is several times (say at least 3) longer than 
the first natural period of vibration of the model of the structure alone, assuming a rigid 
base. This requirement can be more appropriately verified by comparing the expected 
displacement demand of the structure alone, considered to respond elastically (e.g. for a 
reinforced concrete frame applying Eq.(5.7a)) and the expected displacement demand of 
:he isolation system.

In this case it is generally acceptable to separately design the structure and the 
isolation system, combining them together only for time-history analysis, if conducted. 
In general, however, care should be taken to check that higher-mode effects are 
considered, since they may be very significant in multistory isolated buildings.



560 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design o f Structures

The structure will normally have been subjected to a preliminary design for non— 
seismic load combinations, or for conventional horizontal base shear, possibly in the 
range of 5 to 10% of gravity. It can be assumed that the preliminary design will at least 
permit the total mass of the building to be accurately estimated. The potential need for 
some increased mass at the ground-floor level to allow the insertion of the isolation 
system between the foundadon and the ground floor has to be considered. Note that this 
ground-floor mass, which has no significance for non-isolated designs can result in a 
significant increase in the effective mass of the isolated structure.

The structure itself will normally be required to remain in the elastic range when 
subjected to an excitation which is the design ground motion filtered by the isolation 
system. The base shear capacity of the structure will be assumed as a limit to be verified 
at the end of the design process, and which may need to be modified in case the shear 
force in the isolation system at the design displacement is larger. The inelastic displaced 
shape of the structure is shown in Fig.l 1.25, where a SDOF equivalent model and its 
effective height are also depicted.

The design of the isolation system will follow the simple basic steps described in 
Chapter 3 for a single degree of freedom structure. The design action will be represented 
in terms of appropriate displacement spectra, such as those of Fig.2.5, and the structural 
model will be described in terms of secant stiffness and equivalent viscous damping. It 
may be important to consider the effect of the local soil to define the actual design 
spectra, since this may imply larger displacement demand.

As discussed in the previous section, two basic choices will have to be considered: to 
use an elastic isolation system with a certain level of viscous damping (e.g. a high damping 
rubber bearing system) or to use a system characterized by an approximately bilinear 
response, with energy dissipation in the form of friction or hysteretic damping (e.g. 
friction or rubber bearing coupled with a dissipation device, or dissipating bearings such 
as lead-rubber or friction pendulum systems). In both cases, the design process will 
require the preliminary selection of a system displacement, as a function of design spectra 
and functional requirements (limitation of relative displacement between structure and 
foundation).

H

‘ Iso lator

H C=0.5H Ks —>oo

(a) structure (b) model

Ad

(c) displaced shape

Fig.11.25 Idealization of a Base-Isolated Stiff Structure
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Having determined or assumed the design displacement and equivalent viscous 
damping of the isolation system, which in this case is equal to the equivalent global 
damping, the period of vibration can be read from the appropriate displacement spectra, 
and equivalent stiffness and base shear forces can be computed according to Eq.(3.1) and 
(3.2). The base shear force has to be applied at the center of mass of the SDOF model 
(see Fig. 11.25), therefore producing shear forces, bending moments and variation of axial 
forces in the structure. Subsequent amplification of these forces for higher mode effects 
will generally be necessary when designing the isolated structure.

(a) Design Displacement: The design displacement should be selected considering the 
actual displacement spectra, as a function of the local seismicity and the functional 
requirements. Note that a large dislocation displacement will normally occur between 
foundation and ground floor (i.e. at the level of the isolator), and the concepts of drift 
limits and material strain limits will normally be irrelevant. Displacement limits may, 
however, be imposed by the need to accommodate mechanical and electrical sendees 
which must pass through the isolation layer.

As discussed in Section 3.4.7, a crucial issue will be to decide whether it is acceptable 
ro design for a displacement equal to that corresponding to the corner period (TCfg) in the 
appropriately damped displacement spectrum. If this is not the case, i.e. the structure 
svstem will be designed for a displacement (A^) lower than that corresponding to the 
spectrum corner period, the standard design process discussed in Chapter 3 will be 
applied. As shown again for convenience in Fig. 11.26 (case 1), Tj will be read form the 
spectrum and the following equations will apply:

4 ; r 2/w,
Kdfi= — ^ -  (11.55)

1d

V B o s e = K d , A d  01 -56)
If it is feasible to design for a displacement capacity larger than that corresponding to 

the spectrum corner period, the design displacement demand will be equal to ACt£
Fig. 11.26, case 2) and the resulting design period of vibration will be undefined, the only
requirement being that the equivalent period of vibration be greater than the corner 
period:

Td e>Tc (11.57)

and consequently equivalent stiffness and required shear capacity will also be undefined,
with the following limitations for equivalent stiffness and shear strength:
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Fig.11.26 Displacement Spectrum and Idealized Force—Displacement Response

< 4 k  me
Base  ~~ r p 2 (11.59)

It has to be noted, however, that the above limitations are needed only to predict that 
the corner period displacement will actually be reached under the design earthquake, and 
are irrelevant when assessing the safety of the structure. Higher equivalent stiffness and 
shear capacity will simply imply smaller displacement demand. It is therefore possible to 
conclude that when it is feasible to assume a displacement capacity larger than Aĉ  the 
only additional requirement for the isolation system will be a shear strength lower than 
the yield shear capacity of the structure, to assure its elastic response.

(b) Equivalent Viscous Damping: The level of equivalent viscous damping obtainable 
from each type of isolation system has been discussed in Section 11.2 for each type of 
device and is summarized for convenience in Table 11.1. It is evident that reasonable 
values of the equivalent viscous damping coefficients range between 15 and 30%, 
depending on the type of device and the need to assure acceptable residual displacement 
values. Applying Eq.(2.11) and (2.12), it may be shown that these values imply reductions 
of the displacement demand corresponding to the 5% damped displacement spectrum to 
values between 50 and 60% for standard situations and between 70 and 80% in near-field 
situations. The selection of the isolation system may therefore depend on the relevance of 
reducing the displacement demand.

Note that only for the present case of a very stiff base-isolated structure the global 
damping is approximately equal to the isolation system damping.

(c) Design o f the Isolation System: The isolation system will be designed considering 
the displacement capacity, equivalent viscous damping, strength and stiffness and the 
total weight of the structure. A regular distribution of the chosen device is normally
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possible, to minimize torsional eccentricity, but care should be placed on the interaction 
between devices and the vertical elements of the ground floor of the structure, which may 
imply uneven distribution of the vertical load support.

If an irregular structure geometry is likely to induce torsional effects on the isolation 
svstem an inelastic time-history analysis (ITHA) should be conducted (See Section 4.9).

Table 11.1 Range of Equivalent Viscous Damping and Displacement Demand 
Reduction for Different Devices

Device Range of £eq Adj/A-d.o-os [%]
Standard input Near field

LDRB 0.05-0.CP 9 0 -1 0 0 9 5 -1 0 0
HDRB 0.15-0.2 6 0 -6 5 7 5 -8 0
LRB 0.2-0.3 4 5 - 6 0 7 0 -7 5
FPS 0.15-0.25 5 0 -  65 ' 7 0 -8 0
Steel dampersW 0.2-0.3 4 5 - 6 0 7 0 -7 5
Viscous dampersW2) 0.4-0.5 35 -  40 6 0 -6 5

t1) Structure assumed to be supported on low friction pads
(2) High potential for large residual displacement

(d) Design o f the Isolated Structure: It is assumed that a preliminary gravity load 
design of the system has been conducted and, as a result, the basic structural geometry is 
defined. This allows an estimation of the total mass, used in Eq.(11.55) to (11.59).

The structural design base shear force is then obtained from:

W B a s e ^ P V B a i e  01-60)

The overstrength factor (ff is applied to the base shear calculated for the isolation 
system to capacity-protect the structure, as discussed in Sections 3.9 and 4.5. The value of 
(ft depends on the uncertainty in the definition of the maximum shear transmissible 
\hrough the isolation system; for example it should be higher for devices based on 
friction, due to the variability of the friction coefficient. In general, values between 1.1 
And 1.25 are felt to be appropriate. The strength reduction factor <ps is applied to the 
calculated structural strength to obtain dependable values. Values of (ps between 0.9 and
1.0 are generally appropriate (see Section 3.9). The structure will thus respond elastically 
And will be designed accordingly with simplified detailing (see Sections 5.3.2 and 6.3.2).

The imposed elastic response of the structure will allow simplified design criteria, 
without any need for further application of capacity design principles or strength 
reduction factors, with the only exception being the higher-mode amplification factor CO. 

Even for stiff buildings higher mode effects can be relevant.
In general, the consideration of higher-mode effects may imply a distribution of the 

base shear to the floor levels that differs from the linear distribution (in proportion to
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masses) implied by Eq.(5.12). ITHA or the Effective Modal Superposition (EMS) 
procedure outlined in Section 6.6.1(c) may be used to determine higher-mode effects.

Additional calculations may be required for irregular-plan buildings to distribute the 
floor actions between different resisting elements, as described in prior chapters (for 
example see Section 6.4).

Having defined the appropriate distribution of the base shear, an elastic analysis will 
give the design actions for each structural element. In general, a static analysis under the 
appropriate lateral force vector will be performed, using cracked—section stiffness, found 
in accordance with the methods developed in Chapter 4, without any further reduction.

(e) Design Example 11.1 -  Alternative Isolation Systems for a S tiff Building:

(i) Design using high damping rubber bearings: Assume that a relatively small residential building 
has to be built in a high seismicity area. It is a two-storey building, with a square plan with 
a side of 12 m (39.4 ft) (Fig. 11.27), preliminarily designed elastically for gravity loads and 
laterally for a base shear coefficient equal to 10% of gravity. All columns have sections of 
400x400 mm (15.7x15.7 in) in plan; all beams are assumed to have a depth (h£) of 600 
mm (23.6 in).

J  ■ A ,  ) ( ‘ -Q I / S*J

X
O ption 2

O ption 1

T600

HSOO rr
I

J-400 mm 400 m m

Period (s)

(a) displacement spectra (b) building plan (c) vertical section

Fig.11.27 Design Example 11.1

The design earthquake is represented in terms of its elastic displacement spectrum, as 
shown in Fig.l 1.27(a), with a corner period at 3.15 seconds and a corresponding 
displacement demand equal to 315 mm (12.4 in). Standard, non near-fault, conditions can 
be assumed.

The total weight to be considered for seismic design has been computed as 4600 kN 
(1034.2 ksi), including the ground floor.

An isolation system made of high-damping rubber bearing devices, with a viscous 
damping coefficient of = 0.17 is adopted. The design displacement spectrum, 
corresponding to this level of equivalent viscous damping, can thus be computed 
applying Eq.(2.8):
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Ar l7 = Ar5 -f — ---- 1 =0.609Ar5
TJ1 7'5 1^0.02 + 0.17 J ’

The maximum displacement demand, corresponding to the corner period is therefore 
equal to 315x0.609 = 191 mm (7.5 in).

It is initially decided to design the isolation system for this level of displacement 
demand and it is to be verified that the building can be assumed to be rigid in comparison 
with the design displacement of the isolation system. The structure is assumed to respond 
elastically and therefore its yield drift demand can be estimated using Eq.(5.7a) (it is 
assumed that By = 0.2%)):

0V = 0.5f„ ̂  = 0.5 x 0.002—  = 0.01 
'  hb 0.6

Assuming an effective height equal to 4.2 m (13.8 ft), the yield displacement is 42 mm 
'1.65 in), in the range of one fifth of the corner displacement of the damped displacement 
spectrum. For a preliminary design this displacement could be ignored, as in this example, 
though it should be considered in the final design.

Designing the isolation system for a displacement of approximately 200 mm (7.9in) 
will imply the following limitations on the devices (Eq.(11.5) and (11.6)):

D > = 400mm (l 5.7m)

and:

h > 4̂  ~ 200mm (7.9m)

Designing for the corner period implies also:

Td e =3.15 sec

Kd e = 47T2me /Tje = 4ft2 x  4600/(9.81 X 3 .152) = 1866 kN/m (10.7 kips/in)

V Base =  K J , A j  =  1 8 6 6  X 0 ‘2  =  3 7 3  k N  (g 3 -9  k ip s )

Note that this value of shear corresponds to approximately 8% of the total design 
weight, which is less than the structural capacity of 10%, and therefore the structure will 
respond elastically, even considering (/f = 1.1 (refer to Eq.(11.60)). Higher-mode effects 
can probably be neglected for a two storey building.

Assuming a total of four identical devices, each one of them should have horizontal 
stiffness and strength equal to:

£ ^ •= 1 8 6 6 / 4  = 466 kN/m (2.7 kips/in)

VdJ = 373 / 4 = 93 kN (20.9 kips)
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Each device will carry one fourth of the vertical load, i.e.: 

pd i = 4600 / 4 = 1 150 kN (259 kips)

For a diameter equal to 400 mm (15.7 in) (approximately the minimum required for a 
200 mm (7.9 in) displacement demand, providing an overlap area ratio of close to 0.5), 
the resulting average vertical stress will be equal to:

f p . = 1150 /( 2002 Jl) = 9.\5 MPa (1.33 ksi),

i.e., an acceptable value. Note that the thickness of each rubber layer can be obtained 
from Eq.(11.4), or graphically from Fig.l 1.7. The appropriate thickness results to be t —
5.4 mm (0.213 in).

Assuming therefore a diameter equal to 400 mm (15.7 in), from Eq.(11.8), with Gr — 
1 MPa (145 psi), the minimum required height can be computed as:

hmini — GR A / Kd f — K ■ 2002 / 466 = 270 mm (10.6 in)

i.e. a value larger than 200 mm (7.9 in) and therefore acceptable.
It may be concluded that the isolation system may be made with four H D RB devices, 

with a diameter of 400 mm (15.7 in) and a height of 270 mm (10.6 in).
It is apparent, however, that this system will probably imply locating the devices at the 

centers of each one of the four slab areas between the columns, as indicated in 
Fig.l 1.27(b). This choice will consequently imply a heavy7 slab, or beam grid, to relocate 
the vertical forces from columns to isolators. It has also to be noted that the design base 
shear and the equivalent height imply a total overturning moment equal to:

Motm = 373x4 .2  = 1567 kNm (13900kip.in)

and a consequent axial force variation on each device equal to:

APd . = 1 5 6 7 / (6 x 2 ) = 131 kN (29.5 lops)

i.e. on the order of 10% of the gravity value.
Locating a device at the base of each column would require the use of nine devices. In 

this case, the same requirement of the previous case will apply to minimum diameter and 
minimum height to allow a displacement capacity equal to 200 mm (7.9 in), but a 
diameter equal to 400 mm (15.7 in) will result in significantly lower axial stresses and 
increased height to assure an appropriate stiffness. Assuming for simplicity the design of 
a system with nine identical devices, the results will be as follows:

K di = 1866/ 9 = 207 kN/m (1.2 kips/in)

VdJ = 373/9  = 41 kN (9.2 kips)

hmirti - G rA/Kd -71' 2002 / 207 =607mm (23.9 in)
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Each device will carry a different share of the total weight, depending on the axial 
force on each column, approximately equal to 290 kN (65.2 kips) for the four corner 
columns, 575 kN (129.3 kips) for the four mid-side external columns and 1150 kN (258.5 
kips) for the central one.

The same overturning moment of the previous case will be essentially equilibrated by 
the external devices, with axial force variation of the order of 43 kN (9.^ kips), still not 
implying tensile stresses and therefore acceptable.

However, the increased number of devices will therefore imply the need for a reduced 
stiffness, and since this cannot be accomplished with a reduction of the diameter, because 
of the influence on the displacement capacity, a significant increment of the height of the 
devices is necessary, with an obvious implication on cost and construction difficulties. 
Relatively low masses (and relatively low average axial stress) are not favourable for this 
class of devices, as pointed out in Section 11.2.3.

Qi) Alternative choice — use friction sliding bearings coupled with dampers: If friction sliding bearings 
are used to support the vertical load, it is not advisable to adopt viscous dampers, unless 
preloaded, to avoid possibly large residual displacement (though, part of it will be slowlv 
recovered later).

However, if this should be the choice, an equivalent viscous damping as large as 45% 
could be assumed, for both frictional and the viscous response. Consequently, the corner 
period displacement will reduce to 121 mm (4.8 in), and following the same procedure 
discussed above, the following results would be obtained:

Tdy6 — 3.15 sec.
lQte = 1866 kN/m (10.7 laps/in)
VBaSe -  226 kN (50.8 kips)

This base shear value corresponds to approximately 5% of the total design weight, 
which is less than the assumed structural capacity of 10%, and therefore the structure will 
respond elastically.

Assuming a friction coefficient of the sliding bearings f l f— 2.5 %, the design force for 
rhe viscous dampers will be:

Fvd -  Vd -  juW = (0.025 x 46 00 ; = 111 kN (25 kips)

i.e. the dampers should take approximately 50% of the total base shear. As mentioned in 
Section 10.2.4(c), assuming CC — 0.1, the viscous damper constant should be slightly 
higher than the design maximum force: we assume C — 125 kN (sec/m)0'1 (19.5 
’̂ ips(sec/in)01).

It is possible to check that the actual force demand will be close to the design value 
calculating the velocity implied by the damped spectrum at the design period:

Sv = 2K ■ Ad /Td ~ 27FX0.121/3.15 = 0.241 m/sec (9.5 in/sec)

Fvd =CS*' = 125x0.241° 1 =108 kN (24.3 Idps)
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If steel dampers are used, their equivalent viscous damping ratio will be about — 
25%. Assuming that approximately 50% of the base shear will be taken by friction in the 
bearing, with an equivalent viscous damping — 45%, the global equivalent viscous 
damping will be — 35%. Proceeding as above the following values are obtained:

At,35 = 137 mm (5.4 in)
Tdfe =3.15 sec.
Kdye = 1866 kN/m (10.7 kips/in)
Vd = 256 kN (57.8 kips)
Fso = 141 kN (31.7 kips)

(iii) Alternative choice — use FPS bearings: The equivalent viscous damping coefficient will be
approximately %e — 20 % and consequently:

At,35 =177 mm (7.0 in)
TdtC =3.15 sec
Kate = 1866 kN/m (10.7 kips/in)
VBase ~ 330 kN (74.2 kips)

This value of shear is still lower than the assumed structural capacity.
Assuming a design friction coefficient jUpps — 3.5%, the radius of curvature of the

concave surface can be obtained by inverting Eq.(l 1.23):

R = W  4t = 4.73 m (15.5 ft)
(Vd — flW  )

A radius Rc= 5 m (16.4 ft) may be adopted. As in case (a), four or nine devices can be 
used, and the vertical load acting on each of them will vary consequently. The size of the 
contact surface between slider and spherical surface will be adjusted to the accepted level 
of stress, considering the problem of heat generation (Sections 10.2.3 (c) and 11.2.5).

(f) Design for Rocking: If a stiff structure, e.g. a relatively squat wall, is designed to rock 
on its foundation, the elastic deformation of the structure itself can generally be neglected 
since it produces a displacement much smaller than that resulting from the rocking 
motion. The design displacement is thus calculated as described in Section 11.2.6 (b) and 
is normally dictated by non—structural limits. Note that if this is the case, even the 
geometry of the wall, i.e. its length, is not necessary at the start of the design.

As discussed in Section 11.2.6, the damping resulting from rocking is usually negligible 
and a value of % =0.05 should be initially assumed. Additional damping may be required 
for a more efficient design, but this will be provided, if  needed, in a second iteration, by 
means of appropriate devices.

Entering the displacement spectrum, the period of vibration and corresponding 
stiffness will be readily obtained. The required strength is thus also obtained, multiplying 
stiffness and design displacement. Note that this is the strength required in the deformed 
position, and the force required to initiate rocking may be higher, as shown in Fig.l 1.28,



Chapter 11. Structures with Isolation and Added Damping 569

or lower, in the case of some restraint provided by displacement-proportional tensile 
forces or by other mechanisms. In the same figure it is also evident that the design point 
could correspond to different combinations of length lw and tensile restraining force Rt. 
With a constant Rf all three pairs of parameters will result in the same line, while with Rt 
proportional to the wail displacement different geometries are compatible (refer to 
Fig.l 1.23 for definition of symbols). The actual combinadon of parameters should be 
obtained from Eq.(11.53) (appropriately modified if Rf is not constant), assuming one 
parameter and obtaining the other. A few iterations may be needed.

Two verifications are required to finally accept the design:
• the design displacement has to be a small fraction (in all cases lower than 30%) of 

the displacement corresponding to zero horizontal force (Eq.(11.54));
• the force required to initiate rocking should be low enough to assure that the 

rocking response will take place, i.e. lower than the design PGA multiplied by the 
effective mass.

Note that it is generally convenient to have a variable increasing with the 
displacement demand, with respect to both requirements. As an example consider the 
case of a tensile force provided by the elastic response of slightly post-tensioned 
unbonded cables, with elastic modulus Es, section area As and total unbonded length 
Hunb (note that this is a design choice).

20%

15% -

10%  -

5% -

0%

*w R,

H/10 0.88 W A

H/6 0.53 W0Ad

H/4 0.09 W 0Ad
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‘ H/6 0.53 W0A
- H/4 0.09 W0A
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Displacement (%He)
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Fig.11.28 Force-Displacement Domain for a Rocking wall Considering R( 
Variable, as a Function of Jw/H (design for Vd= 10% IFand Ad = 2%He)

The initial restraining force, which may be negligible, will then vary in proportion to 
the rocking displacement, according to the following equations, derived from geometric 
considerations:
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Finally, it has to be considered that it is possible to reduce the design displacement 
providing some form of artificial energy dissipation that will result in a higher equivalent 
viscous damping. For example, each side of the wall may be provided with steel or 
viscous dampers, which will produce a restraining tensile force corresponding to the yield 
or C value and an equivalent viscous damping equal to £// or to An approximate 
evaluation of the global equivalent viscous damping can be obtained by considering the 
proportion of the total shear absorbed by the rocking response and by the tensile force 
component:

£ = -

0.05
0.451 W W

\ H„ H..
+ £/:

0.95/
H.

R,

0.451. W  W
H. // A"

0.95/,.
(11.63)

H.
R,

Again, some simple iteration may be needed to select an appropriate combination of 
wall length, restraining force and equivalent viscous damping.

Note that when dampers are used, it is generally appropriate to post-tension the wall 
internally with bonded cables, to avoid any possible cracking in the wall resulting from a 
tensile force exerted on the wall by the restraining force.

The qualitative force—displacement cycles resulting from the combination of rocking 
motion, variable restraining force and added dampers are depicted in Fig. 11.29. Note that 
a variable restraining force has the effect of increasing the post-yield stiffness, which as a 
consequence may become positive. The combination of rocking and added energy 
dissipation produces typical flag-shape loops, which are quite appealing in terms of 
limiting the residual displacement and consequently the post—earthquake damage level, 
while providing a significant level of equivalent viscous damping.

Assuming that the fraction of the total overturning moment taken through the 
damper action is Md — fi Mqtm (and therefore the same fraction applies to the base 
shear), and that the equivalent damper yield force is a fraction X of the force 
corresponding to the design displacement, the approximate system area-based equivalent 
viscous damping can also be expressed as:
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This must be converted to equivalent viscous damping using Fig.3.15.

Rocking (R,^ A) Damper Global
(b) Rocking Response Including Dampers and Restraining Force (R,^ A)

Fig.11.29 Hysteresis Loops of a Controlled Rocking System Including the 
Contribution of Restraining Force (Rt) and Hysteretic Dampers (FD)

11.3.2 Base-Isolated Flexible Structures

When the structure to be isolated cannot be considered rigid with respect to the 
isolation system, i.e. when its fundamental period of vibration is preliminarily estimated as 
■onger than 1 /3rd of the period of the isolated structure, the conceptual design of the 
svstem should be based on a model that includes both isolation system and structure.

Note that also in this case it is simpler, more direct and consistent with a 
displacement-based approach to verify the “effective rigidity” criterion above in terms of
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displacement demand, rather than of a period ratio. This is accomplished by comparing 
an estimate of the yield displacement of the structure alone with the displacement 
capacity that will be assigned to the isolation system, or, if this value has not yet been 
selected, with a displacement demand corresponding to the corner period in a damped 
~ 0.2 to 0.25) displacement spectrum or to a period of vibradon of about 3 seconds (or 
whatever is expected to be the period of vibradon of the isolated structure), whichever is 
less. Note that the period criterion above implies that the yield displacement of the 
structure alone should not be larger than about 10% of the isoladon system displacement 
for the structure to be considered effecdvely rigid. Note also that the procedure outlined 
in the following is a generalization of what was discussed in Section 11.3.1 and is always 
applicable, even in the case of relatively stiff structures. The standard concept of DDBD 
can still be applied in a simple and rational form, defining a SDOF substitute structure as 
conceptually discussed in Sections 3.2 and 3.4.

(a) Design Displacement and Displacement Shape: The concept of base isolation, as 
discussed in Section 11.1, implies that the isolation system is the only critical element, that 
will have to behave non-linearly and to dissipate energy. As a consequence, the structure 
can be assumed to deform according to its yield displaced shape.

This assumption will allow estimation of the displacement values at each floor level, 
for all structural elements and consequentiy the yield displacement of the equivalent 
model.

The yield displaced shape of the structure alone can be found using the appropriate 
equations, as defined in the chapters related to frame and wail buildings (e.g. Eq.(5.7) for 
frames; Section 6.2.1 for walls). However, since the structural response will not be critical 
and is capacity protected, it is often adequate to assume a linear deformed shape (even for 
the case of cantilever wall structures).

In the case of a shorter frame building (less than 4 storeys) a linear displaced shape 
can be assumed and Eqs.(5.7) apply:

0y =key (11.65)

where 6y is the yield drift €y is the yield deformation of the reinforcement steel, Lb and hb 
are length and depth of the beams and k is equal to 0.5 for concrete frames and 0.65 for 
steel frames. For taller frame buildings a refinement of the elastic displaced shape may be 
advisable.

For cantilever wall building the yield displacement at height Hj is expressed by 
Eq.(3.31):

f H, ^
(11.66)

£
-yj y  " jA . -  — H2 1- -

j
3 HnJ

where lw is the wall length, Hj is the storey height and H„ is the roof height.
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The effective height of the structure alone is expressed by Eq.(3.35):

(11-67)
j=1 7-1

Note that the effective height of the substitute structure will be lower than for an un
isolated structure, as a consequence of the concentrated displacement at the base of the 
structure due to the isolation system. As noted above, it will often be adequate to 
calculate the structure displacement at the effective height (Eq.(11.67)), and adopt a linear 
displacement profile up the wail. The design displacement of the structure alone (Aj^) 
should be assumed in the range of 80-90% of the calculated yield displacement. This 
accounts for the amplification factor will be applied to the shear strength resulting for the 
isolation system, to capacity protect the structure, as discussed in Section 11.3.1(c).

For irregular buildings reference should be made to the appropriate structural 
chapters.

The selection of the design displacement of the isolation system (A^/), and 
consequently of the global structural system (A^5J75=A^^+ A ,̂-), is the starting point of the 
design process. Ajj may depend on requirements imposed by the possible gap to be left 
around the slab resting on the isolation system, with the consequent requirements for 
mechanical and electrical services connected to the building. In general, larger 
displacements will correspond to longer periods of vibration, lower stiffness values and 
lower base shear strength requirements.

With reference to Fig.l 1.30, the global displacement shape will thus result from a 
combination of a displacement corresponding to the isolation system and a distributed 
deformed shape along the height of the building.

(a) idealization (b) frame building (c) wall building

Fig.11.30 Displacement Shape of a Base-Isolated Building

(b) Equivalent Viscous Damping: Once the design displacement of the isolation 
system and of the structure alone have been preliminarily defined, the estimate of a global 
equivalent viscous damping of the system can proceed analogously to the procedure
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presented in Section 3.5.4 for the case of a structure built on a flexible foundation. This 
implies an assumption on the equivalent viscous damping values to be assigned to the 
structure and to the isolation system.

For the structure, considering that an elastic response will be required and enforced, 
only a standard viscous damping should be accounted for, therefore normally the 
equivalent viscous damping will be assumed £e>s = 0.05. For the isolation system 
reference should be made to Table 11.1. Normal values will range between £e,i= 0.2 and
&/ = 0.3.

The system equivalent viscous damping (£e,sys) will thus be computed from Eq.(3.36c), 
modifying the symbols:

K =  £ e , s * d , e s  +  A
b e , s y s  a  _ l A (11.68)

A d , e s  ^

where all symbols have been defined above.
Note that if the structure displacement is large with respect to the isolation system 

displacement, the effect of the energy dissipation of the isolation system on displacement 
control will be significantly reduced.

Based on the estimated global equivalent viscous damping, the appropriate reduction 
factor to be applied to the displacement response spectrum will be computed (e.g. using 
Eq.(2.8)).

(c) Effective Mass and Stiffness: Entering the appropriate displacement response 
spectrum with the design displacement, the period of vibration of the equivalent structure 
will be obtained and as usual the effective stiffness will be computed from Eq.(11.55). 
Note, however, that the equivalent mass to be used is likely to be greater than the 
equivalent mass of the building alone, due to the concentrated ground level displacement 
(the same comment applied to Eq.(11.67), where the effect was to have a lower 
equivalent height). The equivalent mass will be computed using Eq.(3.33):

m = 7 (11.69)
* A * ,,,

where ny and Ay are mass and total displacement of each floor, including the ground floor 
above the isolation system (see Fig. 11.27), and Adfsys is the displacement of the equivalent 
isolated structure.

(d) Design Base Shear and Design o f the Isolation System: The design base shear is 
computed according to Eq.(11.56), i.e. multiplying equivalent stiffness and design 
displacement.
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The isolation system will be designed considering the total weight of the structure and 
the requirements on shear capacity, stiffness, equivalent viscous damping, with no 
difference with respect to the case of a stiff structure. A verification time-history analysis 
is always recommended.

(e) Distribution o f Design Base Shear Force and Design o f the Structure: Again, no 
difference applies with respect to the case of stiff structures, with the exception of a 
proper consideration of higher-mode effects, that in this case may have higher relevance.

The application of an appropriate dynamic amplification factor 0)to each action 
considered or the correction of the force vector according to what has been discussed in 
the previous chapters may be fundamental (e.g. refer to Eq.(4.59). In the event that time- 
history analysis is undertaken as design verification, the determination of higher-mode 
amplification will be automatic; if time-history analysis is not used, it is suggested that the 
Effective Modal Superposition approach described in Section 6.6.1(c) be used to 
determine higher mode effects. The approximate equations listed in Chapters 5 and 6 
have not been verified for isolated structures, and are unlikely to apply.

(f) Design Example 11.2: Base Isolation o f the Building o f Example 6.1 (Section 
6.4.7): It is assumed that the structural wall building of Example 6.1 is to be base isolated, 
to reduce the structural and non-structural damage under design level 2 (damage-control) 
seismicity. The structure geometry is shown in Fig.6.18, together with the displacement 
spectrum for 5% damping. The structure response is assumed to be elastic, and it is 
anticipated that an overstrength factor equal of (jf — 1.25 will be applied to the isolation 
svstem design base shear to capacity-protect the structure.

In Example 6.1 the yield displacement of the equivalent structure was calculated as 
AYte — 45.4 mm (1.79 in). However, this applied at the effective height of the un-isolated 
structure. As noted previously, the effective height of the isolated structure will be 
significantly lower. We assume an effective height of 10m (32.8 ft) (a little above mid
height of the building), recognizing that some iteration may be needed. With this 
assumption, we calculate the system yield displacement at 10m as approximately 30mm
1.18 in). We reduce this by 20% to ensure that yield does not occur under the base shear 

amplified by the overstrength factor of 1.25. The displacement of the structure alone is 
therefore estimated as: ) ̂  ^ ^ ,f i J ■ ^

Ad,es — 30 x 0.8 =24 mm (1.18 in) '( ^
Based on non-structural design constraints, an isolation system design displacement is 

assumed equal to A,/,; = 200 mm (7.9 in) (note that this will imply larger capacities). The 
svstem design displacement is therefore:

A<jtsys — 24+200 = 224 mm (8.8 in)
It is preliminarily assumed that lead-rubber bearings will be used, and a tentative 

equivalent viscous damping ratio of = 0.25 is adopted for the isolation system. 
Consequently, the global equivalent viscous damping is:
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£ _ ê,s 4/,£
e,sys A

+ £ .,4  0.25x200 + 0.05x24
+ 4. 200 + 24

= 0.229

The reduction factor to be applied to the displacement response spectrum is:

R4 =[ Q'Q7 1 =0.534 10.02 + 0.229 J
The period of vibration resulting from the damped displacement spectrum is: 

224
750x0.5*3

-x4 = 2.25 sec

The equivalent mass of the system is calculated from Eq.(11.69), assuming a linear 
deformed shape of the structure, or more accurately applying Eq.(11.66) to estimate the 
storey displacements. Note that the system must include the height of the isolation 
system (likely to be similar to the displacement capacity) and the thickness of the floor 
slab. In this example a total height of 400 mm (15.7 in) has been assumed. The additional 
mass corresponding to the isolated ground floor, assumed equal to the other storey 
masses (i.e. 306 t (674.9 kips)) must also be considered.

Table 11.2 Calculation of Equivalent Height and Mass for Example 11.2

Floor Height [m] Ai (linear) [mm] Ai (wall) [mm]
6 17.2 255.82 263.59
5 1 14.4 246.73 248.20

...i Q ...A .......... 11.6 237.65 233.63
3 8.8 228.56 220.71
2 6.0 219.47 210.26
1 3.2 210.3.9 203.10

0 is 0.4 200.0 200.0
0 0 0 0

Effective mass [t] 2060 (4544 kips) 2036 (4490 kips)
Equivalent height [m] 9.25 (30.4 ft) 9.34 (30.6 ft)
System Displ. (mm) 230 (9.1 in) 228 (9 in)

The displacements calculated for both assumptions are summarized in Table 11.2, 
where the resulting equivalent height, effective mass and system displacement are also 
shown. The differences are negligible, being of the order of 1%. The initial assumption of 
a system displacement of 224mm (8.8 in) is accurate enough for the estimation of system 
ductility, and hence no iteration is needed. As expected, the equivalent mass is larger than 
that calculated in Design Example 6.1, due to the added floor and to the comparative
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uniformity of displacement with height, while for the same reasons the equivalent height 
is significantly lower.

The system equivalent stiffness is:

*  4 ^  = 4 ^ x 2 0 3 6  = 15890 kN/m (90.7 kips/in)
T2 2.25

The base shear force (at the isolation system level) is:

vBase=Kd,A ,ys= 15890x0.228 = 3620 kN (813.8 kips)

The design shear of the isolation system should be properly factored to design the 
structure, to a value possibly around 4500 kN (1011.7 kips). The distribution to wall 
elements and different floors will be based on elastic analysis, as discussed in Chapter 6.

Considering the plan of the building, shown in Fig.6.18, it seems logical to check 
whether a system of 12 bearings would be feasible, in which case they will be located 
approximately at the base of each column and each wall, or to consider a system with 16 
devices, placing two of them at the base of each wall. It should be noted, however, that 
providing a single bearing under each wall would imply that the ground floor structure 
would be subjected to very large local moments, probably requiring a significant increase 
in the size and weight of the ground floor, with a consequent influence on the design 
base shear force.

It is preliminarily assumed to design twelve identical devices and that the axial action
due to gravity will be approximately the same for all of them, equal to Wq — 3000x7/12
= 1750 kN (393 kips). In this case, each device should have a displacement capacity 
significandy larger than Adj = 200 mm (7.9 in) (we suggest at least 1.5 x 200 mm), and a 
shear strength at this displacement equal to Vy = 3620/12 ~ 300 kN (67.5 kips). It is 
further assumed to design for a rado between the ultimate shear resisted by the device 
and the equivalent yield strength equal to V  Vyj — 2.25, and the yield displacement is 
estimated as =  0.077 x h ~ 0.0154 m (0.606 in) (note, h =  Aj).

These assumptions would produce the idealized force—displacement curve shown in 
Fig. 11.31, with the following stiffness values:

Kr = (300 -  133)/(0.2 -  0.0154) = 905 kN/m (5.2 kips/in) 
Klr = 133/0.0154 = 8636 kN/m (49.3 kips/in).
IQ = 300/0.2 = 1500 kN/m (8.6 kips/in)

The corresponding equivalent viscous damping is (Eq.(11.16)): 

4h = 1x2.25 = 0.26
k y mJK  n v 13

The ratio between area of the device and area of the lead could be approximately 
obtained inverting Eq.(l 1.14): \ ;
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a d  _ U 9 K r + k l r  _ 129x905 + 8636
, , n ~ Al ~ Klr~Kr ~ 8636-905
C. ■’ ^ ^

To check whether a device with these characteristics can be produced, it is assumed to 
design for a height equal to h — 200 mm (7.9 in), which is the minimum compadble with 
the required displacement capacity. The required rubber area can be esdmated from 
Eq.(l 1.8) as:

x, Ar = = 905' 200 = 181000 mm2 (280.6 in2)
Gr 1

Consequently the required area of the device is approximately 192000 mm2 (298 in2)

According to these values, a device diameter equal to 500 mm (19.7 in) and a lead plug 
diameter equal to 130 mm (5.1 in) are selected. As a result:

Ad = 196349 mm2 (304.3 in2)
Al = 13273 mm2 (20.6 in2) x \  O -
Ar -  183076 mm2 (283.8 in2) V
Kr = 915 kN/m (5.2 kips/in) , .V
Kl = 8627 kN/m (49.3 kips/in)
Klr = 9542 kN/m (54.5 kips/in) \''~j
Vy = 147 kN (33.1 kips) i' '
V2oo = 316 kN (71 kips)
K  = 1580 kN/m (9 kips/in)

The average compression stress on the rubber is equal to:
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= 1750000 =9 56 Mpa ^  39Q ^
me 183076

The required thickness of the rubber layers between the steel plates can be evaluated 
from Eq.(11.3) (or from Eq.(11.4)):

s _ w  _ 1750000 _ 1912
A Gy 183076/2-M

/ = D/4S = 6.54 mm (0.257 in)

11.3.3 Controlled Response of Com plex Structures

(a) General: As discussed with reference to Fig.l 1.1, the concepts of isolation and 
dissipation can be applied to a variety of complex systems, where isolating/dissipating 
devices could be inserted between different parts of the structural system with the 
purpose of dissipating energy, controlling relative displacements, and capacity-protecting 
structural elements against potentially brittle failure modes.

Common examples of application can be found in bridges, when the isolating system 
is located between pier top and deck, in frames braced with dissipative elements, in 
coupled shear walls and in different types of rocking structures.

In most cases the response of such structures is not easily captured with simple design 
approaches and it is therefore always recommended to perform some non-linear time- 
history analysis at the end of the design process. As previously discussed, an appropriate 
application of capacity-design principles may limit the non-linear response to the 
isolating/dissipating devices, simplifying the analysis.

(h) Isolation and Response Control o f Bridges: A detailed discussion of appropriate 
bridge configurations, depending on geographical and architectural constraints, 
construction technology, material properties and performance objectives is presented 
elsewhere f™]. Standard bridges, possibly with spans in the range of 40-80 m (130-260 ft), 
are normally designed with vertical piers and a horizontal deck. In many countries it is 
also common to design single-span or continuous decks resting on bearings located on 
the pier heads. In this case it is always convenient to verify whether the use of an isolation 
system would improve the bridge response, since the additional cost to substitute the 
bearings with isolation devices could be low.

It has to be noted that only the deck will be isolated, therefore if the piers are tall and 
massive, the shear and bending moment demand at the critical section at the base of the 
piers may depend to a large extent on the inertial response of the piers. For this reason, it 
may be difficult or sometimes impossible to fully capacity-protect the pier.

(i) Isolation of single-span or continuous deck: The principles and procedures for DDBD of 
bridges have been presented and discussed in Chapter 10, to which the reader is referred.
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A distinction was made between longitudinal and transverse design. It will be shown 
that this distinction is less important in the case of deck-isolated bridges, since an 
appropriate design of the isolation system will allow an effectively rigid response of the 
deck.

It is generally assumed that a preliminary design of the bridge has been performed 
considering non—seismic loading conditions. The full geometry is therefore available and 
possibly a preliminary dimensioning of reinforcement.

The yield displacement of each pier can then be immediately calculated, applying 
Eq.(lO.l), with Cj — 1/3 if the soil—structure interaction is neglected, according to the 
configuration given in Fig.l0.5(a), or considering the appropriate modifications to include 
the effects of soil deformation, as discussed in detail in Section 10.3.1 with reference to 
Fig. 10.5(d) and (e).

Note that if the yield displacements of all piers exceed the peak response displacement 
corresponding to the corner period of the displacement response spectrum, there would 
be little sense in designing an isolation system, since the un-isolated bridge would respond 
elastically to the design seismicity. This may be the case of tall columns with pinned 
connection to the superstructure, to be built in areas where design seismic intensities are 
moderate, and the considerations presented in Section 10.3.1(c) would apply. Note that 
the graphical data presented in Fig. 10.8 would allow a simple and immediate comparison 
of demand and elastic capacity.

If it is decided to provide each pier with an isolation device, the situation is described 
in Fig.l 1.32, which is similar to Fig. 10.12, but shows a different response, since the non
linear behaviour is expected in the bearing rather than in the pier.

In the case of an isolation system with a non-linear response, therefore showing an 
equivalent yield point at a force demand corresponding to a fraction (depending on the 
post-elastic response of the isolation device this could vary between 40 and 90%) of pier 
yield, the lateral flexibility of the bearing will correspond to the equivalent yield 
displacement of the device, A^. At the limit-state response, the lateral force may be 
essentially the same as at yield or may be significantly larger, when the bearing shows 
significant post-elastic hardening. The pier deformation will essentially increase in 
proportion to the force increase (therefore possibly in the range of 2 times), while the 
bearing deflection will increase 10-15 times, depending on the accepted plastic 
deformation associated with the limit strains. This is indicated in Fig.l 1.32(b) by the 
difference between pier displacement profiles at yield and at limit-state response.

The structural and device hysteretic response are described in Fig.l 1.32(c) and (d). 
The damping associated with the pier response will remain essentially unchanged, while 
the isolation damping depends on the actual device, as discussed in Section 11.2.

The effective damping from the combined action of pier and bearing is direcdv 
analogous to the various cases of serial structural elements, already discussed, such as the 
flexible foundation case discussed in Section 3.5.4(b), and the bridge pier discussed in 
Section 10.3.5(b), and can thus be found from Eq.(3.40c) as:
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dB (11.70)
dP dB

Similar, though simpler, considerations will apply for the case of devices showing an 
essentially elastic response, as in the case of HDRB.

The design process will imply the definition of a uniform design displacement of the 
deck, which may correspond to different combinations of column and device 
displacement for each pier, and will therefore correspond to different equivalent viscous 
damping values for each pier—device system.

The global system damping will be computed as a weighted average of the piers 
damping values according to Eq.(10.18), since pier strength and damping are not uniform 
along the bridge. The discussion in Section 10.3.5(d) for the longitudinal response will 
now be applicable to the transversal direction as well, since each pier—device system will 
be designed to have similar strength and displacement capacities.

Displacement 

(b) Displacement Profiles

Fig.11.32 Damping for a Cantilever Pier with an Isolated Deck
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The design process briefly outlined above conceptually allows isolation of only the 
piers where it is useful while adopting shear keys or fixed connections for taller piers 
whenever it is considered appropriate and convenient.

(ii) Design example 11.3: Design an isolation system for the bridge of example 10.3: the bridge of 
Example 10.3, is now reconsidered, assuming to isolate the deck. As discussed previously, 
the deck mass is considered to be equal to 190 kN/m (13.0 kips/ft), the columns are 
circular, with a diameter equal to 2 m (78.7 in) and the design ground motion is that 
described in Fig. 10.15, with a PGA equal to 0.6 g. The deck is assumed to be continuous, 
supported by two devices at the top of each pier and at the abutments. It is also assumed 
to use friction pendulum devices. The bridge configuration is shown in Fig. 11.33.

40m 50m 50m 40m

Isolator

t
16m

t
12m
i

(Not to scale)

m

D

t
16m

Fig.11.33 Bridge of Design Example 10.3, with an Isolated Deck

As discussed with reference to the case of pinned-pier top of Example 10.3, the 
following data can immediately be calculated:

Strain penetration length: Lgp -
Yield curvature: (fo, =
Yield displacement, pier B and D: A ^ = 
Yield displacement, pier C: Ayc -
Weight on each abutment: PA
Weight on top of piers B ad D: PB
Weight on top of pier C: Pc

407 mm (16.0 in) 
0.0026/m (66xl0-6/in) 

= 0.233 m (9.2in)
-  0.133 mm (5.24 in)
= 3,800 kN (854 kips)
= 8,550 kN (1920 kips) 
= 9,500 kN (2140 kips)

A design displacement equal to 0.5 m (19.'7 in) is tentatively assumed.
It is also assumed that the equivalent viscous damping of the isolation system will be 

approximately equal to 20% and that the piers will be designed for a force level equal to 
1.25 times the design strength of the corresponding isolator.

As shown in Fig. 11.34, this implies the design displacements for the isolation devices 
(A/>) and the corresponding equivalent viscous damping for each pier—isolator system (£/> 
reported below:

Pier B and D:
A d,b  = 500 -  0.8 x 233 = 314 mm (12.4 in)
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fra  = (0.20 x 314 + 0.05 x 186) / 500 = 0.144 

Pier C:
Ad,c = 500 -  0.8 x 133 = 394 mm (15.5 in)
£>c = (0.20 x 394 -I- 0.05 x 106) / 500 = 0.168

Abutments A and E (rigid abutment structure assumed):

Ad,a = 500 mm (19.7 in)

£ p ,a  =  0 . 2

(a) Force-Displacement: Pier B (left) and Isolator (right)

(b) Force-Displacement: Pier C (left) and Isolator (right)

Fig.11.34 Force -  Displacement Diagrams for Piers B and C and the 
Corresponding Isolation System for Design Example 11.3

To calculate the global equivalent system damping, a decision is required about the 
distribution of shear between the piers. This could be in inverse proportion to height, as
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in Example 10.3, which would result in equal bending moments for the piers, but 
different design forces for the isolators, or in proportion to supported weight, or dividing 
the total weight by the number of isolators, unifying the required strength of the isolators 
(but not the displacement demand). In this case it is assumed to distribute the total base 
shear in proportion to the weight supported by each abutment or pier, obtaining:

_ 0.20x3800x2 + 0.144x8550x2 + 0.168x9500 _ Q 
2(3800 + 8550) + 9500

As a consequence, the spectral reduction factor to be applied to the 5% damped 
displacement spectrum is obtained from Eq.(2.8), as:

Rf = 0.07 °-°7 ^ = 0 .6 1 8
0.02 + 0.163,0*02 + 4 ,  y

Entering the displacement spectrum of Fig. 10.15 with a displacement equal to 500 
mm (19.7 in) and incorporating the calculated reduction factor, a response period of 
approximately Te = 3.5 sec is obtained.

To obtain the effective stiffness of the system it would be generally correct to 
calculate the appropriate values for the equivalent displacement, which would be less than 
the deck displacement because of the presence of the lumped-mass corresponding to the 
pier mass, and to calculate the equivalent mass, which will be larger than the deck mass, 
for the same reason. However, in Example 10.3 it was shown that the contribution of the 
pier masses is in the range of 3 % of the deck mass, and in the present case it would be 
less, possibly around 1%, being weighted by a smaller displacement.

The following equivalent stiffness is therefore obtained, simply considering a total 
effective weight corresponding to the deck weight, equal to 34,200 kN (7700 kips), as 
calculated for Example 10.3:

4k 2mp An2 -34.2 trA i- /■ \K =  z-*- =------------- 7 = 11.2MN/m (64 kips/in)
T2 9.805 x3 .52

The total base shear force due to the deck response is thus:

VB a s e  =  K e A D =  11.2 X 0.5 =  5.6MN (1260 kips)

As assumed, this base shear is distributed to the columns in proportion to the 
supported weight:

VA = VE = 5.6x3.8/34.2 = 0.622 MN (140 kips)
Vr ~ VD — 5.6x8.55/34.2 = 1.40 MN (314.8 kips) —► MB -  MD = 1.40x16 = 

22.4MNm (198000 kip-in) for longitudinal response. For transverse, the effective height is 
to the centre of mass of the pier, and a slighdy higher moment results.

Vc =5.6x9.5/34.2 = 1.56 MN (350.7 kips) -► Mc = 1.56x12 =18.7MNm 
(166000 kip-in). Again the moment for transverse response will be a little higher.

To properly design the base section of the pier, these bending moment values have to
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be multiplied by the isolator overstrength factor of (/f — 1.25 , and additional bending 
moments corresponding to potential P-A and higher modes effects should be considered.

We first consider P-A effects. Since it is required to keep the piers elastic, the 
coefficient in Eq.(3.49) is taken as C — 1, as distinct from the value of 0.5 recommended 
for ductile response of concrete structures (see Section 3.6.3). The contribution of 
vertical load at maximum displacement is thus:

Mb,p - a  = 8.55 x 0.5 = 4.27 MNm (37800 kip-in)
Mc,p-a = 9.50 x 0.5 = 4.75 MNm (42000 kip-in)

Regarding higher-modes effects, the contribution of the mass of each pier (m = 7.52 
t/m (0.42 kips/in)) is obtained assuming a fixed-pinned configuration, a cracked stiffness 
(assuming a cracked moment of inertia equal to one third of the gross value, Icr — 
I g r o s s / 3)\and a standard elastic approach, in which case the circular frequency of the first 
mode of|vibration is equal to:

(tf, = 15.42J EI„lyj EIeg- / mL4
The periods of vibration of each pier are thus obtained, and entering the acceleration 

spectrum of F ig .l0.15 the corresponding accelerations (Sa) are read. The following 
column pase bending moment are calculated:

Pietj B and D:
r*  = o.io2 s
$ a ,b  ~  0.93 g
MbasetB = 2.19 MNm (19400 kip-in)

Pier C:
Tc = 0.57 s
S a ,c  ~ 1.34 g
MbasetB = 1.78 MNm (15800 kip-in)

The additional moments due to higher mode effects, and particularly P—A effects are 
quite relevant and cannot be neglected. The total bending moments for which the pier 
critical sections have to be designed are therefore:

Mb,base,total = 22.4 x 1.25 + 4.27 + 2.19 = 34.5 MNm (305000 kip-in) 
M cfbaSe,total =  18.7 x 1.25 +  4.75 +  1.78 =  30.0 MNm (265000 kip-in)

Note that these values are of the same order as those found for the case of pinned 
connection between deck and piers, where abutment friction was considered. The main 
advantage for the isolated design will thus be that no damage should be expected in the 
pier at the design level of response.

The FPS isolators are designed assuming a friction coefficient JLlf— 5%, as follows.

Abutments:
Equivalent yield force Vy^ — 0.05x3,800/2 = 95 kN (91.4 kips)
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Post-yield stiffness Kpd,a~ (622/2 -  95)/0.5 = 432 kN/m (2.5 kips/in)
Radius of curvature (Eq.(11.20)) Rc — 1,900/432 = 4.4 m (173.2 in)
Equivalent viscous damping (Eq.(11.24)) = (2x0.05)/ (tcx(0.05 + 0.5/4.4)) =

= 0.195

Piers B and D:
VyDfB = 0.05x8,550/2 = 214 kN (48.1 kips)
Kpd,b = (1 ,400/ 2 -214)/0.314 = 1,548 kN^m (8.8 kips/in)
Rc -  4,750/1,548 = 2.8 m (110.2 in) /
%h,A = 0.196 /

Pier C: /
VyD>c = 0.05x9,500/2 = 237 kN (53.3 tips)
Kpd,c= (1,556/2 -  237)/0.394 = 1,372 kN/m (7.8 kips/in) 
Re = 4,750/1,372 = 3.5 m (137.8 in/
£h,c = 0.194 /

The isolation devices have therefore different radii of curvature and different required 
displacement capacities (approximately 500 mm (19.7 in) for the abutments, 300 mm 
(11.8 in) for the external piers and 400 mm (15.8 in) for the central pier).

This has to be regarded as an idealized system that may be modified for economical or 
practical reason, for example assuming a common radius of curvature for all devices, e.g. 
equal to 3.5 m (11.5 ft), and this may result in an acceptable response of the bridge. In 
any case, a non-linear time-history analysis is recommended, because of the numerous 
simplifying assumptions adopted in comparison with the complexity of the structural 
response. The potential effects of axial force variadon, which may become important if 
consideration of the vertical acceleration is made, may be accounted for. Also, the 
problem of heat dissipation should be taken into consideration, keeping the contact 
pressure between roller and spherical surface at a reasonably low value.

(c) Dissipative Braced Frames: An interesting class of complex systems with added 
damping for response control is given by different categories of braced frames endowed 
with added damping. We consider here the simple case of a pinned frame with diagonal 
bracings, as shown in Fig. 11.35. The structural configuration implies a linear deformed 
shape, with the horizontal displacement controlled by the elongation of the diagonal 
braces. It is therefore possible to consider simply a one-bay one-storey substructure, with 
span equal to L and height equal to //, extending then the results to the entire frame.

It is assumed that the brace should not yield, being capacity-protected by the strength 
of the damper, which should thus be characterized by a yield or maximum force lower 
than the yield or buckling strength of the brace.

The yield displacement of the frame (Ay), will correspond to the yield deformation of 
the brace, as shown in Fig.l 1.35(b):
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L \ -L b
U

where L\ and are the deformed and the original length of the brace. can be 
evaluated from the following equation, derived by simple geometrical consideration, 
assuming axial deformations of the beams, columns, and dissipators can be neglected:

A v = J ( L  + H  )(l + £ ) - H  - L (11.72)

The corresponding interstorey drift (0}) is obtained dividing the yield displacement by 
the storey height: /

e y = M ( l / h ) 2 + i) ( i+ £ y)2 - 1 -  l /h

(a) At rest (b) Yield (c) Ductile Response

Fig.11.35 Deformation of a Braced Frame with Dissipators

It is evident that 6y depends only on the ratio L/H  and on the yield strain of the 
material used for the brace, as shown in Fig.l 1.36. For standard geometry and steel 
material properties a yield drift of the order of 0.4 - 0.5% results, a value similar to those 
commonly used to define non—structural limits at the serviceability limit state when 
masonry partitions are present.

Further displacement demands will not imply any additional elongation of the braces, 
but rather a deformation of the dampers (as shown in Fig.l 1.35(c)), assumed here to have 
ngid/perfectly-plastic deformation characteristics.
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The design process will proceed as usual:
• Assume a brace limit displacement factoring the yield displacement obtained 

from Eq.(l 1.71) and (11.72), say = 0.8 Ar
• Assume a design drift to limit the non-structural damage, say Q<t =0.02.
• Calculate equivalent ductility, // = A^/A^ and corresponding equivalent 

viscous damping, applying the appropriate form of Eq.(3.17) (e.g., if  a friction 
damper is used, apply Eq.(3.17e)).

• Enter the damped displacement spectrum with and evaluate the period of
vibration and the corresponding stiffness and shear force.

• By structural analysis determine the member forces: the forces in the frame,
including the diagonal struts will be dimensioned for a force 1.25 times larger
than those corresponding to the damper design force level.

(i) Design example 11 A: consider a building similar to that of Design Example 6.3 (Fig.6.30 
and assume that the structural system resisting horizontal loading is now made by a 
number of dissipative braced frames, rather than structural walls. The number and 
location of the bracing system will be decided at the end of the design process. The 
seismicity is again characterized by a linear displacement spectrum for 5% damping with a 
corner period of 5 sec. and a corresponding displacement of 1.0m (39.4 in) for the 
damage-control earthquake. A code drift limit of 0.02 may govern the design. The 
building has 12 storeys and the floor weight at each level is 5 MN (1120 kips).
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The storey height is 3.2 m (10.5 ft) and it is further assumed that the spans where the

only will be designed here, without considering any torsional effect.
The braces are made from steel with £y -  0.0018 and provided with steel dampers.

Note ment is negligible. If this is not
the case, A o x yield must be added. The total
height of the building is 38.4 m (126 ft). Considering the linear deformed shape the 
effective height is He = 38.4x0.67 = 25.7 m (84.3 ft).

The yield and damage control design displacements are thus:

/ Ady =0.004x25.7x0.8 = 0.082 m (3.2 in)
I Ad =0.02x25.7 = 0.51 m (20 in)
and the corresponding displacement ductility is:

jud =0.51/0.082 = 6.3

Note that these horizontal displacement values correspond to brace elongations equal 
to AByy -  11 mm (0.433 in) and ABjd-  54 mm (2.1 in), as shown in Fig. 11.37.

It is now assumed to insert in each brace a steel damper, and the corresponding 
equivalent viscous damping is calculated applying Eq.(3.17c) as:

diagonal dissipative bracings will be located are 5 m (16.4 ft) long. The bracing system

Modifications to be adopted for other kind of dampers will be obvious. Appropriate 
measures to avoid budding of the braces are assumed to have been adopted.

The yield drift is calculated using Eq.(l 1.73):

A j = 0.064 m

Ady = 0.010 m

3.2 m

(AB>y = 0.011 m)

5 m

Fig.11.37 Deformed Shape of a Storey in Design Example 11.4

Note that the whole shear will be taken through the bracing system, therefore this is 
also the system damping ratio.
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The procedure is now straightforward; a summary of results is provided here: 
Displacement spectrum reduction factor for % — 0.204: R% — 0.559
Corner period displacement for % — 0.204: 
Effective period:
Effective mass:
Effective stiffness:
Design base shear:

As,0.204 -  0.559 m (22 in)
Te = 4.56 s
jtne =46.4MN/g (10432kips/g) 
A;= 8.98MN/m (51.3kips/in) 
V B a s e =  4.58MN (1030kips)

The base shear, multiplied by 1.25, should now be transposed into member forces, to 
design each element. Note that the braces could be located on any number of bays, 
depending on the accepted action. Note also that the strength of the dampers should be 
tailored and will decrease from the bottom to the top of the building. The axial values
resulting for the critical braces located at the ground storey can be immediately derived 
from the base shear, using the following equation, derived by pure geometrical 
considerations:

MN (306 kips) per brace, while increasing the number of braced frames, the force will

this case, they may produce larger displacement demands rather than higher forces, since 
the forces will be controlled by the capacity of the dampers.

(d) Walls Coupled with Dissipative Elements: Coupled structural walls systems, 
discussed in Section 6.8, are convenient systems to be endowed with additional damping 
elements. The coupling beams could be substituted with various forms of dampers, to 
reach a high level of energy dissipation capacity. In combination, the bases of the walls 
can be designed elastically or for a desired level of local ductility, or, more efficiently, for 
a controlled rocking response.

The coupling links can be designed according to several configurations, as exemplified 
in Fig.11.38, but in general they can be treated similarly to the coupling beams presented 
in Section 6.8.1, where they were characterized by their aspect ratio LcbI^ce-

With reference to Secdon 6.8, there is no difference in calculating the wall yield 
displacement assuming yield is permitted, while the wall design displacement will be 
limited only by wall-base material strains (Eq.(6.65a)), or by wall drift limit, since the 
damping devices can be designed, in principle, for any design drift.

If the wail is prestressed and designed for a controlled rocking response, the 
displacement shape before rocking starts will be essentially elastic, based on gross section:

The design axial forces resulting for the case of four braced bays will thus be: 1.36

reduce proportionally. These forces will be used to design the damper strengths, while the 
braces will be designed for values 1.25 times larger. Columns and beams will also be 
capacity protected.

Note that in the procedure no allowance has been taken for higher mode effects. In
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properties, and could in many cases be neglected, assuming a rigid—plastic response. With 
slender walls, however, elastic displacements should be considered.

C oupling
beam s

A xial
links

Rolling
dam per

F rictional h inges or 
steel dam pers

Fig.11.38 Shear Walls Coupled with Dissipative Links: Examples of Damping
Devices

With reference to the discussion of rocking response (Section 11.2.4(f)), it should be 
noted that a tensile restraining force will always be present in this case, since the rocking 
motion will take place internally to the structure, between the wall and the foundation 
structure. This force will normally be provided by bars or cables which will be designed 
to respond elastically at the design displacement, providing a nominal post-tensioning 
force and an appropriate unbonded length, or an effective post-tensioning force with the 
addition of some dissipating device at the connection of wall and foundation. As a 
function of the design choices, the appropriate forms of Eq.(11.53) should be used.

In general, design will proceed as usual, and more specifically as presented in Section 
6.8, assuming an appropriate share of the overturning moment to be taken by the walls 
and by the coupling system and consistently assuming a reasonable equivalent viscous 
damping value (applying Eq.(6.66)), to be checked at the end of the design process.

Though no interaction with floor slabs or with additional gravity resisting frames will 
generally be assumed in the design phase, these aspects may be relevant to the effective 
response, and should be checked in a design verification mode.

It is noticeable that the combination of wall controlled rocking and coupling damping 
device will be extremely effective in limiting the structural damage at the design 
displacement to essentially negligible levels. Also, the residual displacement will be small 
and due to the response of the damping system alone, because of the essential non-linear 
elastic behaviour of a rocking response. As already pointed out, in the case where viscous 
dampers are used, the residual elastic force due to gravity will slowly eliminate the residual 
displacement. In this case, however, the expected velocity levels should be examined, 
since low values may result as a consequence of long periods of vibration and small
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relative displacements. An example of the performance of such a structure is provided by 
the PRESSS 5-storey precast building test, described in Section 6.7

The wide variety of the possible soludons is briefly addressed here with two numerical 
examples.

(i) Design example 11.5: Consider again the coupled—wall building of Design Example 6.3, 
presented in Secdon 6.8.7. All the data provided there remain unchanged, with the 
exception of the coupling beams which will now be replaced with damping devices. The 
structure is further modified by replacing each channel wall by two parallel walls, 
eliminating the flange.

Though not exact, the yield displacement is assumed to remain the same, to allow an 
easier comparison: Ay = 0.179 m (7.05 in).

Since the damping system will be designed for the required drift capacity, the design 
displacement can now be controlled only by the wall strain limit or by the wall drift limit. 
The latter one will govern, as in the previous case. The design displacement will therefore 
remain unchanged: — 0.482 m (19.0 in), and consequently the wall ductility and
equivalent viscous damping are again JLlw — 2.7 and — 0.139.

It is decided to design the links using appropriately shaped steel dampers. As an 
example dampers shaped like double triangles will be adopted, with the shear load parallel 
to the variable side (see Secdon 11.2.4). A ductility of about 15 can be obtained and an 
equivalent viscous damping of the order of 25 % can be assumed.

As in Example 6.3 it is decided to carry 60% of the total overturning moment (Mom) 
through coupling action ( f i c B  — 0.6). The system damping will thus be evaluated as:

£sys = 0.4 x 0.139 + 0.6 x 0.25 = 0.206
Applying the usual procedure the following results are obtained:
Displacement spectrum reduction factor for £ — 0.206: R% — 0.556 
Corner period displacement for % — 0.206: ASfo.206 — 0.556 m (21.9 in)
Effective period: Te = 4.33 s
Effective mass: me — 46.4 MN/g (10432 kips/g)
Effective stiffness: K<, — 9.96 MN/m (56.9 kips /in)
Design base shear: Vgase ~ 4.80 MN (1079 kips)
Design overturning moment: M0Tm =129 MNm (1.145X 106 kip*in)

The choice of the actual dampers will normally proceed considering the properties of 
commercially available devices, based on the actual capacity requirements in terms of 
shear, flexure and drift. The following considerations are conceptual in nature, to 
illustrate the logic of the design process.

The shear capacity required for each damper is immediately calculated as V^c >475 
kN (106.8 kips) (step 13 of Example 6.3), which will determine the minimum required 
shear area. Flexural capacity, drift demand and capacity will depend on the actual size of 
the dampers, which will not necessarily fill the entire distance between the walls. As
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shown in Fig. 11.39, where the meaning of the symbols is also defined, Eq.(6.62) will now 
take the following form:

V  + LCb 
Ln

(11.74)

■r
n

Fig.11.39 Rotation Demand at the Damper, as a Function of Wall Rotation

Assuming constant curvature between the end of the device and the centre, with a 
reversal of curvature sign at the centre, the drift capacity of the device is found by 
dividing the relative displacement of the two ends by the length, as

0D=O.5ex^ -  (11.75)

where £* is the strain limit value and hz> is the height of the device (see Fig. 11.40).
Combining the above two equations, assuming £x — 0.03 at the design displacement 

and inserting the values for lw — 5 m (197 in), and Lcb — 1.8 m (70.9 in), the following 
relationship between the end depth and span of the device is obtained:

hD= 0 .1 1 4  M  (hD = 0.0336L (11.76)

The design procedure for the devices then proceeds in the following steps: 1) select 
the span length Z#, 2) calculate the end moment M — 0.5 Vjy>cLjy — 237.5Z/) kNm, 3) 
calculate the required device end depth from Eq,(11.76), 4) determine the required wic 
from the relationship M = f ybhp /4 = 237.5L0 (kNm) (53.4Z/> kip-in), 5) define thp/Kour-

glass shape, using the same equation, with the calculated value of b and the appropriate 
moment, 6) determine the minimum thickness to satisfy shear requirements. Assuming a 
vield strength of the steel fy -  360 MPa (52.2 ksi), a possible solution is Lp =1.029 m 
'40.5 in), hD ~ 116.5 mm (4.59 in), b -  200 mm (7.9 in). The devices could be profile-cut 
from 100 mm (3.9 in) plate with two devices mounted side-by-side.
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This possible solution is sketched in Fig.11.40. Clearly several other choices may well 
be possible, including completely different solutions, such as for example the shear link 
briefly described in Section 6J.

Fig.11.40 Geometry of a Damper for Example 11.5, and of its Connection to
the Walls

With respect to the case presented in Secdon 6.8.7 (Example 6.3) it is worth nodng 
that the global structural performance is similar, as expected, but the severe damage in the 
coupling beam will be avoided. If the dampers are removed and substituted after a major 
earthquake, part of the residual deformation should be recovered, as being related to the 
damage in the dampers.

(ii) Design example 11.6: The previous example was provided essentially for comparison, 
but did not take full advantage of the use of artificial damping in reducing damage, since 
significant ductility at the walls base was accepted.

Assume now we redesign the system using vertical post-tensioned cables throughout 
the height of the walls, unbonded for a certain length to allow a controlled rocking, and 
again provide dissipating devices between the walls.

As discussed, the elastic deformation of the walls may be neglected and the design 
displacement shape is assumed to correspond to that of a rigid body rotation. Although 
this is an approximation, it should be noted that since the walls are prestressed, we do not 
expect cracking, and the wall displacements at 80% of yield, should be about 25% of 
those in Example 6.3. This implies wall ductility of about 11, and the assumption of 
rigidity will certainly be adequate for an initial design. In consideration of this assumption, 
and of requirements for containing the non-structural damage, a constant drift along the 
height lower than 2% (e.g. 1.5%) could be reasonably assumed. For comparative reasons, 
however the 2% drift will still be adopted. Due to the linear displacement shape the 
equivalent height is still He — 0.7H = 26.9m (88.3 ft) and the design displacement is Aj = 
0.02x26.9=0.538 m (21.1 in).

Again to allow an easier comparison with the previous case, it is still assumed to carrv 
60% of the total overturning moment through coupling action: J3d — 0.6.
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The equivalent viscous damping from the device is assumed to be equal to 4eD = 30%; 
this is compatible with carefully designed steel dampers. The use of X-shaped viscous 
dampers is not advisable because of the low velocities that have to be expected. No 
additional dissipation is provided at the base of the walls, therefore the system total 
equivalent viscous damping is estimated using Eq.(11.63) (a similar value would be 
obtained from Eq.(11.64), with 0.5):

&ys = 0.4 x 0.05 + 0.6 x 0.30 = 0.20
Applying the usual procedure the following results can be obtained:
Displacement spectrum reduction factor for £ — 0.20: — 0.564
Corner period displacement for £ — 0.20: ^ 5,0.20 = 0.564 m (22.2 in)
Effective period: Te -  4.77 s
Effective mass: me ~ 46.4 MN/g (10432 kips/g)
Effective stiffness: Ke — 8.21 MN/m (46.9 kips/in)
Design base shear: Vgase — 4.42 MN (993 kips)
Design overturning moment at base: Mqtm — 118.9 MNm (1.05X106 kip*in)

Wall Design: Since the flanges of the channel walls in Example 6.3 have been 
removed, we design four identical walls, The average bending moment for each wall is 
Mw = 118.9x0.40/4 = 11.9 MNm (105,000 kip*in). Each wall will carry a total vertical 
load W — 5.75 MN (1349 kips) and will be restrained by a lightly prestressed high- 
strength cable located at 500 mm (19.7 in) from each end of each wall.

From Eq.(6.55) the force to be carried by each coupling beam and damper will be:

_  0 .6x118.9 = p g ^  ^
C B ' ‘ 24(5 + 1.8)

Hence the axial force from coupling action at the base of each wall will be 12 X 0.437
= 5.25 MN (1180 kips). This is less than tlhe assessed gravity load of 5.75 MN (1290 kips)
per wall, which is a little lower than for Design Example 6.3 because of reduced weight 
no wall flange) and reduced tributary area G>f floor slab. The axial forces in each of the 

walls of a coupled pair of walls are thus 5.75A5.25 = 0.5 MN (112.4 kips), and 5.75+5.25 
= 11 MN (2373 kips). The expected concrete compression strength is 32.5 MPa (4714 
psi) (see Section 6.8.7), and hence, with a wal| thickness of 250 mm (9.8 in), the depth of 
the compression blocks in the tension and compression walls are 0.073 m (2.9 in), and
1.59 m (62.6 in) respectively. The moment capacities corresponding to axial force in the 
wails are thus: \

Tension wall: Mr = 0.5(5/2-0.072/2) = 1.2MNm (10900 kip-in)
Compression wall: M c=l 1.0(5/2-1.59/2) =18.8MNm (166,000 kip-in)
Total capacity: Mr + Mc—1.2+18.8 =20MNm (177,000 kip'in)

This is 3.8 MNm (33,635 kip-in) less than the required capacity of 2 x 11.9 = 23.8 
MNm (2,000,000 kip*in), and hence additional capacity must be provided by an elastic 
restraining force, as envisioned in the design problem statement. With tendons 500 mm
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(19.7 in) from the end of each wall, and conservatively assuming an increased average 
compression block length of 1.0m (39.4 in), the force required to be developed at the 
design drift of 2% is:

Tt =0.5 x 3.8/(5-0.5-1.0/2) =475 kN (107 kips)

We choose to limit the strain in the tendons at the design drift of 0.02 to £t — 0.004, 
corresponding to a stress of 800MPa (114.5 ksi). This makes provision for response at 
larger than the damage-control limit state, without exceeding the limit of proportionality 
of the tendon steel. Again assuming an average neutral axis depth of 1.0 m (39.4 in), the 
required extension of the tendon will be:

A, = 0.02(5-0.5-1.0)=0.070 m (2.7 in).
The required debonding length is thus:
L = A = 0.07/0.004=17.5 m (689 in).
The required tendon area is
A, = Tt/ft = 0.475/800 m2 =594 mm2 (0.92 in2)

Damper Design: The dampers have to be designed for a force of 437 kN (98 kips). 
The procedure follows that of Example 11.5 and is not repeated here.

11.4 DESIGN VERIFICATION OF ISOLATED STRUCTURES

In this Section the design verification of two previously described Design Examples 
(11.3 and 11.5) is carried out by means of inelastic time-history analysis (ITHA) using the 
program “SeismoStruct” provided in the CD with this book. Input! and output data files 
for the analyses carried out are also included on the CD, together with an overview of 
modelling configuration and assumptions, and a summary of the most relevant results.

11.4.1 Design example 11.7: Design Verification of Design Example 11.3

The four-span bridge of Design Example 11.3 was modelled as a 3-D structure, with 
the superstructure represented by an elastic member, while the piers used inelastic fibre 
beam-column elements with appropriate stress-strain relationships for the concrete and 
reinforcing steel (see Section 4.2). Given that this is an isolated structure, and considering 
also the fact that fibre element formulations account for the actual non-linear response 
characteristics of reinforced concrete members, even in the so-called “elastic” phase of 
response, a reduced value of 1% tangent-stiffness proportional elastic damping was 
introduced. Strain penetration in footings at the base of the piers was considered by 
means of an increase of the length of the finite element, as discussed in Section 4.9.2(b).

Seven ITHA were carried out, each of which using a different spectrum-compatible 
artificial record generated with SIMQKEt06!. The results, which are fully provided in the 
CD, showed mean peak response displacements that are very close to the values assumed 
during design (see Fig. 11.41). The design objective of avoiding inelastic deformations in
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the piers was also achieved, and the response of the isolators was as envisaged during 
design (see Fig. 11.42).
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Fig. 11.41 Mean Peak Deck Displacements Response vs. Design Values
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Fig. 11.42 Mean Peak Shear Demand in Isolators vs. Design Values 
for Design Example 11.7

A second set of analyses was also run, assuming equal radii of curvatures (Rc — 3.5 m) 
for all the devices, which effectively implies an increase of the isolators’ post-yield 
stiffness at the abutments, and a decrease at the side piers. The results showed again very 
good agreement between design assumptions and the actual inelastic dynamic response.

11.4.2 Design example 11.8: Design Verification of Design Example 11.5

The wall building of Design Example 11.5, featuring double triangular-shaped steel 
damping devices as wall couplers (see Fig. 11.40), was modelled as a 2-D structure using 
inelastic fibre elements with appropriate stress-strain relationships for the concrete and 
reinforcing steel (see Section 4.2) to represent the structural walls. The coupling system, 
on the other hand, was modelled by means of 1-metre long rigid line elements with end
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bilinear moment-rotation hinges characterised by an initial stiffness of 20633 kNm/rad, a 
yield moment of 163 kNm and a post-yield hardening ratio of 0.032, following the design 
indications described in Section 11.3.3(d).

A new set of spectrum-compatible artificial records was again employed to run seven 
ITHA, leading to the average results that are shown in Fig. 11.43, where it is observed 
that the design objective of avoiding interstorey drifts larger than 2% has been achieved 
in satisfactory manner; the maximum mean peak drift demand is around 1.8%.
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12
WHARVES AND PIERS

12.1 INTRODUCTION

In Chapter 1, Section 1.3.4(d), the design of marginal wharves was used as an example 
of a type of structure for which conventional force-based seismic design was particularly 
inappropriate. With reference to the example of Fig. 1.10, reproduced here for 
convenience as Fig. 12.1, it was noted that conventional force-based design would sum 
the elastic stiffnesses of the different piles to establish a global structural stiffness, 

x  calculate the corresponding fundamental period, and hence determine the elastic design 
force from the elastic acceleration spectrum, with knowledge of the inertial mass. A 
force-reduction factor would be applied to determine the design seismic force, which 
would then be distributed between piles in proportion to their elastic stiffness. The 
implicit assumption of equal ductility demand, which is required if the force-reduction 
factor is applied to the total design force, is invalid, as is clear from Fig. 12.1(b), where it is 
obvious that the ductility of the piles at the expected response displacement differs 
with the length of the pile. In fact the longest piles will be expected to remain elastic.

Forces in shear keys between adjacent segments of wharves cannot be determined 
directly from elastic analyses, whether these be single-mode or multi-mode analyses. This 
is because the force levels depend on both the response inertia forces in the adjacent 
wharf segments, and the displacement levels. Since the shear keys will be required to 
respond essentially elastically, it might be expected that the elastic forces from an elastic 
modal analysis might be reasonable. In fact these force levels are much higher than will 
result from inelastic response, whereas the force levels found by dividing the elastic 
shear-key force levels by the design force-reduction factor will seriously underestimate the 
true force levels.

Recently the Port of Los Angeles (POLA) in California has addressed these problems 
by developing an alternative seismic design approach based on performance criteria, and 
displacement-based design^40!. Much of the material presented in the following sections 
of this chapter is based on this work, which has also been included in international 
seismic design guidelines for port structures^12!.

In this chapter, we discuss both marginal wharves and piers, with greater emphasis on 
the former. A marginal wharf is defined as a long wharf whose major axis is essentially

599
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parallel to the shore. These structures are often very long, in the order of hundreds of 
metres, comprising several segments connected by shear keys to allow for thermal 
movements. Ships at marginal wharves are thus normally berthed parallel to the shore. 
Piers are structures whose major axis is essentially perpendicular to the shore, and ships 
will normally be berthed parallel to the pier long axis, and hence perpendicular to the 
shore. This is a rather simplistic characterization, as in many cases wharf structures will 
be more complex, either as a consequence of a non-linear shore line (marginal wharves), 
or piers with end segments parallel to the shore. The latter are sometimes termed 
terminals. Figure 12.2 describes some of the alternatives.

Concrete Deck

(a) Transverse Section through Wharf

(b) Force-Displacement Response of Individual Piles

Fig. 12.1 Transverse Seismic Response of a Marginal Wharf
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Fig.12.2 Types of Wharves and Piers (plan view)

12.2 STRUCTURAL DETAILS

Piles for marginal wharves may be constructed of reinforced concrete, prestressed 
cfrqcrete (solid or hollow section), steel H-sections, hollow steel tubes, concrete-filled 
steel tubes or timber piles. However, for new construction, solid prestressed concrete or 
hollow oiSv concrete-filled steel-shell piles will be most common, because of their 
serviceabilityNunder the rigours of pile driving, and corrosive attack from marine 
environments. Existing wharves and piers dating from the 1960’s and earlier will often be 
supported on timber piles. With modern' construction, piles in seismic regions will 
generally be driven or placed vertically, rather than raked at an angle to the vertical. 
Although raked piles result in a stiffer wharf or pier, they attract high seismic axial forces, 
which can be unpredictable in magnitude. These high axial forces induce severe bending 
and shear forces in the deck. The result can be pile failure (compression or pull-out), or 
deck failure.

Decks will normally be cast-in-situ reinforced or prestressed concrete, and because of 
the dimensions of the wharf or pier, the deck will essentially behave as a rigid diaphragm 
in the deck plane. Connection between the deck and piles will depend on the type of pile 
being used, but generally the connection will be moment-resisting, to improve structural 
efficiency and to increase the lateral stiffness. With prestressed or reinforced concrete 
piles, it is common to provide ducts for reinforcing dowels at the top of the pile. When 
the pile has been driven to the specified resistance, the section of pile extending above 
the specified pile-top elevation is removed, by cutting or by explosives. Dowel bars are 
then grouted into the pre-formed ducts in the top of the pile and anchored in the deck, 
when the deck concrete is placed, to provide the moment-resisting connection. 
.Alternatively, with prestressed piles, the prestressing strand may be exposed for adequate 
length to develop the strand in the deck. This approach, though favoured in research 
documents, is not favoured in practice because of the difficulty in avoiding damage to the
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strand when cutting the pile to the final elevation.
With modern marginal container wharves the wharf width will normally be dictated by 

details of the container cranes used to service the ships. Typically modern container 
cranes have a rail gauge of about 30m (100ft), and a weight of between 1500 and 2000 
tonnes. In order to efficiendy support the crane leg vertical reactions, and reduce deck 
flexural and shear forces, the seaward and landward rows of piles (e.g. rows A and F, in 
Fig. 12.1) will be located under the crane rails, and the distance between piles along these 
rows will typically be less than for piles on intermediate rows (rows B to E, in Fig. 12.1). 
On these crane-support lines the typical spacing of piles will be 3m (10ft) or less. For this 
reason it is more common with new container wharves to use comparatively close-spaced 
smaller diameter piles than fewer numbers of larger diameter piles. In the seismic areas of 
the US West Coast, 610mm (24 in) diameter octagonal prestressed piles are most 
common.

12.3 THE DESIGN PROCESS

12.3.1 Factors Influencing Design .̂

Seismic design philosophy for wharves wUT'rK r̂mally be based on inelastic response of 
some or all of the piles, with a capacity-design profc^ss adopted to ensure that the deck, 
and the shear keys, if any, between deck segments, remain essentially elastic. A number 
of additional factors need to be considered at the start of the design process:

• Under longitudinal response, a high eccentricity will exist between the centre of
mass of the deck, and the centres of stiffness or resistance. Thus torsional
response will be inevitable, with significant transverse displacement resulting
from longitudinal excitation. Displacement of corner piles of segments will be 
greater than for piles near the centre of a segment

• The piles will be subjected to simultaneous excitation in the longitudinal and 
transverse direction. Since the ductile elements are the piles, it is thus essential to 
consider the increase in displacement resulting from combined orthogonal 
excitation. This is discussed further in Section 12.3.2.

• Interaction between adjacent wharf segments as a consequence of the resistance 
of the shear keys complicates the structural response.

• With a displacement-based design approach, design will be based on equadng the 
displacement demand and displacement capacity of the critical piles. These piles 
will typically be the corner piles of the landward row (F, in Fig. 12.1). Note that 
displacement demand on the seaward row (A, in Fig. 12.1) may be a little larger 
than at the landward row, but displacement capacity will be much greater, and 
these piles will not be cridcal. If the wharf consists of more than one segment, 
linked by shear keys, it will normally be the corner pile at the end of an end 
segment that will govern design, as the torsional response of inner segments has 
been found from time-history analysis to be reduced by the restraint of the 
adjacent segments^38!.
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• Structural response of the critical piles will involve the formation of pile plastic 
hinges at the pile/deck interface, and at some depth in the dyke. The latter plastic 
hinge is termed the “in-ground” plastic hinge. Since drift limits have little 
relevance for wharf structures, the displacement limits will be dictated by strain 
limits in the plastic hinges, and possibly by P-A effects. The strain limits depend 
on the performance criteria for the level of earthquake considered, and are 
generally different for the pile/deck and the in-ground hinge. The reason for the 
difference is that damage to a pile at the in-ground hinge location is difficult to 
inspect and repair after an earthquake, and hence the design criterion for the in- 
ground hinge will be to avoid damage requiring repair.

• Characterization of the soil properties of the dyke supporting the piles will 
inevitably be subject to some uncertainty. It is important that this uncertainty be 
considered in the design. Generally this will be effected by consideration of 
upper-bound and lower-bound properties for the soil strength and stiffness.

^^Design should be based on whichever bound provides the higher displacement 
demand/capacity ratio. A further complication is that for piles embedded 
through a sloping dyke, the soil stiffness and strength in the upper layers may 
depend on the direction of inertia force; there will be greater resistance to 
landward response than to seaward response. However, the critical piles (Row F 
in Fig. 12.1) will generally be on level ground, and response of the wharf will 
typically be dominated by close-spaced piles on this row. In this case, the 
uncertainty associated with soil properties for upslope and downslope response 
becomes comparatively unimportant.

• Vertical seismic response is not generally a significant issue for design of the 
wharves. Inelastic time-history analyses have shown that lateral displacement 
demands of marginal wharves are insensitive to vertical excitation. Also, the 
displacement capacities are not affected significantly by the levels of axial load 
variation expected from vertical response accelerations. An exception is the 
response of container cranes. Displacements and force levels in cranes have been 
found from time-history analyses to be significantly influenced by vertical 
accelerations^9!.

12.3.2 Biaxial Excitation of Marginal Wharves

With direct displacement-based design, the effective displacement at the centre of 
mass of the structure is required in order to facilitate a SDOF design approach. 
However, as mentioned in the previous section, design must consider both the torsional 
response under longitudinal excitation, and the effects of simultaneous longitudinal and 
transverse excitation. It is convenient to earn7 out the design process on the transverse 
response (i.e. perpendicular to the shore) since response in this direction will normally be 
uniform, unless soil conditions varv significantly along the length of the wharf. Thus it is 
necessary to be able to estimate the relationship between centre-of-mass transverse



604 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design o f Structures

displacement A, under pure transverse excitation, and displacement Acr of the cridcal

Under pure longitudinal seismic excitation, and conservatively ignoring the effects of

effective stiffness eccentricity at design response, and the segment length respectively.
It is common practice with seismic codes-to consider response to biaxial excitation, 

where significant,^on^jheJ^sis_x^f^rrequivalent static approach where the displacements 
result from excitation of 100% of the design spectrum in one direction and A% of the 
design spectrum in the other direction. Typically X—30 is adopted. Equation (12.1) 
indicates that transverse displacements will develop under both transverse and 
longitudinal excitation. For a marginal wharf the combination (100% longitudinal + X% 
transverse) can be shown to be more critical for the vectorial displacement of the corner 
pile than (100% transverse + X% longitudinal). It can easily be verified that under these 
conditions, and again ignoring torsional mass inertia, noting that centre-of-mass 
displacements under pure longitudinal and transverse excitation at full design spectral 
excitation will be equal, the relationship between A, and Acr is given by

Equation (12.2) is plotted for values of X  between 20 and 50, and different segment 
length/width aspect ratios L/B in Fig.12.3, based on the assumption that the eccentricity 
is e — 0.42?. As shown later in Fig. 12.17, and in Design Example 12.1, this is a typical 
eccentricity ratio at design displacement response. Time-history analyses indicate that 
X -40  is adequately conservative for initial design. For an inner segment of a multi
segment wharf, a flat ratio of A, = 0.85Acr may be conservatively assumed.

Recent on-going research has indicated, however, that critical conditions occur when 
the excitation components (100%, X%) are rotated by 30 — 45 degrees from the 
longitudinal axis. Under these conditions, corner displacements can be as much as 15% 
higher than implied byEq.(12.2).

12.3.3 Sequence of Design Operations

corner piles of the critical segment under combined longitudinal and transverse 
excitation.

torsional mass inertia (see Section 6.4), the transverse displacement A,/ at the end of a 
single-segment wharf on uniform soil can be shown to be

where A// is the longitudinal displacement at the centre of mass, and e and L are the

A
(12.2)

With the information given in the previous section, it is now possible to outline the 
steps of the displacement-based design process:
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Plan A spect Ratio, L/B  
Fig.12.3 Ratio of Design Displacement for Simple Transverse DDBD to Corner 
Pile Critical Displacement, for 100% Longitudinal and X% Transverse Excitation

Step 1: Determine the critical pile. This will be a corner pile of an end segment (if there is 
more than one segment)
Step 2: Determine the expected free heights of the piles on rows A to F (assuming six 
rows of piles -  the modification for different numbers is obvious).
Step 3: Carry out force-displacement pushover analyses for a pile of each row in 
accordance with procedures discussed in Section 12.5. This will be carried out for both 
upper and lower bound estimates of soil properties.

7 Step 4: Determine the limit displacement Acr corresponding to the strain performance 
limits for the earthquake level being considered in the design process. This is discussed 
in Section 12.4.
Step 5: Using the information provided by Eqs.(12.1) and (12.2) the centre-of-mass 
design displacement for pure transverse response is calculated. This is the design 
displacement to be used in the direct displacement based design process.
Step 6: Determine the expected displacement ductility demand at the centre of mass. 
The system displacement ductility demand will be a little less than for the landward (F) 
pile row, since other piles contribute to the strength, but with reduced ductility demand. 
If Ay is the yield displacement of the bi-linear approximation to the F-row force- 
displacement response (see Section 12.5) then the system ductility can be approximated, 
for a first estimate, as:

Msys = 1.2A,
(12.3)
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' Step 7: Determine the equivalent viscous damping. Definitive data are not yet available 
on equivalent viscous damping of prestressed piles, though it is expected that POLA tests 
planned at the University of California, San Diego in 2007 will provide useful data. The 
pile-top hinge can be expected to have characterisdcs similar to the “Thin” Takeda rule 
of Eq.(3.17), while the in-ground hinge will initially have nonlinear elastic characteristics. 
Soil damping will add to the global damping, as discussed in Section 10.3.5(c) in relation 
to pile/columns. Until definitive data are available it is recommended that Eq.(3.17a) is 
the most appropriate. This is reproduced here as Eq.(12.4):

£  = 0.05 + 0.444 (12.4)

yj Step 8: With A/ and %e known, determine the damping reduction factor R£ from 
Eq.(2.8), and hence the effective period Te from the displacement spectra set, as 
illustrated, for example, in Fig.3.1(d)

JStep 9: With respect to the typical example of Fig. 12.4 (which represents the response of 
a 6m length of typical wharf in American standard units), and Eq.(3.1), determine the 
effective stiffness:

(12.5)
e

In Eq.(12.5) me is the effective mass corresponding to the length of wharf chosen for 
analysis. This may be a characteristic module length of (say) 6m (20ft). The effective mass 
will include the entire deck mass for the module length adopted plus a contribution of the 
mass of each pile within the module. This should be taken as 1 /3rd of the pile mass 
between deck and effective depth of fixity for displacements, which may be taken as 5- 
pile diameters below the dyke top surface. The calculated stiffness kss will hence also 
correspond to the module length adopted. 

jStep 10: Determine the required lateral strength F.:,, of the segment module from 
Eq.(12.6):

Fa = K  A  (12.6)

j  Step 11: Strengths of the piles at different rows corresponding to the design displacement 
A/ are then read from the pile force-displacement responses to determine how many piles 
are required for a strength of Fss. Clearly there are a large number of possible 
combinations of pile numbers and spacing that will satisfy the required strength Fss. 
However, there will be a number of functional constraints that will limit the choice.

For example, there will often be a requirement for a maximum pile spacing of 3 m 
(10ft) under crane rails, and gravity load design may dictate a maximum pile spacing, 
longitudinally and transversely of about 6-8 m (20-25 ft) in other locations. Referring
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again to Fig. 12.1, variables considered are Likely to be the longitudinal spacing on F and E 
rows, and perhaps the transverse spacing between F and E rows, which will influence the 
clear height of the E row piles, and hence their lateral strength.

D isplacem ent (ins)
Fig.12.4 Typical Effective Stiffness and Ductility for Direct Displacement-Based 

Design, for a 6m (20ft) Length of Wharf. (1 in = 25.4mm, 1 kip =4.45kN)

To aid in design, approximate relationships between pile shear force and clear height 
between dyke and deck soffit are shown in Fig. 12.5. Note that analyses indicate that 
increasing the clear height between dyke and deck at the landside piles will generally result 
in improved (i.e. reduced) demand/capacity (D/C) ratios for displacement. This option 
should be considered when D/C ratios exceed, or are very close to 1.0 for rational 
combinations of pile spacing and numbers.
Step 12: With this preliminary design, assemble the full composite force-displacement 
response for the segment, corresponding to pure transverse displacement, and form a 
bilinear approximation to it. From this determine a revised estimate of the system 
ductility. If this differs significandy from the estimate given by Eq.(12.3), it may be 
necessary to revise the damping, the effective period, stiffness and the design lateral force 
level, utilizing steps 7 to 10 above.
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Step 13: The above procedure, from Steps 4 to 12 should be carried out for both upper- 
bound and lower-bound soil conditions. It will not be obvious which condition will 
govern the design until both solutions are compared. However, upper-bound soil 
conditions will always govern the shear demand on the piles, and hence pile shear 
capacity will be checked for this case.

Note that the design approach above has not specifically considered wharf/crane 
interaction. Where it is expected that crane positioning will significantly increase the 
wharf displacements, then the value of the design transverse displacement found from 
Eq.(12.2) should be reduced accordingly. Wharf/crane interaction is considered in more 
detail in Section 12.6.2(d).

CLEAR HEIGHT (ft)

Fig.12.5 Approximate Relationship between Clear Height of a 610mm Prestressed 
Pile and Shear Force at a Lateral Displacement of 150mm (1ft = 305mm)

J  12.4 PORT OF LOS ANGELES PERFORMANCE CRITERIA.

In Section 12.3.1 it was mentioned that drift limits, which often govern design for 
building structures have little relevance for wharf structures, and that performance limit 
strains will apply when displacement-based designs are pursued. POLA (Port of Los 
Angeles) has developed a performance-based seismic design code^40!, where the 
structural requirements are essentially dictated by four components:

• Definition of earthquake levels to be considered.
• Definition of where inelastic action may occur (i.e. only in piles)
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• Definition of performance limit strains for different pile n.'pes and different 
earthquake levels

• Definition of how capacity protection for elastically responding members and 
actions is to be applied.

This is an early example of a pure performance-based code, and as a consequence is 
described in some detail here. Although direct displacement-based design (DDBD) is 
defined as a preferred design approach, the designer is free to use different and more 
conventional methods of design, provided it can be established that the performance 
criteria have been satisfied.

12.4.1 POLA Earthquake Levels and Performance Criteria

In common with many seismic codes, POLA specifies that two levels of seismic 
intensity must be considered. These are the ' ‘Operating Level Earthquake (OLE)” and 
the “Contingency Level Earthquake (CLE), corresponding to a 50% and 10% probability 
of occurrence in a 50 year time frame respectively. These, then, correspond to Level 1 
and Level 2 earthquakes in Section 2.2.2(b) In terms of average return period the OLE 
and CLE correspond to 72 years and 475 years respectively. The following performance 
criteria apply:

(a) OLE: Forces and deformations, including permanent embankment deformations 
shall not result in significant structural damage. Repairs shall not interrupt wharf 
operations. All damage shall be located where visually observable and accessible for 
repairs.

(b) CLE: Forces and deformations, including permanent embankment deformation 
may result in controlled inelastic structural behaviour and limited permanent deformation. 
All damage shall be repairable, and shall be located where visually observable and 
accessible for repairs. Collapse of the wharf must be prevented, and life safety must be 
maintained. There may be a temporary loss of operations, restorable within an acceptable 
period of time.

The strain limits for piles in the following sections are taken from the POLA seismic 
design code. Piles that satisfy these strain limits are deemed to satisfy the performance 
requirements for the OLE and CLE, defined in Section 12.4.1. With conventional force- 
based design, a check is made at the end of the design process to ensure that the strains 
are not exceeded. With DDBD, the design, using the procedure outlined in Section 
12.3.3, aims to achieve the strain limits at the most critical pile for the specified 
earthquake level.

12.4.2 Performance Criteria for Prestressed Concrete Piles

(a) Operating Level Earthquake (OLE): The Serviceability Limit State for the OLE is
defined by the following material strains:
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(i) For solid round or octagonalprestressed concrete piles:
At the pile head (reinforced concrete capacity)
Extreme concrete fibre compression strain: £c = 0.005
Extreme tensile strain in dowels: £s — 0.010

In-ground hinge (prestressed concrete capacity)
Extreme concrete fibre compression strain: £c — 0.005
Incremental prestressing strain in strands: £s — 0.005

(ii) For round hollow concrete piles, both pile head and in-ground location:
Extreme concrete fibre compression strain: £c= 0.004
The tensile strain in the dowels at the pile head and the incremental prestressing strain 

in strands in-ground have the same limits as for solid piles. If the interior of the hollow 
pile is filled with concrete, all strain limits are the same as for solid piles.

(b) Contingency Level Earthquake (CEE): The Damage Control Limit State for the 
CLE is defined by the following material strains:

(i) For solid round or octagonalprestressed concrete piles:
At the pile head (reinforced concrete capacity)
Extreme concrete fibre compression strain:

€c = 0.004 + (1.4 ps fyh £ ^ ) / f cc but 0.005 < £c< 0.020
Extreme tensile strain in dowels: £s~ 0.050 but < 0.6£smd

In-ground hinge (prestressed concrete capacity)
Extreme concrete fibre compression strain:

£c = 0.004 + (1.4 ps fyh %mc) / Pcc but 0.005 < £c < 0.008
Total prestressing strain in strands: £s — 0.015

where ps — effective volume ratio of confining steel (see Section 4.2.2)
fyh ~ yield stress of confining steel
£smc ~ strain at ultimate stress of confining reinforcement
£smd — strain at ultimate stress of dowel reinforcement
f cc — strength of confined concrete (Eq.(4.10))

(ii) For round hollow concrete piles, both pile head and in-ground location:
At the pile head (reinforced concrete capacity)
Extreme concrete fibre compression strain £c — 0.004
Extreme tensile strain in dowels: £s — 0.025

In-ground (prestressed concrete capacity)
Extreme concrete fibre compression strain £c — 0.006
Total prestressing strain in strands: £s — 0.015
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If the interior of the hollow pile is filled with concrete, all strain values are the same as 
for solid piles.

12.4.3 Performance Criteria for Seismic Design of Steel Pipe Piles

(a) Operating Level Earthquake (OLE):

At the pile head hinge location:
Concrete in-filled steel pipe pile:
Extreme concrete fibre compression strain £c — 0.008
Extreme tensile strain in dowels £* -  0.010

In-ground hinge location:
Hollow or concrete in-filled steel pipe pile
Extreme fibre strain in compression £s — 0.008
Extreme fibre strain in tension £s — 0.010

(b) Contingency Level Earthquake (CLE):

At the pile head hinge location
Concrete in-filled steel pipe pile:
Extreme concrete fibre compression strain £c = 0.025
Extreme tensile strain in dowels: £$ -  0.050 but < 0.6£;>m̂

In-ground hinge location:
Hollow steel pipe pile extreme tension or compression fibre strain:

£s = 0.025
Concrete in-filled steel pipe pile extreme fibre tension or compression strain:

£s = 0.035

The POLA limit strains apply only to prestressed concrete and steel shell (steel pipe) 
piles, and it is assumed that the connection in all cases will be moment-resisting and 
provided by dowels. Other pile types and connection details are possible. For example, 
large-diameter steel shell piles may be economical for wharves that service other than 
container vessels, such as marine oil or LPG terminals. If the wharf is not subjected to 
the heavy crane and container loading of container wharves, larger diameter seismic piles 
at wider spacing may be economical. With large-diameter piles, it will not generally be 
feasible to provide a moment-resisting connection to the wharf deck, as this would 
involve excessive and uneconomical depth to the deck. Consequentiy, the piles will just 
act as vertical cantilevers, with only the in-ground hinge providing seismic resistance.

Note that exposing the prestressing strand at the top of the pile and embedding it in 
the deck concrete to provide a moment-resisting connection is not permitted by POLA, 
because of difficulty in assuring the correct location of the strand, and also because of
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large cracks at the deck/pile interface under moderate seismic response, potentially 
leading to corrosion problems, as well as potential for damage to strand when cutting the 
pile to the final elevation, noted previously.

12.5 LATERAL FORCE-DISPLACEMENT RESPONSE OF PRESTRESSED 
PILES

In order to illustrate the complete design process for direct displacement-based design 
of marginal wharves, the case of a wharf supported by 610 mm diameter prestressed piles 
is used as an example. Information provided in this section is adapted from material 
prepared for the POLA Resource Document!™1!, which provides guidance for the 
application of the seismic codePM°].

12.5.1 Prestressed Pile Details

Lateral resistance in most standard POLA designs consists of 610 mm (24 in.) diameter 
octagonal piles, prestressed with 16-15.2 mm (0.6 in.) diameter prestressing strands. 
Connection to the deck is normally by 8-32 mm (8# 10) dowels, though long piles with 
little contribution to the seismic resistance (e.g. Rows A, B and C in Fig. 12.1) will often 
be connected to the deck by 4-32 mm ( 4#10)dowels. For piles relied on for seismic 
resistance, transverse reinforcement will typically be 12.7 mm (W20) spirals of A82 
smooth round steel, at a pitch of 63.5 mm (3.0 in). Details of the section are shown in 
Fig. 12.6.

Fig. 12.6 Typical POLA 610 mm Octagonal Prestressed Pile Details

Specified material properties, and design strengths for seismic analysis are generally as 
follows:
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Concrete compressive strength: 
Dowel tensile yield strength: 
Prestressing ultimate strength: 
Spiral reinforcement:

Pc =45 MPa (6500 psi) 
fy = 4i4MPa (60 ksi) 
fpu -1860 MPa (270 ksi) 
£y = 483 MPa (70 ksi)

Pce -\.?>PC
fye - l . l f y

= 58.3 MPa (8450psi) 
-  455 MPa (66 ksi)

j£w,= 1.05fpu=1955 MPa (283.5 ksi)
f2ye = l.Ofv = 483 MPa (70 ksi)

Cover to the spirals is normally specified as 76 mm (3.0 in). The increase in expected 
material strengths above specified levels is in accordance with recommendations of 
Section 4.2.6.

Details of typical prestressing are as follows:

Strand area:
Initial stress after losses:
Ultimate tensile stress:
Yield stress (0.02% proof strain): 
Modulus of elasticity:
Ultimate strain:

f£pue

= 138.6 mm2 (0.215 in2) 
= 1062 MPa (154 ksi)
= 1955 MPa (283.5 ksi) 
= 1490 MPa (216 ksi)
= 200 GPa (29000 ksi) 
= 0.06

12.5.2 Moment-Curvature Characteristics of Pile/Deck Connection

Results of moment-curvature analysis of the pile/deck connection for different levels 
of axial force are shown in Fig. 12.7.

Cla
HZw
5o
%

CURVATURE (1/in)

Fig. 12.7 Moment-Curvature Response of 610mm Pile/Deck Connection with 
8-32mm (#10) Dowels. (1 kip.in = 113 Nm, 1 in. = 25.4mm)
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The analyses were based on procedures outlined in Section 4.2, using an ultimate 
compression strain of 0.02. The validity of these equations had been established in many 
tests on columns in the past, but also on a full-scale model of a pile/deck connectiontS9l. 
Results comparing the actual and predicted force-displacement response of the test unit 
are shown in Fig. 12.8. It will be seen that the theoretical prediction, indicated in Fig. 12.8 
by the dashed line, gives a close, but slightly conservative envelope of the experimental 
response. Additional testing on pile/deck connections has recently been carried out at the 
University of California, San DiegoPC5L

For structural analysis of the wharf, it will normally be appropriate to represent the 
force-displacement behaviour of individual piles by a bilinear approximation. This 
requires a similar bilinear approximation for the moment-curvature response. A typical 
example is shown in Fig.12.9. The actual moment-curvature response (in this case for an 
axial force of 1335kN (300 kips)) indicates strength degradation due to spalling of cover 
concrete. This is much more significant for piles than for building or bridge columns, 
where the cover is typically a much smaller fraction of the section diameter or width. In 
the typical example of Fig.12.9, the strength at the maximum curvature has regained some 
of the loss, as a result of strain-hardening of the dowel reinforcement, but the final 
strength is less than the peak flexural strength before cover spalling initiates. In such 
cases it would be unwise to use the peak strength as the design strength, and the value 
recommended is the lower of the initial peak, and the final strength.

The critical design data can be extracted in dimensionless form from the curves of Fig. 
12.7. These data include the design moment, the effective elastic stiffness, and the 
curvatures corresponding to the yield, OLE and CLE limit states. Design results are 
summarized in Fig. 12.10, and discussed in the following sections:

(a) Design Moment: In Fig.l 2.10(a), dimensionless peak moment, and design moment 
(based on the elasto-plastic approximation to the moment-curvature response shown in 
Fig. 12.9) are plotted against dimensionless axial force. Axial load P  and moment M  are 
reduced to dimensionless forms by the usual equations:

P M
P* = ----------; M * = --------   (12.7)

f \ \  f ' c D

where Ag and D  are the gross cross-section area (7lD2 /4) and diameter respectively, 
and the concrete compression strength Pc used is the specified (rather than expected) 
strength -  in this case 6.5 ksi (44.8 MPa). With this dimensionless formulation, the 
information in the graph can be used for any consistent system of units — SI or American 
Standard, for example, and the graphs can also be expected to provide reasonable 
estimates of moment capacity for pile/deck connections with different pile diameters, 
provided the concrete compression strength, reinforcement yield strength and ratio of the 
dowel connection are similar to those used to generate these curves {Pc = 6.5 ksi (44.8 
MPa), fye — 455 MPa (66 ksi)/ p{ — Ast / A — 0.0305), and the ratio of cover to pile diameter
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Fig.12.8 Force-Displacement Response of a Pile/Deck Connection 
(1 kip = 4.45kN, 1 in. = 25.4 mm)
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Drift  (%)

Fig.12.9 Bilinear Approximation to Pile/Deck Moment-Curvature Response 
(1 kip.in = 113 Nm, 1 in. = 25.4 mm)
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is also similar to that for the piles illustrated in Fig. 12.6. It will be noted that for low 
levels of dimensionless axial force, the peak and design moment are the same, but that for 
higher levels, the peak moment exceeds the design moment by as much as 15%, due to 
the increasing influence of cover spalling.

- 0.1 0 0.1 0.2 
Axial Load Ratio (P / f''cA g)

(a) Moment Capacity

A xial Load Ratio (P / ffcA g) 

(b) Yield and OLE Curvatures

Axial Load Ratio (P /f'cA g) A xial Load Ratio (P / f’cA g)

(c) CLE Curvature (d) Elastic Stiffness Ratio

Fig.12.10 Dimensionless Strength and Ductility Parameters for 610 mm (24 in) 
Pile/Deck Connection with 8-32 mm (#10) Reinforcement Dowels.
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The design moment of Fig. 12.10 can be represented by the dimensionless Eq.(12.8) 
below, with a maximum error of about 1.5%:

M* = 0.0621 + 0.033P * -0 .2 3 P  *2 (12.8)

where M * and P* are given by Eq. (12.7).

(b) Yield Curvature: Figure 12.10(b) plots the variation of dimensionless curvature (p* 
against dimensionless axial load for yield and OLE curvature. The curvatures have been 
made dimensionless using Eq. (12.9):

<p* = 0D/£y (12.9)

where £ — f y / Es is the yield strain of the dowel reinforcement.
As has been found for other section types (see Secdon 4.4), the dimensionless yield 

curvature is rather insensitive to axial load ratio, and hence the data in Fig. 12.10(b) can 
be expected to apply to other section diameters, and dowel properties, with only small 
errors. The data for yield curvature in Fig. 12.10(b) can be approximated with good 
accuracy (errors less than 1%) by Eq. (12.10):

(/)* = 2 .6 8 -2 .2 1 P *  (12.10)

(c) OLE Curvature: The design curvature corresponding to the OLE limit state is also 
plotted in dimensionless form in Fig. 12.10(b). For ease of comparison with the yield 
curvature, it has been put into dimensionless form using Eq.(12.9). However, it should 
be recognized that the OLE curvature is not dependent on the yield strain of the dowel 
reinforcement, and hence should be converted back to “real” data using £y — 0.002237; 
the value applying to the POLA piles. It will be seen that the OLE curvature is 
comparatively insensitive to axial load ratio P* At low values of P*y the curvature is 
limited by the OLE tension strain limit, while for higher values of P*, the compression 
strain limit governs. The data for OLE curvatures in Fig. 12.10(b) can be approximated 
with reasonable accuracy (within 4%) by the following equation:

<Po l e =  7.68 + 5 .6 8 P * -6 3 .6 P * 2 (12.11)

(d) CLE Curvature: Figure 12.10(c) plots the variation of dimensionless CLE 
curvature against P* Again it has been made dimensionless using Eq. (12.9), for 
comparison with the yield strain values, and again the specific value of £y — 0.002237 
must be used to obtain valid “real” data. CLE curvature is strongly dependent on the 
axial load ratio, since the compression strain limit governs in all cases. Comparing the
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CLE and yield curvatures indicates that curvature ductility capacity reduces from about 
fL̂ —12 to about //̂ = 10 as P *increases from -0.05 to 0.2. The data in Fig. 12.10(c) can be 
represented with good accuracy by the equation:

0 c l e  = 3 0 .4 -4 5 .9 P * + 4 6 .3 P * 2 (12.12)

(e) 'Elastic Stiffness (.EIefj■): Finally, the effective elastic stiffness, made dimensionless by 
dividing by the gross section stiffness EIgr0SS is plotted against axial load ratio P * in 
Fig. 12.10(d). The effective stiffness is that corresponding to the initial stiffness of the bi
linear approximation to the moment curvature curve, as shown in Fig. 12.9. This is found 
from the line from the origin through the point corresponding to first yield of dowel 
reinforcement (or an extreme fibre compression strain of 0.002, if this occurs first), since 
this is the best representation of elastic stiffness at high elastic force levels^4!. It will be 
seen that the elastic stiffness is strongly dependent on P*y increasing by more than a 
factor of 2 as P* increases from -0.05 to 0.2. The data in Fig. 12.10(d) are represented 
with good accuracy by the equation:

EIpirEI* =  4L = 0.268 + 0.852P* (12.13)
E lgross

12.5.3 Moment-Curvature Characteristics of Prestressed Pile In-Ground Hinge

Plastic hinging normally occurs first at the pile/deck connection, as described in the 
previous section, and is followed by a second hinge, forming some distance below the 
dyke surface, which is termed the “in-ground” hinge. At this location, the reinforcing 
steel tension capacity contributing to the flexural strength is provided solely by 
prestressing, the details of which are given in Section 12.5.1.

As shown in the moment-curvature curves of Fig. 12.11, which are plotted for a range
of axial force ratios, the decrease in moment capacity resulting from spalling is more pro
nounced than for the pile/deck connection. This is because the prestress force acts 
primarily in the same way as an increased axial load on the section. The curves of 
Fig. 12.11 have been continued out to the curvature corresponding to an extreme fibre 
compression strain of 0.02. However, as noted in Section 12.4.2, POLA limit strains for 
the in-ground hinge are much lower than for the pile/deck hinge, where damage can be 
inspected after an earthquake. The condition corresponding to the CLE strain limits of 
Section 12.4.2 is represented in Fig. 12.11 by the large dots, occurring soon after spalling.

It will be noted that the CLE compression strain limit for the in-ground hinge 
(<0.008), though less than the pile/deck connection, is large in comparison with normal 
estimates of extreme-fibre crushing strain. This is because the cover concrete at the in- 
ground hinge location is confined to some extent by the passive pressure of the soil, 
which has been found in experiments to delay the onset of cover concrete spallingP6!. It
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is also probable that the soil confinement will inhibit the steep falling branch of the 
moment-curvature curves after peak moment is achieved, since this strength reduction is 
a result of cover concrete spalling. This has yet to be confirmed experimentally.

CURVATURE (1/in)

Fig.12.11 Moment-Curvature Response for 610 mm (24 in) Prestressed Piles 
(prestress = 16x15.2 mm (0.6 in) strands. 1 kip.in =113 kNm; 1 in =25.4 mm)

As with the pile/deck connection, it is possible to extract critical design information 
from the prestressed secdon moment-curvature analyses, and present it in dimensionless 
graphs and equations. The graphical formulation of these data is presented in Fig. 12.12, 
using the same parameters to make the results dimensionless as was used in the previous 
section for the pile/deck connection.

(a) Flexural Strength: Figure 12.12(a) shows the variation of dimensionless design and 
peak moment with axial load ratio P * Both design and peak moment are strongly
influenced by the level of axial load. Since the peak moment will need to be considered
w hen maximum feasible shear demand on the pile is estimated, dimensionless equations 
tor both design and peak moment are given below:

Design moment: M D = 0.0645 + 0 .147P  * —0 .173P *2 (12.14a)

Peak moment: M p = 0.0718 + 0 .116 P  * —0.2 7IP *2 (12.14b)

Agreement between the equations and the graphs is within 0.5% for all values of P*.
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0.05 0.1 0.15 0.2
Axial Load Ratio (P/f'cA g)

(a) Moment Capacity

0.25
A xial Load Ratio ( P / f ^ )  

(b) Yield and OLE Curvatures

Axial Load Ratio (P /f’cA g) Axial Load Ratio (P / fcA g)

(c) CLE and Ultimate Curvature (d) Elastic Stiffness Ratio

Fig. 12.12 Dimensionless Strength and Ductility Parameters for 610 mm (24 in.) 
Prestressed Pile (16x15.2 mm (0.6 in) Prestressing Strands)

(b) Design Curvature Limits: Figures 12.12(b) and 12.12(c) plot the design curvature 
limits against P* To facilitate comparison with the pile/deck curvature limits, they have 
been made dimensionless using Eq. 12.9. However, it will be appreciated that use of the 
dowel yield strain is stricdy inappropriate, and the values need to be multiplied by £ 
=0.002237 to obtain “real” curvatures.

Values are plotted for yield, OLE and CLE curvatures, and also for “ultimate”
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curvature, corresponding to an extreme fibre compression strain of 0.02. Although this 
strain exceeds the CLE limit strain, it may be of interest if the true limit to deformation 
capacity, corresponding to the onset of strength degradation, is required.

The limit curvatures can be represented with adequate accuracy by the following 
equations:

Yield curvature: €  = 2 .0 4 - - 0 . 1 5 8 P * -9 .2 7 P * 2 (12.15)

OLE curvature: 0OLE = 4.38+ 12. IP * - 5 1 . OP*2 (12.16)

CLE curvature: fdE = 8.37’ + 14 .OP*- 8 6 .2 P * 2 (12.17)

Ultimate curvature: II= 28.0-- 4 4 .6 P * + 5 1 .0 P * 2 (12.18)

(c) Elastic Stiffness: (EIeff): Two values for elastic stiffness ratio are plotted in Fig. 
12.12(d). One is applicable for response at the yield moment, and the other applies to a 
peak moment in the prestressed pile of 65% of the nominal moment capacity. The latter
value will be appropriate for those portions of the pile subjected to only moderate
moments, or when deflection capacity at the pile/deck first yield condition is investigated. 
Equations describing the variation in relative stiffness with P *are listed below:

El
At yield: EIy = -= 0.357 + 0.705P *2 (12.19a)

gross

E l
At 0.65* A/d: E l‘0 65M = °65Md = 0.588 + 4.35P * - 1 1 .95 P *2 (12.19b)

° EIgIOss
From these equations, a trilinear approximation to the prestressed pile moment curvature 
relationship can be developed, as is shown in Fig. 12.13, and compared with the bilinear 
approximation. The trilinear approximation will provide a more accurate representation 
of the variation of elastic stiffness along the length of the pile, and will hence result in 
more accurate estimation of the pile force-displacement response.

12.5.4 Inelastic Static Analysis of a Fixed Head Pile

(a) Modelling Aspects: The wharf force-displacement response may be found by 
assembling the response of the individual pile rows. This is illustrated in a simplified 
form in Fig. 12.14 where the wharf is considered to be supported by piles on six lines, A 
ro F. T and IG represent the positions of the pile-top and in-ground plastic hinges 
respectively, though the position of IG will not be known at the start of the analysis. 
Prior analyses^42! have shown that for 610mm (24 in) diameter prestressed piles, the
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relative stiffness of deck and pile is such that the pile top may be considered to be fully 
restrained against rotation. This simplifies analysis considerably.

Fig.12.13 Bi-linear and Tri-linear Approximations to Prestressed Section 
Moment-Curvature Characteristic.

(i) Pile member properties: Modelling for a single pile is illustrated in Fig. 12.14(b). The pile 
is represented by a series of inelastic pile members whose end nodes are connected to 
lateral soil springs. The properties of both soil springs and pile members will vary with 
height. At the top of the pile, the pile member stiffness and strength should model that of 
the appropriate connection detail, using data presented in Sections 12.5.2 and 12.5.3. 
Section strength and stiffness will gradually change from the reinforced concrete 
characteristics at the top of the pile to fully prestressed characteristics. A strand 
development length of approximately 5 0 ^  is necessary to develop the ultimate capacity 
of prestressing strand of diameter dps in confined conditions, such as exist in piles 
represented by Fig. 12.6. For dps=\52 mm (0.6in), this implies a development length of 
760 mm (30in). Note that if the dowel length is significantly longer than the strand 
development length, then a section of the pile where the dowel and prestressing are both 
fully developed could occur. In this region the strength and stiffness of the pile could 
exceed the values predicted in Sections 12.5.2 and 12.5.3 for either connection or 
prestressed sections. This will not normally pose problems for analysis, since the region 
of increased strength and stiffness will normally be between the deck and in-ground 
plastic hinges where moment demand is low, and the contribution of local curvature 
to overall displacement will be insignificant. An exception occurs on the landside piles 
(Row F, F ig.l2.14(a)) where the distance between the deck hinge and the in-ground hinge 
may be as low as 2.5m (100 in). If the dowels are inserted longer than this, then the 
moment capacity of the in-ground hinge may have contributions from both dowels and 
prestressing strand, and exceed expected capacity. Although this may initially be 
considered “safe” since lateral strength will be enhanced, it also means that the shear 
demand on the critical piles will be increased, and could possibly exceed shear capacity.
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Fig.12.14 Model for Pushover Analysis of a Single Pile

Recent experimentslK5l indicate that the pile stiffness increases rapidly with distance 
from the deck connection. As a consequence it is recommended that the top 400 mm 
(16in) of pile be given the properties of the dowelled connection, and the lower regions 
of the pile be given the prestressed properties.

(ii) Special member at top of pile to model strain penetration: Although the deck may be modelled 
as infinitely rigid for resisting pile-top rotation, it is important to recognize that the strain 
in the dowels does not drop to zero immediately at the pile-deck interface, but gradually 
reduces over a finite length due to bond stress. This provides additional rotation which is 
not modelled if the rigid support is located at the physical top of the pile. For correct 
modelling, it is necessary to add an additional member at the top of the pile, penetrating a 
length L$p into the deck, as shown in Fig. 12.14. This member should be given the elastic 
stiffness of the dowel connection detail, and an artificially high yield moment to ensure 
that the analytical plastic hinge forms at the bottom of the deck, not at the top of the 
strain-penetration member. The length of the strain-penetration member is related to the 
dowel-bar diameter dtu and yield stress fye in accordance with Eq.(4.30), reproduced here 
as Eq.(12.20):

Lsp = 0 .022 f yedbl mm (fye in MPa, d  ̂in mm) 

ins (fye in ksi, in ins.)

(12.20a)

(12.20b)
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(in) Soil springs: Soil Springs will normally be modelled with bilinear inelastic force-
displacement characteristics for pushover analyses. The initial stiffness ksl of the springs 
will be related to the lateral subgrade coefficient Kfj by the expression

ksi = K hDLl kN/m (kips/in) (12.21)

where D  is the pile diameter, Li is the tributary height of pile from midway to the spring 
below to midway to the spring above the spring considered, and Kh is the value of lateral 
subgrade coefficient at the depth H  of the spring below ground surface. Kh has the 
dimensions (FLr3).

Maximum in-ground pile moments will normally occur at depths between 1.5 m (60 
in) and 3.0 m (120 in) (the value depends on the soil stiffness and strength, and the clear 
height Lc between deck soffit and dyke) below the dyke surface, for 610 mm (24 in.) 
diameter prestressed piles. To ensure adequate precision in modelling the pile moment 
profile, it is thus important that the soil springs be closely spaced in the upper region of 
the pile. For 610 mm (24 in.) diameter prestressed piles it is recommended that the first 
spring be located 150 mm (6 in.) below the dike surface, then springs be spaced at no 
more than 300 mm (12 in.) centres to a depth of about 4 m (160 in.). Below this the 
spacing can be increased.

(b) Analysis: A lateral pushover analysis of the single pile shown in Fig. 12.14 is carried 
out by either gradually increasing the lateral force Fi at the top of the strain-penetration 
element, which is considered free to translate but fixed against rotation, and analyzing the 
structure at predetermined incremental force levels, tracking stiffness changes at each 
force increment, and modifying the stiffness matrix accordingly, or by carrying out a 
similar incremental procedure where the displacement at the top node is increased 
incrementally. The latter is generally preferable, as the maximum resisting force is not 
known at the start of the analysis, whereas the range of displacement interest will 
generally be known. Under force-based pushover, the analysis will become unstable 
when the specified lateral force exceeds the lateral strength of the pile, and the full force- 
displacement response may not be determined. This problem can be solved by placing an 
elastic horizontal spring at the top of the pile, in line with the applied force F l and with a 
stiffness (say) of 50% of the pile elastic lateral stiffness. The actual stiffness value of this 
spring is not very important. The spring provides stability to the force-based analysis, 
and in this case, it will be the shear force in the top pile element, not the applied force 
that is plotted against the pile-top displacement. Ideally, force-increments in the initial 
stages of the analysis should be comparatively large, reducing as the analysis proceeds, 
while for displacement-controlled pushover, the initial displacement steps should be 
small, increasing as the structure enters the nonlinear range. The choice between force- 
based or displacement-based pushover will depend on the computer code being used. Lc 
either case, the required output is the force-displacement response at the top of the 
strain-penetration element, and the displacements at which the pile-top and in-grounc 
hinges form. A typical example for an F-line pile (see Fig. 12.14) is shown in Figl 2.15(a).
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Fig.12.15 Typical Results of 610mm (24 in) Prestressed Pile Pushover Analysis 
(1 kip.in =113Nm, 1 in =25.4mm)

The force-displacement response will be essentially linear until the first hinge forms, 
normally at the pile top, at a displacement of , and a corresponding force F ij. 
Slight nonlinearity may occur before this as a result of the top soil springs yielding, and 
the tri-linear representation of the prestressed section moment-curvature response, 
suggested in Fig. 12.13. At Ah j there is an abrupt change in the slope of the force-



626 Priestley, Calvi and Kowalsky. Displacement-Based Seismic Design of Structures

displacement response, with a second essentially linear segment until the in-ground hinge 
reaches its moment capacity at a displacement of Ah,ig> Again, there may be slight 
nonlinearity to this segment. For displacements larger than Ahjg, the force-displacement 
response will be essentially flat, given the assumed elasto-plastic moment-curvature 
relationships of Section 12.5.2.

Also shown in Fig. 12.15(a) are the OLE and CLE limit displacements corresponding 
to development of the corresponding strain limits at the top, and in-ground hinges 
(Aolej> A0 LEJG9 AcLEjy and Aclejg)- The relative magnitudes, and also the order in 
which the limit displacements occur may differ significantly from those shown in 
Fig.l 2.15(a). Although the displacements Ah j  and Ahjg at which the hinges form can be 
determined directly from the pushover analysis, the limit displacements need further 
consideration.

(i) Displacement at the OLE Limit State: The displacement at the OLE limit state is the 
lesser of the displacements corresponding to the pile-top and in-ground OLE limit 
curvatures. Normally the pile top will govern. For the pile top, the OLE limit 
displacement Ao le j is given by:

^ olej ~ ^HJ ^PtOLEJ (12.22)

where A^olej is the plastic displacement corresponding to the limit plastic rotation 
Op,olej at the pile top, given by:

P̂,OLE J  = ($OLEJ ~ $yj)'L pT (12.23)

where (f)0LE T and (/> T are the OLE and yield curvatures for the top connection detail

(Fig. 12.10b; Eqs.(12.10), (12.11)) and LPT is the plastic hinge length at the top of the pile, 
given by Eq.(4.31), reproduced here as Eq.(12.24):

LPT=kHcon+Lsp>2Lsp (12.24)

where k is defined by Eq.(4.31b). In Eq.(12.24) Hcon is the distance from the deck soffit 
to the point of contraflexure in the pile (see F ig.l2.15(a)), and Lgp is the strain-penetration 
length, given by Eq.(12.20). Note that a plastic hinge length of 2LsP is the minimum 
value to be used in design, and this will normally govern at the pile top.

Normally, the plastic rotation at a potential plastic hinge can be direcdy extracted from 
the pushover analysis, and hence it will be straightforward to determine the displacement 
corresponding to 0 p,olej■

The displacement corresponding to the in-ground hinge OLE limit is given by:
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^ O L E J G  ~ ^ H J G  + ^ P . O L E J G  (12.25)

where Ap}olejg is the plastic displacement corresponding to the limit plastic rotation 
Op,olejg at the in-ground hinge, given by:

^ P,OLEJG ~  @ P ,O L E J G 'H IG  = ( $ OLEJG ~~ ^ y J G ) ‘ ^ P J G ’^ I G  (12.26)

where Qo l e j g  and (j>yjG are the OLE and yield curvatures for the in-ground hinge, given 
in Fig. 12.12(b) and Eqs.(12.15) and (12.16), and LPjg  is the plastic hinge length for the in- 
ground hinge.

Because of the gradual curvature of the moment profile in the vicinity of the in- 
ground hinge (see Fig. 12.14(b), e.g.) the plastic hinge length spreads both up and down 
from the critical section, and is quite long. Exact determination of the plastic hinge 
length is not feasible, since it is influenced by the confinement provided by the 
surrounding soil, as well as by the curvature of the moment profile. Note that even if 
spalling of the cover concrete initiates, it would appear impossible for the cover to 
completely separate from the pile, and some integrity of the cover will remain. A 
reasonable approximation for the plastic hinge length is the length of pile over which the 
moment exceeds 90% of the peak moment. For typical soil stiffnesses, and 610mm 
prestressed piles, this corresponds to a length exceeding twice the pile diameter, D, and 
hence the in-ground plastic hinge length may be conservatively taken as Lp JG = 2D
(ii) Displacement at the CLE limit state: The displacement at the CLE limit state is the lesser 
of the displacements corresponding to the pile-top and in-ground CLE curvatures, 
defined in Sections 12.5.2 and 12.5.3. The procedure is identical to that for the OLE limit 
state, substituting the CLE curvatures and rotations for the OLE values in Eqs.(12.22) to 
(12.26).

(in) Ultimate displacement capacity based on ultimate in-ground binge curvature: Figure 12.12(c) and 
Eq.(12.18) define “ultimate” curvatures, (f)o.o2 for the in-ground hinge of 610 mm (24 in.) 
diameter prestressed piles. These exceed the curvatures corresponding to the CLE limit, 
but provide a conservative estimate of the maximum dependable curvature capacity of 
the pile considered. By similarity to the in-ground CLE limit displacement calculated in 
the previous section, the ultimate displacement Au l t j g  is given by:

^ U L T J G  =  ^ H J G  (00.02 ~~ ^ v J G ^ P J G ' ^ / G  (12.27)

where the plastic hinge length is Lpjc -  2D.
Note that the strength of the pile-top plastic hinge may have seriously degraded by 

this displacement, so a reduced lateral strength of the pile may be appropriate if ultimate 
displacement capacity is considered. However, it should also be recalled that the CLE
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curvature for the top hinge does not correspond to a true “ultimate” or collapse 
condition, since the displacement capacity is expected to exceed the CLE limit by 50%, 
on average, before significant strength degradation commences.

12.6 DESIGN VERIFICATION

12.6.1 Eccentricity

After the initial design has been carried out using the procedure of Section 12.3.1, the 
first step of design validation will be to check the assumed value of the transverse 
eccentricity, and recalculate the required strength, if necessary.

Typical force-displacement plots for A-Line to F Line piles for a wharf such as that 
shown in Fig. 12.14 are shown in Fig. 12.16(a). The OLE and CLE limits for the critical 
F-Line piles are also indicated. Since the OLE and CLE displacement limits for the other 
piles will be greater than those for the F-Line piles, they are of little interest, and hence 
have not been shown in Fig. 12.16(a). Note that the A and B line piles contribute little to 
the overall lateral strength of the wharf, and that their response is effectively linear-elastic 
up to the maximum displacement considered in the analyses, of 244mm (9.6in).

It may be useful to consider the composite lateral force-displacement response of a 
module of wharf consisting of a 6 m (20ft) length, and full width, since piles have 
generally been spaced at 6 m (20ft) centres in the longitudinal direction for the internal 
rows, and at some simple divisor of 6 m (20ft) on the crane-support lines (in this case, A 
and F). Other module lengths may be appropriate for specific designs. Figure 12.16(b) 
plots such a composite response based on the F-Line piles being at a spacing of 2 m 
(6ft-8in), and the A-Line piles being at a spacing of 3 m (10ft), using the individual pile 
force-displacement responses of Fig.12.16(a). The OLE and CLE limits, corresponding 
to the critical F-Line piles, are also shown. The response of an entire wharf segment in 
the transverse direction is determined by multiplying the force ordinates of the 
characteristic module by the number of modules in the segment length.

For seismic response in the transverse direction, the centre of stiffness and centre of 
mass of a wharf segment between movement joints will normally coincide, unless the 
segment has non-rectangular geometry, or the soil properties vary along the length of the 
segment. For seismic response in the longitudinal direction, however, the centre of 
stiffness will have considerable eccentricity7 from the centre of mass, and will generally be 
close to the landside row (Line F, in Fig. 12.14). Referring to the nomenclature of 
Fig. 12.14, the distance of the centre of stiffness from the F-Line piles can be expressed 
as:

F  F

Z k in i { X ' ~ X l  )  Z F U n i ( X i -  X F  )

x - x F = ^  ?--------------= -*-----?---------- ■—  (12.28;

A A
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where k\ and Fu are the stiffness, and lateral strength at a given displacement for the 
piles on row 1' and n, is the number of piles in row i in the characteristic module length 
considered (e.g. 6m (20ft)).

Deck D isplacem ent (ins)

(a) Individual Pile Lateral Force-Displacement Responses

D isplacem ent (ins)

(b) Characteristic Force-Displacement Response for 20ft of Wharf

Fig.12.16 Composite Force-Displacement Response of a 6m (20ft) Length of
Wharf (1 kip = 113 kN)
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It will be seen from the above formulation that the position of the effective centre of 
stiffness is not a constant, but varies as the displacement varies, since the F- and E-Line 
piles will enter the nonlinear range of response earlier than the other piles, and hence 
their secant stiffness will decrease relative to the other piles. Figure 12.17 plots the 
eccentricity of the centre of stiffness from the centre of mass as a function of 
displacement, calculated from the data in Fig. 12.16(a). In generating Fig. 12.17 it was 
assumed that the piles on Row F were at 2m (6.67ft) centres, on Row A were at 3m (10ft) 
centres, and on Rows B to E were at 6m (20ft) centres. The eccentricity is expressed by 
ratio to the width B= 30.5m (100ft) between crane rails, which were located above Rows 
A and F, making the assumption that the pile rows are spaced uniformly at 6m (20ft) 
centres in the transverse direction. Note that in this case, the centre of mass will be 
approximately midway between the C- and D-Line piles. The eccentricity between the 
centre of mass and centre of stiffness will reduce from about 13.4m (44ft) to about 12.6m 
(38ft) as the displacement increases to 244mm (9.6in).

^ 2 ^

D isp lacem ent (in)

Fig. 12.17 Eccentricity between Centre of Mass and Centre of Stiffness for Data of 
Fig.12.16 at Different Lateral Displacements (1 in = 25.4mm)

12.6.2 Inelastic Time History Analysis

When complexities in the structural configuration of the wharf lead to uncertainty of 
structural response, or where special importance is placed in the verification of seismic 
response, the only option will be to carry out inelastic time-history response of the wharf. 
Since the value of the wharf will be high, this will generally be economically feasible. 
General issues relating to inelastic time-history analysis are covered in some detail m 
Section 4.9.2, with information of special relevance to wharves in Section 4.9.2(i).

(a) Substructure modelling: A typical wharf segment between movement joints will 
have several hundred piles. To model each of these as individual structural members is
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time-consuming and unnecessary. An accurate representation of the structural 
characteristics of a wharf segment may be obtained by using four “SuperPiles” whose 
composite characteristics of stiffness and strength model the stiffness of all piles in the 
segment, as suggested in Fig. 12.18. This representation relies on the observation that the 
flexural stiffness of the deck is high compared with the piles, as noted earlier in Section 
12.5.4(a), and may be considered rigid, both in-plane and out-of-plane.

Fig.12.18 Locations of SuperPiles for a Wharf Segment (Plan View)

Note that representing the lateral strength and stiffness characteristics of the piles by 
horizontal springs, as shown in Fig. 12.18, enables the 3-D wharf structure to be 
modelled by 2-D inelastic time-history analysis. This assumes that wharf response to 
vertical seismic excitation is not of concern. Although this will generally be the case for 
“bare-wharf ’ studies, a full 3-D modelling and excitation will be needed when wharf- 
crane interaction is considered.

Figure 12.18 shows SuperPiles located at nodes 1 to 4, connected to each other by 
rigid members, and also connected to nodes 5 to 8 located at the corner piles. These 
links are necessary to obtain the cridcal displacements, which will occur at corners of the 
segment, from the computer analyses. Additional nodes (not shown) at the midpoints of 
the ends of the segment will be required when adjacent segments are connected by shear 
keys.

Referring again to the model of Fig. 12.14, the lateral resistance of the SuperPiles at 
nodes 1 and 2 at a given displacement A each represent the combined resistance of all 
piles on lines D, E and F for half the segment length. That is,

Fto = FA2= 0 -5N Y j n'F±u ’ similarly: FA3 = F&4 = 0.5 n,F„Lj (12.29)
L -D  L -A
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where, again, is the number of piles on line i  in the characteristic module length (e.g. 
6m), and TV is the number of characteristic modules in the segment length, L. The 
effective (secant) stiffness of the SuperPiles at the specified displacement A is given by:

= ki = /V A > k2 = k4 -  Faj / A (12.30)

Equations (12.29) and (12.30) can be calculated for different displacements to generate 
the composite force-displacement response in similar fashion to that used to generate the 
characteristic response of the 6m module in Fig. 12.16.

The distance of Nodes 1 and 3 from the F-Line are given by:

r

Y iniFuxi Y ,n'Fi'x,
---------  and X 3 =  ~ -----------

Y jniFu

  and   (12.31)

L - D  L=A

To provide the best possible representation of the inelastic response, Eq.(12.31) 
should be evaluated at an initial elastic displacement, since the movement of the centre of 
stiffness will automatically follow onset of inelastic action. In order to ensure the correct 
torsional stiffness under longitudinal response, the SuperPiles must be located 
longitudinally at the centre of gyration of the wharf segment; that is, at a distance of 
L/\ 12 from the segment centroid.

(b) Hysteretic RuJes: Hysteretic rules for the SuperPiles should be appropriate for the 
pile material. Thus, for concrete piles, the Modified Takeda, or some equivalent hysteresis 
rule should be adopted. However, it should be noted that Modified Takeda rules do not 
model the gapping that develops in the soil near the pile top as a result of inelastic soil 
response, and more sophisticated modelling options could be considered. The 
information provided in Sections 10.3.5(c) and 12.3.2 should be reviewed. For steel pipe 
piles, a bilinear elasto-plastic rule may be adequate. Reference should be made to Section
4.9.2 for general advice on time-history analysis.

(c) Movement Joints: Two issues must be considered: the modelling of the shear key 
itself, and the modelling of potential impact between corners of the adjacent segments. 
Using an elastic modal analysis, the connection between the segments is typically 
represented by a pin, allowing free relative rotation between the adjacent segments, but 
no relative transverse or longitudinal displacement. For inelastic time-history analysis, a 
more realistic representation of the connection, as shown in Fig. 12.19(b) should be 
provided. For this connection, three separate elements are required. The shear key is 
represented by a spring, connecting nodes on adjacent segments, with high stiffness in 
the wharf-transverse direction, and zero stiffness in the wharf-longitudinal direction.
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This allows the necessary freedom in the longitudinal direction, and modelling as an 
individual element enables the spring shear force to be determined from the analysis, 
which may not be possible if a pinned connection between the segments is used.

tension

Shear key: relative 
long, movement only

comp, spring

compression

A p r

comp, spring

compression

AP

(a) plan view, structure (b) plan view, analysis (c) impact springs 

Fig.12.19 Modelling Movement Joints between Segments

The other two elements are springs, acting in the longitudinal direction, connecting 
adjacent corners of adjacent segments (Fig. 12.19(b)). These springs should have a finite 
gap in the gap-closing direction, before contact is made, to represent the movement joint 
opening. Note that this gap will be temperature-dependent, and it may be necessary to 
run the analyses with upper and lower bounds for the gap dimension. When the 
compression gap is closed, the spring should have a high stiffness, as shown in Fig. 
12.19(c). In the tension direction the stiffness should be zero, or the gap should be set 
sufficiently large so that contact could not occur.

The choice of the stiffness of the shear-key and contact springs is important. It has 
been found that if the stiffness is set too high, numerical instability may occur, affecting 
the accuracy not only of the spring forces, but of the entire analysis. As a rough guide, 
the deformation of the springs should be realistic- in the range 0.5 2.5mm (0.02 — 0.10
in.) under the expected spring forces. Preliminary analyses should be carried out where 
the spring stiffnesses are varied by an order of magnitude to ensure that analysis results 
are stable.

(d) Modelling Wharf/Crane Interaction: Analyses have shown P3391 that the wharf dis
placements under seismic excitation are essentially insensitive to the presence and 
location of single or multiply cranes of the A-frame type commonly operating in ports. 
Consequently, the influence of A frame cranes can generally be ignored in wharf design. 
This observation only applies for wharves with similar cross-sections to those considered 
in Section 12.5. New generation low-profile cranes, however, have been found to interact
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more significantly with wharves, increasing the wharf displacement response in some 
cases.

Although wharf/crane interaction generally has a comparatively small influence on 
wharf response, the influence on crane response is very significance, and must be 
considered in crane design. Aspects relating to this problem are outside the scope of this 
book.

12.7 CAPACITY DESIGN AND EQUILIBRIUM ISSUES

12.7.1 General Capacity Design Requirements

General capacity design principles have been considered in some detail in Section 4.5. 
The design philosophy for wharves will be that inelastic action is to be confined to plastic 
hinges in the piles. Shear failure of the piles must be avoided, since inelastic shear action 
is inherently non-ductile, and any inelastic action in the deck, whether flexural or shear 
related, will be proscribed. To ensure that these requirements are met, the dependable 
flexural strength of the deck, and the dependable shear strength of deck and piles must 
exceed the maximum feasible actions at these locations corresponding to the flexural 
overstrength at the pile plastic hinges. This requires three stages of consideration: (1) 
determination of the maximum flexural strength of the plastic hinges, (2) determination 
of the shear force in the piles, and the shears and moments in the deck corresponding to 
the overstrength in the piles and (3) determination of the dependable strength of the 
actions to be protected from inelastic response.

(a) Overstrength Flexural Capacity o f Pile Plastic Hinges. Pile flexural strength may 
exceed the design strength Mj> due to two main reasons. First, as noted in relation to 
Fig. 12.7 and 12.11, cover spalling is expected to result in a significant loss of moment 
capacity. The design moment capacity thus uses a conservative estimate of the moment- 
curvature response. Second, the dowel reinforcement may have a yield strength that 
considerably exceeds the value assumed in design.

The design process outlined in this chapter, however, and recommended throughout 
this text, has been based on minimising the conservatism in the estimation of pile flexural 
strength. Thus the design flexural strength of the pile-top hinge is based on a concrete 
compression strength of \.3PC, and a dowel yield strength of 1.1 fy where Pc and fy are the 
minimum strengths specified for construction (see Section 12.5.1). Further, the design 
charts and equations presented in Sections 12.5.2 and 12.5.3 include the effects of strain- 
hardening of the dowel reinforcement, of post-yield stiffness of the prestressing, and of 
increased concrete strength due to confinement by the spiral reinforcement.

Reinforcing steel used for dowels in North America will normally be grade 60 
(specified yield strength = 414MPa = 60 ksi) and will comply with A706 requirements, 
which limit the yield strength to a maximum of 30% above the specified yield. This is still 
a significant increase over the 10% enhancement adopted for flexural design. Analyses 
indicate that increasing the dowel yield strength from 455MPa (66ksi) to (517MPa (75ksi
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will increase the flexural strength of the top plastic hinge by 10% or less, with the 
strength enhancement decreasing as the axial load increases. The flexural strength of the 
in-ground hinge will increase by about 5% if the upper limit of prestressing ultimate 
tensile strength is considered. Combining these with the ratio of peak flexural strength to 
design moment apparent in Figs. 12.10(a) and 12.12(a) the maximum flexural strength 
enhancement can be expressed as follows:

pile-top plastic hinge: M° / Mdes = 1.1 + 0.8 IP * for P> 0 (12.32a)
= 1.1 for P<0 (12.32b)

in-ground plastic hinge: M° / M des =1.18 for all P. (12.33)

Equations (12.32) and (12.33) indicate that the increase in design shear force resulting 
from flexural strength enhancement will be about 15%, with the actual value depending 
on the axial load level in the piles. Note that enhancement resulting from the concrete 
compression strength has not been considered in the above, since it will tend to increase 
the shear strength more than the shear demand, particularly at the OLE limit state, and 
for consistency, the same value must be used for both flexural strength and shear strength 
estimates.

Note further that Eq.(12.33) will be non-conservative if the dowels for the pile-deck 
connection extend down into, and past the in-ground hinge location, since the dowels 
will then contribute to the in-ground hinge flexural strength. It is important to avoid this 
condition during construction.

Although tempcore steel, which is commonly used in Europe for reinforcement has 
much lower strain-hardening strength increase than occurs with US steel, the 
enhancement due to uncertain steel properties is likely to be similar, since it relates 
entirely to uncertainty of yield strength, which has a similar variability to that in the USA.

(b) Equilibrium Consideration: The importance of maintaining equilibrium in all 
structural calculations, whether at design strength or overstrength levels has been 
emphasised in Section 4.6. Equilibrium must be satisfied for all forces acting 
simultaneously on the structure. This means that seismic axial forces in the piles must be 
in equilibrium with the seismic shears in the deck. These shears must be in equilibrium 
with the deck moments which in turn are in equilibrium with the pile moments, which 
depend on the pile axial force levels. It will be seen that a degree of iteration may be 
needed to ensure total equilibrium in analysis. The principles involved are very similar to 
those presented in Section 4.6 with reference to Fig.4.21, but are elaborated in some 
detail here as our experience is that many designers and students are less careful with 
equilibrium issues than they should be.

Referring again to Fig.l2.1(a), moments and shears on a characteristic section (say 6m 
(20ft) longitudinally) between F-Line and D-Line are presented in Fig. 12.20(a). It is 
assumed that there are three F-Line piles in the characteristic length, while the E-Line
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and D-Line piles are spaced at 6m (20ft.) longitudinally. Deck moments and pile 
moments must be in equilibrium at the intersection of the pile and deck centerlines. If 
Mp, Me and MD are the pile moments at the deck soffit at the limit state under 
consideration, then the pile moments extrapolated to the deck centreline are:

where hd is the depth of the deck.
Since there are three piles on the F-Line in the characteristic length, the moment 

extrapolated to the deck centerline is 3 M ’F. This is the deck moment above the F-Line 
piles. At the E- and D-Lines, the pile moments will be distributed approximately equally 
to the deck moments on either side of the pile centrelines. The deck moments are thus 
±0.5M ’e and ±0.5AT/>. The seismic shear force induced in the deck in span Lfe between 
the F-Line and E-Line piles is thus:

This shear will be critical adjacent to Pile E, since the effective deck width resisting 
Vs,fe will be small, and based on a single pile. At the F-Line, the same seismic shear force 
will be divided between three deck zones, one adjacent to each of the three piles. By 
analogy to bridge footings and cap beamsf™!, the effective width of deck, bejf resisting the

where Z>is the pile diameter, dd is the effective depth of the deck, and Imrans is the spacing 
of the piles transverse to the direction considered.

For flexural resistance of the deck, the effective width may be taken as:

Assuming one pile per characteristic length of deck, shear forces in the deck between 
pile rows E and D will be given by:

M ' F  =  M F + V S F . h d / 2  

M ' E =  M E + V S E h d / 2  

M ' D =  M d  +  V s  D . h d  1 2

(12.34a)

(12.34b)

(12.34c)

(12.35)

shear adjacent to a pile should not be taken larger than

(12.36)

b e f f  —  D  +  2 d  , <  /.,'trans (12.37)

0.5 ( M ' e + M ' d )
(12.38)

where the symbols are defined in Fig. 12.20(a).
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Se ism ic  F orce

(a) Transverse Section (Characteristic Length)
Seismic Force

(b) Longitudinal Section on F-Line

Fig.12.20 Equilibrium of Forces and Moments on Wharf Section

The seismic axial forces in the piles must be in equilibrium with the deck shear forces.
Thus the seismic tension force PsyF developed in a typical F-Line pile will be:

P S , r = V s , F E !  3 (12.39)

since the deck shear, VSfFE (given by Eq.(12.35)) is resisted by three piles on line F. The 
piles on line E will have increased compression resulting from the seismic shears. 
Equilibrium requires that:

“  Ks.FF ~ Ŝ,ED (12.40)

Of course, if the direction of seismic force is reversed, the piles at row F will be 
subjected to seismic compression, and those on row E will be subjected to seismic 
tension. Gravity loads must be added to these axial forces to obtain the total axial forces 
acting on the piles.
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For compatibility, the moments in the piles must be those corresponding to the pile 
axial forces calculated above. Thus, if overstrength is considered, the deck shears and the 
pile axial forces will increase in proportion.

Equilibrium of forces and moments under longitudinal seismic force is represented in 
Figure 12.20(b), which shows moments and shears in the deck and piles along the F-Line. 
The characteristic deck shear force will be given by:

VSFF = 2 x 0 . 5  (12.41)

where LFF is the spacing of piles along the F-Line, and M ’f  is given by Eq. 12.34(a)).
The axial forces in the piles will not change significandy from the gravity values, since 

the shears in the deck on either side of the pile will be equal and opposite. An exception 
occurs for the end piles in the row, which will have seismic forces equal to + 1.5 Vs,ff 
with the sign depending on the direction of the seismic force.

(c) Dependable Strength o f Capacity Protected Actions: Normal flexural and shear 
strength equations may be used to determine the dependable strength of pile shear force, 
and deck moment and shear capacity. Reference should be made to Section 4.7.3 for 
shear strength equations for piles, since conventional codified equations may produce 
unrealistic, and not necessarily conservative answers.

12.7.2 Shear Key Forces

Modal analysis relies on the assumption that inelastic and elastic displacements are 
sufficiently close for the latter to be used as adequate approximations to the former. As 
discussed in Section 4.9.2(f) this assumption is of doubtful validity. Even if it were the 
case, the same approximation does not hold for force levels. It is appreciated that the 
force levels in piles can be determined from the displacements using inelastic force- 
displacement relationships, as developed in Section 12.5.4, but this does not apply to 
forces in members that remain elastic, such as shear keys. These cannot be determined in 
any reliable fashion from the elastic analysis results when other members, such as the 
piles, respond inelastically.

Consequently, the most reliable way to estimate shear key forces will be from inelastic 
dynamic analysis, where the shear key is modelled as described in Section 12.6.2. 
However, for regular structures with rectangular segments, inelastic dynamic analyses of 
two-segment and three-segment marginal wharves have indicated that the following 
expression provides an adequate representation of the maximum shear force developed in 
shear keys between external and internal segments:

(12.42
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where V& is the total lateral resistance of the outer segment under uniform transverse 
displacement, A. corresponding to the design excitation, e is the eccentricity between 
effective centres of stiffness and mass, and L is the length of the outer segment. This 
expressions has been shown to give a good estimation of response for uniform soil 
conditions, and is thus suitable for initial design, though higher values were found 
appropriate when different up-slope and down-slope strengths and stiffnesses were 
included in the time-history analyses^38!.

12.8 DESIGN EXAMPLE 12.1: Initial Design of a Two-Segment Marginal Wharf

The two-segment marginal wharf described in Fig. 12.21 is to be located in a near-fault 
area with moderate seismicity. The segments have lengths of 180m (590ft) and 240m 
(787ft), with an overall width of 33.5m (110ft) and a distance between the outer pile lines 
of 30.5m (100ft) corresponding to the container crane gauge. The segments are 
connected by a shear key restraining transverse displacement only. A dyke slope of H:V = 
1.63:1 is required for slope stability. Only CLE response will be considered.

Crane support requires a maximum spacing of piles on the outer rows (A and F) of 
3m (9.8ft), and a maximum spacing of 7.5m (24.5ft) elsewhere for gravity load support of 
the deck dead plus live load. An initial design is based on six rows of piles evenly spaced 
at 6.1m (20ft) centres in the transverse direction, with piles at 2m (6.56ft) on the landward 
F line, at 3m (9.8ft) on the seaward A line, and at 6m (19.6ft) on the intermediate lines, as 
shown in Fig.12.21 (b). The deck has a thickness of 0.9m (35.4 in) under the crane rails 
and up to row E, and is 0.6m (23.6in) elsewhere. All piles are to be 610mm (24in) 
diameter octagonal prestressed piles. Connection to the deck at rows F, E, and D is by 
8D32 (#10) bars as shown in Fig. 12.6. On the other lines, contribution to seismic 
resistance is expected to be minor, and hence the number of dowels in the connection is 
reduced to 4D32 bars. This reduces the shear stress on the connection, and together with 
the expected elastic response of the piles allows simplified confinement details to be used 
for the connection. Details for the initial preliminary design are shown in Fig.12.21 (b).

The elastic design displacement spectrum is shown in Fig. 12.22(a), and is linear to a 
displacement plateau of 0.6m (23.6in) starting at a period of 3.0 sec. Because of the near
fault location, the displacement-reduction equation of Eq.(2.11) for damping levels higher 
than 5% is to be used in the design.

A characteristic module length of 6m (19.6ft) is used for the design which is based on 
the steps defined in Section 12.3.3. Prior to carrying out these steps, the effective weight 
and eccentricity of the 6m wharf module must be calculated. The deck is divided into 
three sections, separated by the dashed vertical lines visible in Fig.12.21 (b). The weight of 
a 6m length of deck, including a seismic live-load of 0.48kPa (lOlb/sq.ft), and distance of 
centre of mass of each section from the F-line pile are listed in Columns (2) and (3) 
respectively of Table 12.1 Also included in these columns are the tributary weight of each 
pile (1 /3rd of pile weight to an effective depth of 5-pile diameters below grade) and 
distance from the F line. The result is a module weight of 3627kN (81 Skips) at a distance 
from the F line of
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=56850/3627 = 15.67 m (51.4ft)

Lateral pushover analysis of the individual piles is not described here, as it is straight
forward, but lengthy. Results for the initial design, for average soil conditions, are shown 
in Fig. 12.22(b). The cridcal F-line piles have an equivalent bilinear strength of 500kN 
(112kips), and a limit displacement, corresponding to CLE strain limits of l 75mm (6.9in).

land side Jj ^ t
IT critical pile 30.5m

water side 1
1*----------------  240m ---------------- J*--------  180m ------------- ►

(a) Plan V iew

(c) F inal D esign, Show ing D esign  C hanges

Fig.12.21 Structure for Design Example 12.1
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(initial) 0.823, 0.961 (final) 3-° Period (sec)
(a) Design Displacement Spectrum

Displacement (mm) Displacement (mm)

(b) Initial Design (c) Final design
Fig.12.22 Data for Design Example 12.1

At the displacement of 175mm corresponding to the F-line CLE limit strain, only the 
piles on Rows F and E reach their strength, with the other piles still at less than yield 
displacement. Table 12.1 includes, in Columns (5) and (6), the pile strengths 
corresponding to a displacement of l 75mm, and the moment of this strength about the 
F-line pile. The total strength is 2095 kN (471 kips), and the strength/stiffness 
eccentricity, measured from the F-line piles is

xs = 7454/2095 = 3.56m (11.7ft)

The effective eccentricity relative to the centre of mass is thus

e = xm - x s = 15.67 -3 .56  = 12.1 \ m (39.7ft)
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With B — 30.5m, this corresponds to an eccentricity ratio of e/B — 0.3972?— very similar 
to the value of OAB used to generate Fig. 12.3, which can thus be used to determine the 
ratio of centre-of-mass design displacement to critical pile displacement.

Table 12.1 Mass and Strength Eccentricity for Initial Design, DE 12.1 (6m module)

Segment/Pile

(i)

Weight
(kN)
(2)

x from F 
(m)
(3)

W.x
(kN.m)

(4)

Force @ 
175mm 
(kN) (5)

For.x
(kN.m)

(6)
Seg.l 960 2.8 2688
Seg-2 1969 17.^5 34950
Seg.3 467 30.8 14380
PileF T1. 0 0 3X500 0
Pile E 14 6.1 85 269 1641
Pile D 23 12.2 281 165 2013
Pile C 32 18.3 586 70 1281
PileB 40 24.4 976 42 1025
Pile A 95 30.5 2898 2X24.5 1495
Sum: 3627 56846 2095 ■7454

The information provided above essentially covers Steps 1 to 4 of the design process 
of Section 12.3.3. We continue with the subsequent steps:
Step 5: Design centre-of-mass (CM) displacement: We assume a ratio of simultaneous 
transverse to longitudinal excitation of X=40%. The critical segment is the shorter 180m 
segment for which the aspect ratio is L/B -  5.9. Hence from Fig. 12.3,

AD = 0.78xA cr =0.78x175 = 136.5ww 
Step 6: Displacement ductility demand: From Fig. 12.22(b) the yield displacement of 
the F-line pile is 50mm. We assume the conservative relationship of Eq.12.3:

jusys =136.5/(1.2x50) = 2.275 

Step 7: Equivalent viscous damping: From Eq.(12.4):

£ = 0 .05  + 0.444 Msys ~  1

Msy,* )
= 0.05 + 0.444| — 2— ) = 0.129

I 2.275^-

Step 8: Effective period: The reduction factor for damping, is governed by the near- 
field relationship given by Eq.(2.11):

Rt =
0.07 

0.02 + £

N 0.25
0.07

0.149
: 0.828

The damped corner displacement is thus 0.6x0.828=0.497m. By proportion, the
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effective period is thus:

Te = 3.0 x 0.1365 / 0.497 = 0.823 sec 

Step 9: Effective stiffness: From Eq.(12.5), with me — 3627/g:

k = An\^r = 47t2-------—  z- = 21,600kN I m
7;2 9.805 xO.8232

Step 10: Module lateral strength requirement: From Eq.(l 2.6):

F" =kssA f = 21,600x0.1365 = 2945ftV (662 kips)

This is the required strength of the 6m module of wharf selected for design, at a lateral 
displacement of 175mm. By comparison, we see from Table 12.1 that the strength 
provided, as initially designed, is only 2095kN, which is 29% lower than required. We 
note that even if we reduced the spacing of piles on the E-line to 2m, the strength would 
only increase to 2633kN, which is still more than 10% below the required strength.

Redesign: Some major changes are required to provide the required strength. The 
following changes, illustrated in Fig. 12.21(c) are considered: (1): The E-line row is moved 
closer to the F-line row, and the spacing of piles on the E-line is reduced to 3m (9.6ft). 
With a spacing of 3.5m (11.5ft) between E and F this requires the spacing between the 
other rows to be increased to 6.75m (22.1ft) which is less than the maximum of 7.5m 
permitted for Dead and Live load. Moving the E-line closer to the F-line reduces the 
clear height between deck soffit and dyke, increasing the seismic resistance of the E-line 
piles; (2) Moving the E-line closer to the F-line enables the deck thickness to be reduced 
closer to the landward edge, reducing the deck mass a little. (3): The clearance between 
the top of the dyke and the deck soffit at the F-line is increased from 0.9m to 1.2m. The 
elevation profile of the sloping portion of the dyke remains unaltered. Although this 
reduces the lateral shear that can be resisted by the F-line piles, it increases the limit-state 
displacements by a larger amount. Re-analysis indicates that the F-line strength reduces 
from 500kN to 450kN, while the CLE limit-state displacement increases from 175mm to 
205mm. The yield displacement increases from 50mm to 63mm.

The redesign requires re-analysis of the force-displacement response of all except the 
A-line piles, since the clear height (dyke to soffit) has changed. The resulting force- 
displacement plots are included in Fig. 12.22(c). Calculations for effective mass of the 6m 
module, and the centres of mass and effective strength/stiffness at a displacement of 
205mm (8.1 in) are listed in Table 12.2. From the data in Table 12.2, the mass and 
strength/stiffness eccentricities are calculated as 15.90m and 3.51m respectively from the 
F-line. The eccentricity between mass and strength/stiffness is thus e -  12.39m (40.6ft) 
= 0.4062?. Figure 12.3 is still directly applicable, and the ratio between centre-of-mass and 
corner displacement is unchanged from the initial design.

The strength provided with the redesign is 2514kN, which is still substantially less 
than the 2945kN required by the initial design. However, the increased design
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displacement will result in a reduced required strength. The calculations are summarized 
below.

Table 12.2 Mass and Strength Eccentricity for Final Design, DE 12.1 (6m. module)
Segment/Pile

....  (i)

Weight
(kN)
(2 )

x from F 
(m)
(3)

W.x
(kN.m)

(4)

Force @ 
205mm 
(kN) (5)

For.x
(kN.m)

(6 )
Seg -1 649 1 . 6 1038
Seg.2 2179 16.55 36060
Seg.3 467 30.8 14380
PileF 3x9.7 0 0 3x450 0

PileE 2x10.5 3.5 73.5 2x395 2~’65
PileD 2 1 10.25 215 190 1948
Pile C 30 l 7 510 8 6 1462
PileB 40 23.75 950 49 1160
Pile A 2x47.5 30.5 2900 2X24.5 1490
Sum: 3531 56130 2514 8825

Step 5: Cm design displacement: At = 0.78x205=160mm (6.3in)

Step 6: System displacement ductility: jlsys — 160/(1.2x63)=2.12

Step 7: Equivalent viscous damping: = 0.126

Step 8: Damping reducdon factor: -  0.832

Step 9: Effective period: Te -  0.961 sec

Step 10: Effective stiffness: kss -  15,400kN/m

Step 11: Required module strength: Fss = 15,400x0.16=2464kN (554 kips)
This is 3% less than the provided strength of 2514kN, and the design is satisfactory. 

Note that it would be difficult, and rather pointless to refine the design to exactly match 
the required and provided strength.

Shear key design force: The shorter segment governs the shear key force. The total 
lateral resistance of the segment, which includes 30-6m modules, will be Pa -  30x2514= 
75,400kN. From Eq.(12.42) the shear key force is thus estimated as:

V.h = 1.35| ^ - )  = 1.35 75400x1:239 = 7000kN (15^5 kips)
L J 180

The design of this structure was comparatively straightforward, and as a consequence 
design verification by inelastic time-history analysis is probably not warranted. It would, 
however, be a relatively simple task to model the wharf by two segments each with four 
superPiles, following the representation of Fig. 12.18, with the two segments linked by the
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three-node connection represented in Fig. 12.19.
Although capacity design is not included in this example, the procedure is 

straightforward, since there is no dynamic amplification to be considered, and only 
strength enhancement due to material strengths possibly exceeding the specified values 
need to be considered.

12.9 ASPECTS OF PIER RESPONSE

Piers and terminal piers (see Fig. 12.2) are likely to have piles whose clear height 
between grade and deck soffit increases with distance from the shore. However, it is 
unlikely that the height increase will be uniform with distance from the shore. 
Eccentricity between centres of mass and of strength/stiffness will clearly be of critical 
importance for such structures, even more so than for marginal wharves.

The approximate approaches developed in previous sections of this chapter should 
not be extrapolated to piers because of the extreme aspect ratios involved. At this stage, 
design will need to be by trial and error. An initial structure will be conceived, and 
checked using the assessment procedures outlined in Chapter 12. Successive 
improvements should quickly stabilize the design. It is recommended that inelastic time- 
history analyses be used to verify the design in all cases.
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13
DISPLACEMENT-BASED SEISMIC ASSESSMENT

13.1 INTRODUCTION: CURRENT APPROACHES

There are a number of philosophical issues that must be addressed before embarking 
on the seismic assessment of an existing structure. The first of these is the selection of 
the appropriate limit state to which the structure will be assessed. Serviceability will rarely 
be the issue here, and though the damage-control limit state is the most common for new 
structures, collapse-prevention is more commonly the key limit state for existing 
structures.

The second issue is the acceptance criterion: what constitutes a satisfactory answer 
from an assessment. With new design, there is still, generally, a “pass/fail” mentality 
applied: if the strength is lower than the code-specified level by 5%, or the assessed drift 
exceeds the code limit by 5%, the design is deemed unsatisfactory. In the past the same 
mentality has been applied to assessment of existing structures, though the acceptance 
criteria are often relaxed from those defined for new structures for reasons that are often 
of doubtful validity. A typical reason provided in support of a reduction in acceptance 
criteria is that a particular structure may have been constructed (say) 50 years ago, and its 
expected design life is (say) 100 years. Hence the probability of the structure collapsing in 
its remaining design life is less than for a new structure of identical characteristics. This 
ignores the fact that the hazard (a measure of local seismicity) is the same for all 
structures, regardless of their capacity, while vulnerability (a measure of structural 
capacity) is clearly much worse for the older structure. The risk, which is a convolution of 
hazard and vulnerability, and which can be expressed as (say) a probability of failure in a 
given year, and which perhaps is the most relevant issue for the general public, is much 
higher for the older structure.

It is therefore clear that assessments of existing buildings should not be of the 
“pass/fail” type to artificial criteria, but should include as much probabilistic information 
as possible, so that an informed decision can be made about the need to strengthen.

The issue of the level to which any strengthening should be made also requires similar 
careful consideration. Our viewpoint is that this should be to the standard required of 
new structures. However, since retrofitting is not covered in this text, this issue will not 
be discussed further.

647
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On first consideration it might appear that seismic assessment of existing structures is 
more straightforward than design of new structures. This would indeed be the case if all 
material properties and structural dimensions were exactly known at all locations, and the 
seismic characteristics for assessment were equally defined with exactitude. In fact this 
will rarely be the case, and considerable uncertainty will often exist as to actual material 
properties even if mill certificates have been recorded for reinforcement or structural 
steel, and 28-day compression strengths for concrete are similarly available. In extreme 
circumstances, with reinforced concrete or masonry structures, even the amount, 
distribution, and termination of flexural and shear reinforcement may be uncertain.

Some potential problems are illustrated with respect to a reinforced concrete structural 
member in Fig. 13.1. A critical element of a displacement-based assessment methodology 
will be to determine the displacement capacity of the member, expressed in Fig.l3.1 in 
terms of displacement ductility.

oIX
Ih«4)J3C/5

(3) Overstrength Flexure 

_   »
(2) Expected Shear Capacity

/ : V N -
I | (4)Minirtium Shear Capacity

(1) Expectecj Flexuije |

1.0 1.2 2.5 3.1 3.5
Displacement Ductility

Fig.13.1 Determination of Ductility Capacity of a R.C.Member

The expected flexural response, based on a low estimate of probable material 
strengths is shown by line (1) and has a corresponding displacement ductility capacity of 
3.5, based on moment-curvature analyses following principles outlined in Chapter 4. The 
shear strength of the member depends on the ductility demand, in accordance with 
information provided in Section 4.7.3. The shear strength envelope based on probable 
material strengths is shown by line (2) and intersects line (1) at a displacement ductility of 
3.1. This, then, is the expected ductility capacity.

However, because of the uncertainty of material strengths, we investigate the 
consequences of the overstrength flexural capacity. This results in force-displacement 
response represented by line (3), which intersects the expected shear capacity envelope at 
a displacement ductility of 1.2. We further look at a worst-case scenario, where the



Chapter 13. Displacement-Based Seismic Assessment 649

minimum shear capacity (line (4)) is compared with the maximum flexural overstrength, 
resulting in a slightly lower displacement ductility of about 1.15. Note that in these 
comparisons the displacement ductility is always related to the yield displacement of the 
expected flexural performance, and is thus not strictly a measure of ductility of the 
overstrength section.

From this example we see that it is possible to have very large variation in the 
esdmated displacement capacity (in this case a displacement ductility capacity of 1.15 to 
3.1) for comparatively small variations in material strengths.

The discussion above indicates that it is generally not possible to establish an absolute 
value for risk of an existing structure, as a consequence of uncertainties in both structural 
characteristics, and in seismicity characteristics — that is, in both capacity and demand. 
The most promising approach of the future for seismic assessment is clearly a reliability 
approach based on probability theory. An excellent description of the state of the science 
in this field is available in [P30]. Although this is clearly the way of the future for seismic 
assessment, it is our view that in the short term, deterministic approaches will still be 
needed. Since these are compatible with the design approach advocated in this text, we 
will limit our discussion to such approaches, and refer the interested reader to [P30] for a 
more comprehensive treatment of the probabilistic aspects.

13.1.1 Standard Force-Based Assessment.

Tradidonal seismic assessment has tended to be based on simple comparison of 
esdmated base shear capacity, and base shear demand specified by code. In Fig. 13.2(a), 
the required code base shear strength, Vcoae is found in the usual manner, reducing the 
elastic base shear force, VeitCode corresponding to the elasdc stiffness of the structure, by a 
code-specified force-reducdon or behaviour factor. The actual assessed base shear 
strength VA is then esdmated. Comparison of VA with Vco(je indicates whether the 
structure is sadsfactory. This is a classic capacity/demand rado (C/D) approach, based 
on strength. For values of C/D > 1 the structure “passes”. For C/D < 1 the structure 
“fails”. Problems with this rather simplistic approach include the following:

• No assessment is made of the actual displacement or ductility capacity
• No capacity design check is included to determine undesirable failure modes
• No estimate is made of the risk associated with VA/ Vcode <1

A simple strength-based assessment, without consideration of displacement capacity 
or risk levels cannot be considered a sadsfactory approach.

13.1.2 Equivalent Elastic Strength Assessment

An improved approach, relying on a mixed strength/displacement assessment 
compares the equivalent elastic strength with the code elastic strength. The characteristic 
force displacement response is determined, resulting in an expected strength VA and 
displacement capacity jUAy , as shown in Fig. 13.2(a). The equivalent elastic strength Vei is 
determined from a displacement-equivalence rule — normally the equal displacement
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approximation, (i.e. Vej -  /IVa) and is then compared with the code elastic base shear 
requirement for the same elastic stiffness.

Note that the assessment could also have been done directly based on displacements, 
comparing the assessed displacement capacity /jAy with the code displacement demand 
ĉode for the same elastic period. It is thus reasonable to describe this approach as 

displacement-based, yielding a capacity/demand ratio C/D = Aa/Ac0de -fiA y/Ac0de . If 
information is available on the relationship between seismic intensity ratio, expressed as a 
displacement demand ratio, and probability of exceedence, p , as suggested in Fig.l3.2(c), 
then an estimate of the risk associated with a value of Aa/Acode < 1 can be made.

This is a very much improved assessment approach, and is the basis of several recent 
assessment documents^10̂ 11!. It will be noted that though it still retains elements of a 
force-based approach, many of the deficiencies apparent in force-based design need not 
apply. In particular, since the structural details should be known at the start of the 
assessment, estimates of elastic stiffness can be quite accurately made, based on moment- 
curvature analyses of critical sections, whereas in design the strength, and hence stiffness 
are not known at the start of the process (see Section 4.4). There are, however, still 
problems and deficiencies in this approach:

• The necessity to assume a displacement-equivalence rule, such as the equal- 
displacement approximation, reduces the accuracy of the method.

• Capacity design considerations, though not conceptually difficult to include, are 
rarely considered adequately in the assessment.

For a multi-degree-of-freedom (MDOF) structure, a non-linear static (pushover) 
analysis will normally be the most appropriate method for determining the displacement 
capacity. As discussed in Section 4.9.3, an adaptive displacement-based pushover is likely 
to give the most accurate results for displacement capacity. Although research is 
continuing towards inclusion of higher-mode response in pushover analyses, we do not 
consider the results at this time to be sufficiently accurate to consider multi-modal 
pushover analysis as a reliable or conservative way of including higher-mode effects. 
Different approaches, such as the simplified representations of capacity design effects 
included in the structural chapters of this book are likely to be more reliable.

When brittle failure modes, such as britde shear failure of building or bridge columns, 
are predicted, assessed displacement capacity is generally based on elastic stiffness. That 
is, the displacement capacity is assessed to be less than the yield displacement. It is, 
however, important to recognize that displacements due to inelastic shear response, 
which are often ignored in analysis, can significantly increase the displacements which can 
be sustained by the column prior to shear failure^16!. A method for estimating inelastic 
shear deformation was presented in Section 4.8.1.

13.1.3 Incremental Non-linear Time History Analysis

Clearly at this time the most accurate method of determining the seismic response of 
an existing structure is by carrying out non-linear time-history analyses. In the case of
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êl,code

(a) Equivalent Strength Approach

(b) Displacement Spectra

(c) Displacement Ratio vs probability of Exceedence 

Fig.13.2 Aspects of Seismic Assessment of Structures
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design verification of a newly designed structure the procedure is relative straightforward, 
and has been outlined in some detail in Section 4.9.2. An appropriate structural model is 
developed, a suite of spectrum-compatible accelerograms is chosen, the average structural 
response to the accelerograms is determined, and the critical response parameters 
compared with capacity. In other words, this is again, typically, a pass/fail check. Higher
mode effects are directly included in the analyses, so capacity design checks are 
straightforward.

With assessment of a potentially substandard structure, a simple check under the 
design or assessment intensity may be insufficient, as the increased risk associated with 
substandard response will generally need to be quantified. This requires that the level of 
seismic intensity associated with exceeding a specified limit state needs to be determined, 
so that the risk, or annual probability of exceedence of the established intensity can be 
found from a relationship such as that shown in Fig.l3.2(c). Note, however, that the 
relationship between displacement ratio and hazard implied in Fig. 13.2(c) is simplistic. 
The relationship available from seismologists will link seismic intensity to hazard, and the 
relationship between seismic hazard and displacement ratio will generally be nonlinear.

Because of this problem, the accepted current state-of-the-art for assessment consists 
of multiple structural analyses at different levels of intensity. The selected suite of records 
are incrementally scaled to successively larger intensities, and the response is observed at 
each intensity to determine at what level of intensity the limit state is achieved.

Clearly this can be a time-consuming effort, unless automated post-processing 
searches for exceedence of limit-state displacements or strengths. It also typically makes 
an assumption that may not be valid, and that is that the assessment spectral shape also 
applies at lower levels of seismic intensity. Material presented in Chapter 2 indicates that 
this is unlikely to be the case when seismic hazard for high probabilities of exceedence 
(i.e. low return periods) is associated primarily with smaller earthquakes than applicable 
for lower probabilities of exceedence. This would imply that simple amplitude scaling of 
the accelerograms may not be appropriate.

This is illustrated in Fig. 13.2(b) in a displacement-based environment. Three 
displacement spectra, each corresponding to the equivalent viscous damping ratio 
applicable to the assessed structure are shown by solid lines. They each refer to different 
seismic intensities, and because the spectra with higher probabilities of exceedence are 
dominated by earthquakes of smaller magnitude, the corner periods differ. Also shown is 
a dashed displacement spectrum scaled from the code level. The assessed displacement 
capacity is Aff, and the effective period is Te. It will be seen in Fig.l3.2(b) that the point 
Atf, Te is on the plateau of the lowest of the three seismic intensity displacement spectra. 
If the spectrum corresponding to the full code intensity is scaled so that the assessment 
data point falls on the scaled spectrum, the initial slope of the displacement/period 
relationship is lower than for the low intensity spectrum derived from seismicity studies. 
Thus the scaled spectrum will imply a higher hazard than the seismicity-derived spectrum, 
since the slope of the spectrum has an approximate inverse relationship with probability 
of exceedence.
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13.2 DISPLACEMENT-BASED ASSESSMENT OF SDOF STRUCTURES

13.2.1 Alternative Assessment Procedures

On initial consideration it might appear that there are two equally valid displacement- 
based procedures, both fully complying with the principles of DDBD that could be used 
in seismic assessment of existing structures. In both approaches an initial stage is the 
development of the force-displacement response based on available structural details. 
This defines the displacement capacity A cap-

The first method is illustrated in Fig.13.3. The assessment force-displacement 
response is shown as the solid line in Fig. 13.3(a) up to the displacement capacity, and is 
extrapolated as a dashed line to higher displacements. An iterative approach is used to 
determine the displacement demand Aoew corresponding to the code assessment 
displacement spectrum, illustrated in Fg. 13.3(b).

(a) Assessed Force-Displacement Response (b) Displacement Demand Check

Fig.13.3 Assessment Based on Required Displacement to Satisfy Code Reference
Displacement Spectrum.

The steps are as follows:
1. Determine the effective mass me. For a SDOF structure, this is the total mass
2. Guess the displacement demand for code compliance. The actual value is not 

critical since it will be revised in the iterations. Referring to Fig.13.3, we make an 
initial estimate that A£>em — Ai.

3. Calculate the effective stiffness Ke — Kj (See Fig. 13.3(a)), including P-A effects.
4. Calculate the effective period from the SDOF Eqn : Te, = In^m JKe)
5. Determine the yield displacement Ay. Refer to information provided in Chapter 

3, or in the relevant structural type chapter.
6 . Determine displacement ductility: j l  — Aoem/Ay.
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7. Calculate the effective damping £e from Eq. 3.17
8 . Calculate the spectral reduction factor ^corresponding to % from Eq.(2.8) (e.g.). 

The reduced displacement spectrum is identified by for the first iteration in 
Fig.13.3.

9. Check the displacement demand A2 corresponding to the value of Te calculated 
in step 4. This is the new estimate for the ts.jyem.

10. Steps 3 to 8  are cycled until displacement stabilizes. In Fig.13.3 the revised 
displacement A2 found in the first cycle is shown, together with revised 
stiffnesses and periods and spectrum for the second cycle of iteration. In the 
figure, the displacement estimate, A3 at the end of the second cycle is sufficiently 
close to the second estimate, and the final estimate for the displacement demand 
is determined.

1 1 . Compare A cap and Aoem-
This will certainly be adequate for a pass/fail assessment, but cannot strictly be used 

to determine risk for structures that do not pass the criterion that A cap — D̂em- The 
reason for this is that the damping values corresponding to A cap and A jyem differ, since the 
ductilities for the two displacements are not the same. Hence the damped demand 
spectrum is only correct if the capacity exactly equals the demand. If this is not the case, 
it will be difficult to relate the different spectra for capacity and demand to determine 
risk.

The second approach is more direct, and it would appear more consistent. It is 
illustrated in F ig.l3.4, and determines the equivalent elastic spectral displacement 
corresponding to the assessed displacement capacity and associated damping. An elastic 
displacement spectrum is matched to the equivalent spectral displacement, enabling a 
direct estimate of risk to be made, provided information relating spectral intensity to risk 
is available (e.g. Fig. 13.2(c)).

(a) Assessed Force-Displacement Response (b) Displacement Cap/Dem Check 

Fig.13.4 Consistent Displacement-Based Assessment Procedure
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The steps in the assessment procedure are as follows:

1 . Calculate effective mass me.
2. From the previously calculated force-displacement response, determine the 

effecdve assessment stiffness KA -  F/Acap, including P-A effects (see Section 
13.2.2), corresponding to the displacement capacity (see Fig. 13.4(a)). Note that 
the displacement capacity will depend on what performance level is assessed.

3. Calculate the effecdve period from the SDOF equation: Ta = The 
point corresponding to the effective period and displacement capacity is 
identified by the lower open circle in Fig. 13.4(b).

4. Determine the displacement ductility capacity: // = Acap/ Ay.
5. Determine the effective damping corresponding to [1 from Eq.3.17.
6 . Calculate the spectral reduction factor corresponding to from Eq.(2.8) 

(e-g0 -
7. Calculate the equivalent elastic spectral displacement capacity: Acap,ei — Acap /%■ 

This is plotted as the central hollow circle in Fig. 13.4(b). If a suite of elastic 
displacement spectra for different annual probabilities of exceedence is available, 
the appropriate spectrum can be matched to A c ap,ei and the risk determined 
directly (see dashed spectrum in Fig. 13.4(b)). If not, the equivalent elastic “code” 
displacement demand ADem.ei can be read off the code elastic spectrum at the 
effective period TA as indicated in Fig.l 3.4(b). The capacity demand 
displacement ratio Acap,eiJAoemtei can then be used to determine the risk from a 
plot such as that shown in Fig. 13.2(c).

Note that at present it is more likely that information will be available relating PGA to 
annual probability of exceedence, p . However, if the assumption is made that spectral 
shape is independent of intensity (but see discussion in Section 13.1.2), then the 
displacement ratio calculated above will also be the PGA ratio corresponding to capacity 
and demand, and the PGA/p  relationship can be directly used.

13.2.2 Incorporation of P-A Effects in Displacement-Based Assessment

As indicated in step 2  of the alternative assessment procedures in the previous section, 
P-A effects may need to be considered. In accordance with the recommendations of 
Section 3.6.3, the required base shear capacity for new design is enhanced in accordance 
with Eq.(3.48) when the stability index, given by Eq.(3.45) exceeds 0.1. In assessment, we 
reduce the calculated base shear capacity by the same amount when the calculated 
stability index exceeds 0.1. Thus, the calculated reduction in the effective base shear 
capacity is taken as

PA
A V = C ------^

H
(13.1)
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and the effective stiffness to be used in the assessment is

K A =  F a - C - / Acap (13.2)
V

where, in accordance with Section 3.6.3, C is taken as 0.5 for concrete structures, and 1.0 
for steel structures.

13.2.3 Assessment Example 13.1: Simple Bridge Column under Transverse 
Response

The simple cantilever bridge pier depicted in Fig. 13.5(a), built in the 1970’s, is to be 
assessed for conformity to current seismic design standards, and the annual risk that 
response exceeds a strain-based damage control limit state is to be assessed. The single 
column pier has a height of H  — 12m (39.4 ft) and a diameter of 2.0m (78.7 in) and is 
supported by a spread footing founded on strong rock. For this example we assume that 
the foundation is rigid, and of adequate strength to develop plastic hinging in the column.

 1 1 ►2.28 4.0 Period (sec)
(b) Elastic Displacement Spectra

  £=0.05

-  - £=0.05

Transverse: g 0.02
D20@200mm

^0.0041
0.002

(a) Structure Details
0.5 C/D 0.845 1.0 

(c) Probability Relationship

Fig.13.5 Data for Assessment Example 13.1
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Design material strengths were f c — 30MPa (4.35 ksi), and fv — fyu -  420MPa (60.9 
ksi). No current strength evaluation has been carried out, so we assume the conservative 
strengths recommended in Section 4.2.6 apply; that is, PcA — 1.3x30=39MPa (56.6 ksi), 
fyA = 1.1x420 = 462MPa (67.0 ksi), and fyhA = 1.0x420 MPa.

The pier is reinforced with 48 deformed longitudinal bars of 40mm (1.575 in) dia., and 
transverse hoops of 20mm (0.787 in) dia., closed by lap welding, spaced at 200mm (7 .8 7  

in) along the column axis. Cover to the longitudinal reinforcement is 50mm (1.97  in).
Superstructure weight supported by the pier is 7500kN (1670 kips), including the cap- 

beam weight. Column weight can be based on an assumed unit weight of 23.5kN/m3 
(150 lb/cu.ft)

The structure is to be checked for conformity with the code elastic displacement 
spectrum of Fig.l3.5(b), which has a peak response displacement of 1.0m at a period of 
4.0 sec. The site is close to an active fault, and forward directivity characteristics have to 
be expected (see Secdon 2.2.3). No information is available on the possible changes of 
spectral shape with return period, but a tentative linear relationship between the 
logarithm of annual probability of exceedence, />, and PGA has been established. This 
can be interpreted as a linear relationship between log(/?) and the capacity/demand 
displacement ratio, C/D, as discussed in Section 13.2.1, and shown in Fig.l3.5(c).

Solution: The moment-curvature and force-displacement response of the column have 
been calculated using the program Cumbia available in the CD provided with this text. 
The data file for this example is used as the default input file for Cumbia. Plots of 
moment-curvature and force-displacement response, including bilinear approximations 
are provided in Fig. 13.6. Key data are summarized below.

Force-Displacement Response:
Axial Force at base hinge P — 7500+11x23.5x (7t/4)x22 = 831 0 kN (1870 kips) 
Transverse reinforcement ratio: pv =4(7l/4)202/(1920x200)=0.00327 
Damage control limit strain (from Cumbia, or Section 4.2.5) = 0.00927 
Bilinear Yield curvature: (from Cumbia): — 0.002572/m (64.8xl0 6/in)

(note: from Eq.(4.57a), = 0.00260/m) (66.0x10'6/in)
Bilinear yield moment: (from Cumbia) Mn — 27570 kNm (244,000 kipin)
Damage control curvature: = 0.0178/m (452x10'r>/in)
Damage control moment: Mdc — 28885 kNm (256,000 kipin)
Bilinear yield displacement: Av = 0.133 m (5.24 in)
Bilinear yield force: = 2314 kN (520 kips)
Damage control displacement: Adc — 0.402 m (15.8 in) (includes shear def.)
Damage control force: Fdc -  2408 kN (541 kips)
The P-A moment at the base of the column will result from the superstructure load 

acting through the full assessed displacement capacity of 0.402m, and the column weight 
acting at approximately half the assessment displacement. Thus
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MP.A = 7500x0.402+810x0.201 = 3178kNm 
From Eq.(3.45) the stability index is thus

d. = — = - -------= 0 . 1 1
MJc 28885

This is marginally above the reference value of 0.1, below which P-A effects can be 
ignored. For completeness, however, we will include the effect.

0 0.004 0.008 0.012 0.016 0.02 0 0.1 0.2 0.3 0.4
Curvature (m'1) Displacement (m)

(a) Moment-Curvature Response (b) Force Displacement Response

Fig.13.6 Assessed Structural Response for Example 13.1, using C um b ia .

Note that Cumbia automatically calculates the shear strength envelope, 
corresponding to both assessment, and design, in accordance with the recommendations 
of Section 4.7.3. The assessment envelope for biaxial ductility demand (i.e. ductility is 
expected in both longitudinal and transverse directions) is included in Fig. 13.6(b). It is 
seen that the shear strength is significantly higher than the flexural strength, and there is 
thus no danger of shear failure. If the shear and flexural envelopes were close together, it 
would have been appropriate to carry out a second moment-curvature analysis, using 
upper-bound values for material properties to investigate the possibility of shear failure 
occurring at some level of flexural ductility (see Section 4.7.3).

We now proceed through the steps of the direct assessment procedure outlined with 
reference to Fig. 13.4:
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Step 1: Effective mass. We allocate 1/3 of the column mass to the seismic weight. Thus 
m e = (7500+810/3)/g = 7770/g kN (1750/g kips).

Step 2: Effective assessment stiffness: The lateral force corresponding to the damage- 
control moment capacity is JF= 28885/12=2407 kN (541 kips). Including P-A effects:

Ka = H)/Adc = (2407-0.5x3178/12)/0.402 = 5660 kN/m
Step 3: Effective Period:

Ta -  2K^{mJKA) = 2jW(7770/(9. 805x5660)) = 2.35 sec 
Step Displacement ductility capacity:

ju = A*/Ay = 0.402/0.133 = 3.02 
Step 5: Effective damping: From Eq.(3.17a)

£  = 0.05+0.444(//- \)/im = 0.05+(0.444)x2.02/(3.0271) = 0.144 
Step 6: Spectral reduction factor. For near-field forward-directivity conditions, we adopt 
the tentative recommendations of Section 2.2.3, given in Eq.(2.11):

R^=  (0.07/(0.02+£0)°'25 = (0.07/0.164)025 = 0.808 
Step Z'The equivalent elastic spectral displacement is thus 

ACap,el ~~ AddR^ -  0.402/0.808 = 0.497 m (19.6 in)
The actual, and equivalent elastic, displacement capacities are plotted in Fig. 13.5(b). 

We compare the equivalent elastic displacement with the demand elastic displacement for 
the same period (TA ~ 2.35 sec):

ADem,a = 1.0x(2.35/4) = 0.588.
The displacement Capacity/Demand ratio is thus 

C/D = 0.497/0.588 = 0.845.
It is thus apparent that the displacement capacity almost satisfies the demand. With 

the information presented in Fig. 13.5(c) we can determine the annual probability of 
exceedence. Since the C/D ratio is linearly related to log(p) we can express the 
relationship as

p ~  io - (0-699+2c;D)
Substituting C/D = 0.845 we find

P  — 1 0 -  ̂0*699+2x0.845) =  Q ^

This level of risk, though 100% higher than the code level, might be considered 
acceptable.

13.3 DISPLACEMENT-BASED ASSESSMENT OF MDOF STRUCTURES

The major difficulty associated with both force-based and displacement-based seismic 
assessment of existing structures is the determination of which element of the structure 
will first reach the specified performance limit, and what the corresponding displacement 
profile throughout the structure will be. In the design of a new structure, characteristic 
displacement profiles can generally be used, as has been established in the various
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chapters of this text related to specific structural forms. Although these characteristic 
profiles may sometimes be appropriate for assessment, this will not always be the case, as 
can be seen from examination of Fig. 13.7.

(a) Frame Structure

r

(b) Displacement Profiles

(d) Displacement Profiles(c) Wall Structure

Fig.13.7 Different Displacement profiles for Seismic Assessment of Buildings

If the frame building represented by Fig. 13.7(a) has been recently designed and 
constructed, then capacity-design principles may have been adopted in the design, 
ensuring that column flexural strength exceeds beam flexural strength, allowing the beam- 
sway mechanism advocated in Chapter 5 to develop under seismic attack. In this case, the 
suggested profiles defined by Eq.(5.2) may be adopted, making allowance for drift 
amplification in accordance with Eq.(5.28), where appropriate. However, it will often be 
the case with older buildings that the relative strengths of beams and columns are such 
that column-sway mechanisms could develop, as suggested by the dashed displacement 
profile of Fig. 13.7(b). Definition of the displacement profile for a column-sway profile is 
more difficult, as it depends on the structural displacement ductility capacity, changing
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from an almost linear profile at yield to a nearly bilinear profile with high drift in the 
storey or storeys subjected to sway. The profile for a column-sway mechanism is best 
determined by an adaptive displacement-based pushover analysis, though simplified 
approaches will be discussed shortly.

With structural wall buildings the displacement profile is generally better defined, 
unless flexural hinging is expected at heights above the base. However, the profile may be 
influenced by frame action for dual systems, as indicated in Fig. 13.7(d), even where the 
beams and columns of the frames are intended to have a gravity-load support function 
only. The strength and stiffness of the gravity-load system should always be included in 
the assessment, even when walls are connected to columns only by apparendy flexible 
slabs.

Some more specific comments are included in the following sections. For a more 
detailed coverage, reference should be made to specialized documents, such as [XI0, 
X I1, P33]. In particular, [XI1 and P33] include recommendations for displacement-based 
assessment of buildings.

13.3.1 Frame Buildings

The recommendations made below are based on, and modified from [P33], and relate 
to reinforced concrete frame buildings. The general steps for steel frames are similar, with 
suitable modifications for different material properties.
Step 1: Assess the moment-curvature response of potentially critical members to 
determine flexural strength and limit-state curvatures. This may be carried out using the 
program Cumbia on the attached CD. Note that this will automatically determine the 
shear strength of the members for comparison with flexural strength. However, it should 
be noted that shears resulting from gravity-load effects are not directly considered in the 
program, and must be added to the seismic shear when shear integrity of beams is 
assessed. This step will determine whether shear reduces the limit-state curvature. For 
columns, the shear should be amplified for higher-mode effects in accordance with 
Eq.(5.65).

An issue in step 1 will be the limit-state curvature when the spacing of transverse 
reinforcement does not satisfy the maximum spacing limits of Section 4.2.5(c), 
reproduced below as Eq.(13.1):

cmax 3 + 6
f y

db l< 6d b} (13.3)
J J

where fu and fy are the ultimate and yield strength of the longitudinal rebar, of diameter 
dtf. Although wider spacing of the transverse reinforcement will not affect the 
serviceability curvature, it will reduce the curvature at the more critical damage-control, 
limit state. Generalizing tentative displacement ductility recommendations from [P33] 
leads to the following displacement-based damage-control curvatures, which are 
summarized in Fig. 13.8.
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Spacing of Transverse Hoops 

Fig.13.8 Influence of Hoop Spacing on Damage-Control Curvature

For s < smax, the damage-control curvature corresponds to the volumetric ratio 
of transverse reinforcement, in accordance with Section 4.2.5.
For smax< s < 16dbi the damage-control curvature should be taken as the lesser 
of the value corresponding to the volumetric ratio of transverse reinforcement 
and

/ ,  ̂ 7 \
4  =<PS +

16 dbl — s 

16d.
(13.4)

max J

where (j)s is the serviceability limit-state curvature.
Alternative estimates of damage-control curvature based directly on onset of buckling 

of reinforcement are available (Berry and EberhardtP10!, Moyer and Kowalsky^18!), the 
former of which is included in the analyses carried out in Cumbia (attached CD) . It is 
not clear that these methods fully represent the propensity for inelasdc buckling, which is 
related to reinforcement tension strain developed in the opposite direcdon of 
displacement response (see [PI]). However, as will be shown in Ex.13.2, the Berry- 
Eberhardt model produces results rather close to those of Eq.(13.4).
Step 2: Determine the plastic rotation capacity of plastic hinges, based on information 
provided in Secdon 4.2.8. The plastic rotation capacity is thus

dp =(4>b -<f>y )LP 03.5)

where Lp is the plastic hinge length given by Eq.(4.28).



Chapter 13. Displacement-Based Seismic Assessment 663

Step 3: Determine whether a beam-sway or column-sway inelastic mechanism is to be 
expected. As discussed above, this is best defined by an adaptive non-linear static 
(pushover) analysis. However, an approximate indication may be obtained be calculating a 
sway potential index Sp^\ relating to the relative strengths of beams and columns at the 
centroids of all beam/column joints at a given floor for a given frame:

s t = 4 s 7 ---------------\ (13-6)

j

where M̂ it are the beam expected flexural strengths at the left and right of the joint, 
respectively, extrapolated to the joint centroid, including the contribution of slab 
reinforcement to strength, and Mca, Mcb are the expected column flexural strengths above 
and below the joint, also extrapolated to the joint centroid. The beam and column 
moments are summed over the / joints in the frame at the floor level considered.

If Si < 0.85, and the storey heights above and below the floor level considered are 
similar, then a column-sway mechanism is unlikely to form, and it may be assumed that 
the displacement profile is a beam-sway profile, defined by Eq.(5.2). If Sj > 1.0, then it is 
probable that a column-sway mechanism will develop. For 0.85 < Sj <1.0 either a 
column-sway or a beam-sway mechanism could develop, depending primarily on the 
actual relative material strengths of the beams and columns, which will generally not be 
known with any accuracy. In such cases, it would be advisable to carry out pushover 
analyses using a range of material strengths to determine the most likely mechanism. 
Alternatively, the conservative assumption must be made that a column-sway mechanism 
will develop.

It will be noted that the column moment capacities depend on the axial force in the 
columns, which in turn depends on the lateral forces, which are unknown at the start of 
the assessment process. This implies that some iteration will be needed to determine the 
actual moment capacities in Eq.(13.6). However, it is normally only the outer columns 
that will be significantly affected, and it should also be noted that unless the gravity axial 
force level is unusually high, the reduction in column moment capacity of the outer 
column subjected to axial tension will be almost exacdy balanced by the increase in 
moment capacity of the opposite outer column, which is subjected to axial compression. 
This implies that for most situations, the sway index may be determined using column 
moments calculated for gravity axial loads without consideration of seismic axial forces. 
Step 4: Having determined the sway mechanism, the limit-state deflected shape can be 
defined. Figure 13.9 shows three possibilities. In Fig.l3.9(a), a beam-sway mechanism 
applies. The yield displacement profile may be assumed to be linear, defined by the yield 
drift of Eq.(5.7). It is assumed that the plastic rotation capacity of the beams at level 1 are 
critical for the example of Fig.l3.9(a), and hence the plastic displacement at level 1 is Ap}C 
-  Opi>Hoi, where dpj is the plastic rotation calculated for level 1 , and Hqj is the storey
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height from the ground floor to level 1. The full displacement profile can now be 
calculated from the characteristic shape defined by Eq.(5.2).

(a) Beam Sway, S; < 0.85, all levels

' J ~ L 7

Plastic mechanism 
(c) Column Sway, 5, > 1, Levels 1 or 2

(b) Beam  Sw ay D isp lacem ent P rofiles

olumn sway 
!  at Level 1

I
Column sway 
at Level 2

Displacement 

(d) Column Sway Displacement Profiles

Fig.13.9 Determining Limit-State Displacement Profile from Mechanism and
Critical Drift

Figure 13.9(d) shows two possible column-sway mechanisms. In one case a column sway 
mechanism forms involving the column-base hinges and the columns below level 1. In 
the other case, the upper hinges form below level 2. In this case the sway index at level 2 
would be higher than the index at level 1 .

Again the yield displacement profile can be approximated from Eq.^."7). The plastic 
displacement at level 1 for the first column-sway mechanism will be found from the lower 
of the plastic rotation capacities of the column-base or level 1 hinges: Ap — OpUoj. This 
plastic displacement will be added to the yield displacements at all levels to obtain the 
limit-state displacement profile. For the second column sway mechanism, with column 
hinges below level 2 , the plastic displacement at and above level 2  will be Ap = OpHo2 

where Op is the lower of the plastic rotation capacities of the column at the base or at 
level 3, and H02 is the height from the ground floor to level 2.
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Step 5: Determine the base-shear capacity. If a beam-sway mode of inelastic deformadon 
has been predicted, the base overturning moment OTMcan be determined from Fig.5.10 
as the sum of the column-base moment capacities and the moment provided by the axial 
forces resulting from beam seismic shears. For a structure with regular bays, as illustrated 
in Fig.5.10, this results in the following OTM:

m n
OTM = i£ M CJ+ 'Z v BiL (13.7)

7=1 /=1

where Mq are the column base moments (m columns), Vb: are the beam seismic shears 
at the n levels of beams and L is the distance between the outer columns of the frame. 
The beam seismic shears are given by

VBi ~ Bi,l ^  B i,r V LBi (13.8)

where Mgy and Msiyr are the beam moment capacities extrapolated to the left and right 
column centrelines respectively, and Lgi is the bay length between column centrelines.

The effective height He is then found from the displaced shape and mass distribution, 
using Eq.(5.5), and the base shear determined from:

= O T M ! H ,  (13.9)

If a column-sway inelastic mechanism is predicted, then the base shear can be 
determined directly from the column shears in the storey within which sway occurs. With 
the common case of a column sway mechanism based on flexural capacity in the bottom 
storey, the base shear is given by

(13.10)
y=i

where Mq,b and Mqyt are the column moment capacities at the column base, and at the 
level 1 beam centreline, extrapolated from the column top capacity. Note that beam and 
column moment capacities at the joint centroids have been used in Eqs.(13.8) and (13.10) 
rather than column-face or beam-face moments since these will already have been 
determined in assessing the sway potential index (Eq.(13.6)).

Step 6: With the limit-state displacement profile defined, the equivalent SDOF
displacement (Eq.(5.3)), mass (Eq.(5.4)), effective height (Eq.(5.5)) if not already 
calculated in Step 5), displacement ductility (Eq.(5.6)), and equivalent viscous damping 
(Eq.(5.9) can be calculated. From here the assessment procedure follows the approach
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defined above for SDOF systems by the steps following Fig. 13.4, and illustrated by 
Example 13.1.

It will be noted that there has been no discussion of the influence of the 
beam/column joint shear strength on the inelastic mechanism type or base shear capacity. 
Joint shear strength depends on axial force on the joint, amount, if any, of horizontal 
joint reinforcement, excess tension capacity of column longitudinal reinforcement 
capacity enabling it to act as vertical joint reinforcement, detailing and anchorage of the 
beam flexural reinforcement, and ductility demand on adjacent members, amongst other 
aspects. Clearly this is a very complex issue, which is at present still imperfectly 
understood. Since an adequate treatment here would require considerable length, and 
since the purpose of this chapter is to provide the framework for displacement-based 
assessment, rather than a complete treatment of the subject (which would require another 
book), joint shear will not be considered further herein. Reference should be made to 
recent assessment documents (e.g. [XI0,XI 1,P33]) for guidance. However, it should be 
noted that joint shear failure essentially places a hinge at the beam/column centroid, for 
additional inelastic deformation. As such it can contribute to column-sway potential, and 
hence must be treated in a conservative manner in assessment.

It is emphasised that the above approach is only approximate, and a better definition 
of vulnerability can be expected when the displacement response is based on an adaptive 
pushover analysis. However, even the most sophisticated pushover methodologies are 
unlikely to have the capability of determining the onset of beam/column joint shear 
strength damage and deterioration, and the consequent influence on global response.

13.3.2 Assessment Example 2: Assessment of a Reinforced Concrete Frame

The six-storey reinforced concrete frame of Fig.l3.10(a) is to be assessed for 
compliance with the same seismicity used in Example 13.1, except that the near-fault 
condition does not apply. The displacement spectrum is again shown in F ig.l3.10(b). The 
ground floor has a storey height of 4.5m (14.8ft) to the top of the Level 1 beams, with 
upper storey heights all 3.5m (11.5ft). Storey masses, including seismic live load are 
estimated as 60 tonnes/level, including the roof. The building was designed in the 1970's, 
and detailing is reasonable, though spacing of transverse reinforcement exceeds current 
guidelines. Columns are 400x400mm (15.7x15.7 in) in section, have 8D20 (0.79in) 
longitudinal reinforcement for the full height, with 40mm (1.6in) cover. Transverse 
reinforcement is D12 (0.47in) (3-legs: see column section, Fig. 13.10(a)) at 2 0 0 mm (7.87in) 
centres throughout. Beams have a 500x300mm (19.7x11,8in) section with an integral 
200mm (7.87in) slab, and have equal top and bottom reinforcement of 4D24 (0.95in dia). 
It is estimated that a total of 800mm2 (1.24in2) of slab reinforcement will contribute to 
the beam negative moment capacity at the outer columns, and 1600mm2 (2.48in2) will 
contribute at the inner column/

Design material strengths werc f*c -  25MPa (3.63ksi) and f y — 400MPa (58ksi). No 
insitu testing has been carried out, and a quick initial estimate of seismic risk is required.
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Fig.13.10 Assessment Example 2

Solution: The simple hand analysis described in the previous section is chosen, in the 
interests of simplicity and speed. We follow the steps essentially in order:

Step 1: Initial rough checks on relative column and beam flexural strengths indicate a 
strong probability of a soft-storey column-sway mechanism developing in the first storey 
columns. The program Cumbia (provided on the CD) is used to determine the column 
moment-curvature and shear response, based on expected material strengths of \ —
32.5MPa (4.7ksi) and 1.1f y — 440MPa (63.8ksi). Axial loads due to gravity on the columns 
are listed in Tables 13.1 and 13.2, (Columns (2)) for outer and inner columns respectively, 
and the calculated moment-curvature response for a selection of storeys is shown in 
F ig.l3.11. Note that a significant reduction in moment-capacity follows spalling. 
Consequently the conservative bilinear estimates of moment-curvature characteristics 
shown in Fig. 13.11 by the dashed lines are adopted.

A summary of the results from Cumbia is included in Tables 13.1 and 13.2, including 
moment capacity at the beam face, M Cl\ , and extrapolated to the beam centrelines 
assuming development of column moment-capacity of opposite sign at top and bottom 
of the clear column height, M qcl (Col(4)) (see the examples of F ig.l3.12 ). The yield and 
serviceability curvatures computed by Cumbia are listed in Cols (5) and (6 ) respectively.

The spacing of transverse reinforcement is 200mm. From Eq.(13.3), with fu —1.5fy:
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f  ( 
3 + 6

v

w
dbl = (3+6(1.5-l))20 = 120 mm (4 .^ )

J )
The actual spacing of 200mm implies reduced confinement and anti-buckling 

efficiency. The damage-control limit-state curvature is thus the lesser of the calculated 
value, based on the volumetric ratio of confinement (see Section 4.2.8) and the value 
given by Eq.(13.4), which simplifies to:

01s -  0S +
16x20 — 200' 
16x20-120

•(1 2 * , - * , ) = * , + 0 .6 ( 1 2 0  - * )

Tables 13.1 and 13.2 include the damage-control curvature based on volumetric 
confinement ratio (Cols(7)), and Eq.(13.4) (Cols(8 )). It is seen that the latter governs in all 
cases. The tables also include the buckling curvature predicted by Cumbia using the 
Berry-EberhardtlB10J buckling model, in Cols(9). Comparison of Cols(8 ) and (9) indicates 
quite close agreement. It is decided to adopt the more conservative of the two curvatures 
(shown in bold in Tables 13.1 and 13.2) for assessment purposes.

Curvature (m-1) Curvature (m-1)
(a) Outer Columns (b) Inner Column

Fig.13.11 Moment-Curvature Response of Selected Columns of Example 13.2, 
Including Conservative Bilinear Approximations

Cumbia is also used to determine the beam flexural strengths. These are calculated at an 
extreme fibre compression strain of 0.004, and are listed in Table 13.3.
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Table 13.1 Outer Column Moment-Curvature Data for Example 13.2

Storey P M cn Mccl <|>s <t>Vol <t>(Eq.l3.2) <)>b
(kN) (kNm) (kNm) (mi) (m-i) (nr*) (m-i) (m-i)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
6th 147 251 293 0.0125 0.0465 0.188 0.1086 0.124
5th 294 267 312 0.0127 0.0420 0.171 0.1082 0.119
4th 441 271 316 0.0127 0.0392 0.159 0.1071 0.115
3rd 588 279 326 0.0127 0.0368 0.154 0.1062 0 . 1 1 1
2nd 735 284 331 0.0129 0.0342 0.149 0.1066 0.107
Js. 882 290 326 0.0131 0.0317 0.144 0.107 0.103

Table 13.2 Inner Column Moment-Curvature Data for Example 13.2

Storey P M cn M ccl <|>y <t>s <|>Vo] $(Eq.13.2) <|>b
(kN) (kNm) (kNm) (n r1) (m-i) (nr*) (m-i) (m-i)

a ) (2 ) (3) (4) (5) (6 ) (7) (8 ) ...(9)
6 * 294 267 312 0.0127 0.0420 0.171 0.1082 0.119
5th 588 279 326 0.0127 0.0368 0.154 0.1062 0 . 1 1 1
4th 882 290 338 0.0131 0.0317 0.144 0.1070 0.103
3rd 1176 293 342 0.0137 0.0274 0.135 0.1096 0.0976
2 nd 1470 293 342 0.0143 0.0241 0 . 1 2 0 0.1126 0.0927
Is' 1764 293 330 0.0148 0.0218 0.105 0.1153 0.0886

Table 13.3 Beam Moment Capacities (kNm) for Example 13.2 (1 kNm=8.85kip.in)

Beam Column
Face

Column
C.Line

Outer Col, +ve Mom 469 509
Inner Col, -ve Mom -648 - 6 8 8

Inner Col, +ve Mom 469 505
Outer Col, -ve Mom -530 -566

The difference in negative moment capacity adjacent to inner and outer columns is a 
result of the large slab contribution to beam moment capacity at the inner column. Table
13.3 also includes the beam moment capacities extrapolated to the column centrelines, 
assuming development of moment capacities of opposite sign at opposite ends on the 
beam (see Fig.13.12).

Step 3: We defer calculating the plastic rotation capacities of potential plastic hinges, as 
required in Step 2, until it is determined whether a beam-swav or column-sway 
mechanism forms. Considering the beam-column joints of Level 1, the Sway Potential 
Index, computed in accordance with Eq.(13.6) is
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1st and 2nd Storeys

Fig.13.12 Extrapolating Beam and Column Moments to joint Centrelines, 
Example 13.2 (Moments in kNm; (lkNm =8.85 kip.in))

g j 509 + 688 + 505 + 566  ̂ ^
' ~ + M ch) ~ (326 ̂+ 331)x 2 + 330 + 342 ~~

j

Since St > 1 , and plastic hinges must form at the column bases, a column-sway 
mechanism is predicted. Note that because the storey height of the first storey, at 4.5m is 
significantly greater than the upper storey heights, it is unlikely that a sway mechanism 
will develop involving an upper storey. The reduced height means that column moments 
will be lower in the upper storeys, even if the column shear force is equal to that in the 
first storey. As a consequence it is not necessary to quantify the Sway Potential Index at 
higher floors.

Step 2: Plastic rotation capacity of column plastic hinges: The analyses by Cumbia indicate 
that there is a large margin of column shear strength above the shear force corresponding 
to development of moment capacity at top and bottom of the first storey columns. Plastic 
displacement capacity is thus governed by flexure, and the limit-state curvatures in Tables
13.1 and 13.2 apply. In accordance with Eq.(4.30) the strain penetration length is

ŜP 0.022fyedbI — 0.022x440x20 = 194 mm (7.6 in).

The plastic hinge length is given by Eq.(4.31), with k -  0.08 as
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LP = 0.08Z,C + LSP > 2LSP = 0.08x (4/2) +194 > 2x194 = 388 mm (15.3 in)

The inner column has the lower limit-state curvature, and hence it governs the design. 
From Eq.(13.3) and Table 13.2 the plastic rotation capacity is

0 p = {0is ~ 0 y )Lp -(0 .0 8 8 6 -0 .0148)x0.388 = 0.0286
Step 4: The deflected shape corresponding to the assessment limit state can now be 
determined. Table 13.4 summarizes the calculations, where the yield drift is found from 
Eq.(5.7a) as

9 = 0 . 5 e  ^  = 0.5x0.0022x— = 0.0132 
'  h b 0.5

We assume a linear displacement profile at yield, and the floor yield displacements are 
thus found as 0.0132/^. These are listed in Table 13.4.

The plastic displacement corresponds to the first profile shown in Fig.l3.9(d), with all 
plastic displacement, of Ap = QpHc -  0.0286x4.0 = 0.1145m (4.5in) concentrating in the 
first storey. The final displacement profile, being the sum of the yield and plastic 
displacements, is listed as Aai in Table 13.4.

Table 13.4 Data for SDOF Model for Example 13.2 (lm =39.4 in)

Floor
(i)

Height 
Hi (m)

Ayj
(m)

Api
(m)

Am
M

Am2
(m2)

AaHj

6 21.0 0.2772 0.1145 0.3917 0.1534 8.2257
5 17.5 0.2310 0.1145 0.3455 0.1194 6.0463
4 14.0 0.1848 0.1145 0.2993 0.0896 4.1902
3 11.5 0.1518 0.1145 0.2663 0.0709 3.0625
2 8.0 0.1056 0.1145 0.2201 0.0484 1.7608
1 4.5 0.0594 0.1145 0.1739 0.0303 0.7827
0 0.0 0 0 0 0 0

Sum 1.6968 0.5120 24.0681

Step 5: Base Shear Capacity. Since a first storey column-sway mechanism develops, the 
base shear is given by Eq.(13.8). Using the flexural strength data from Tables 13.1 and 
13.2, the base shear capacity is

VBase = Y ^ ( M cj,b +  Mc i . ) l = (2 x 290 + 2 x 326 + 293 + 330)/ 4.25 = 436.5/W (98kips)
./=>

We defer P-A consideration until the effective height has been calculated.
Step 6: SDOF parameters*. From the data in Table 13.4, noting all masses are equal: 

Displacement from Eq.(5.3): Aa = EAaiVZAai = 0.512/1.697 = 0.302m (11.9in) 
Effective Mass (Eq.(5.4)): me — L/77/A//Aa — 60x1.697/0.302 = 337.2 tonnes
Effective Height (Eq.(5.5)): He = TAiHj/IAi = 24.07/1.697 = 14.2m (46.6ft)
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Yield Displacement Ay = 0yHe = 0.0132x14.2 = 0.1874m (’Min)
Structure Ductility (Eq.(5.6)): // = Aa/Ay = 0.302/0.1874=1.61 
Equivalent Viscous damping. Since all the ductility occurs in column hinges, we 

adopt Eq.(4.17 a) rather than Eq.(5.9a): £ = 0.05+0.444(//-l)/flJt/ = 0.104 
Displacement Reduction Factor for Damping (Eq.(2.8): R% -  0."752
Equivalent Elastic Displacement: AcaPyet — Aa/R% — 0.302/0.752 = 0.402m 
Stability Index: (Eq.3.45) O T M - VBaseHe =436.5x14.2-6198 kNm

P-A moment: MP.A =60x6x9.8x0.302=1065 kNm
dA — 1065/6198=0.172 (P-A must be considered) 

Effective Stiffness: K, = (VBase-0.SMP.A/He)/AA = (436.5-0.5xl065/14.2)/0.302 =
= 1321kN/m

Effective Period: Te = 2 K \ / ( m J = 2^337.2/1321) =3.17 sec.

From the displacement spectrum of Fig. 13.10(b) the elastic displacement demand for 
a period of 3.17sec is

ADem,ei = 1-0x(3.17/4)=0.793m (31.2 in) 
and the displacement Capacity/Demand ratio is thus 

C/D = 0.402/0.793 = 0.507 
Using the relationship between C/D ratio, and probability of exceedence, p  derived in 

Ex. 13.1, we find
p = 10-(0'699+2x0'507) =0.019

It will have been noted that the drift in the first storey of the structure is high: 
0.0132+0.0286 = 0.0418. This exceeds typical code drift limits by a factor of about 2. If 
the assessment was limited to the code drift limit, the probability of exceedence would be 
much higher. It is clear that this structure has an unacceptably high risk of structural and 
non structural damage, and remedial action would be needed, despite the reasonable 
detailing of the transverse reinforcement.

13.3.3 Structural Wall Buildings

Results of nonlinear time-history analyses of cantilever structural walls presented in 
Section 6 . 6  indicate that dynamic amplification of bending moments above the base, and 
of shear force over the full wall height can be very substantial. Although designing for 
these amplified forces is highly desirable for new structures, some relaxation is essential 
when assessing existing structures. This is particular important when considering the 
distribution of bending moment up the wall height, since existing buildings are unlikely to 
have been designed for full capacity design effects.

Limited non-linear time-history analyses have indicated that development of plastic 
hinging at levels above the base may not result in excessive curvature ductility demands 
when occurring solely as a result of higher-mode effects. This is because the displacement 
demand associated with higher-mode response is generally small. Consequently, when 
assessing the flexural ductility capacity, it seems reasonable to base this on expected first
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mode behaviour. The sequence of assessment operations thus proceeds along the 
following steps, which are presented with reference to Fig. 13.13.

5 .S
’E

4 X

(a) Structure (b) Moment Profiles (c) Displacement Profiles

Fig.13.13 Displacement Response of a Wall Structure

Step 1: Determine the axial loads at different levels of the wall or walls, and carry out 
moment-curvature analyses at each level to determine moment capacities and curvature 
limits. In the example of Fig. 13.13(a) it is seen that the wall flexural reinforcement is 
reduced at level 3 to approximately half the value applying at the base. Between the base 
and level 3 the moment capacity, shown by the dash/dot line in Fig.13.13(b) gradually 
reduces as a consequence of the reducing axial load on the wall. There is a step change at 
level 3 as a consequence of the termination of reinforcing steel, and above this level the 
capacity again reduces gradually due to the axial load reduction.

Step 2: Assuming a typical first-mode distribution of lateral force (an inverted triangular 
vector is satisfactory), determine the lateral forces corresponding to the wall-base flexural 
strength, and hence determine the distribution of first-mode bending moments up the 
wall height. This distribution of bending moment is shown by the solid line in Fig.13.13.

Step 3: Determine the extent of the wall over which the shear stress is such that diagonal 
cracking is to be expected. This can conservatively be assessed as the region over which 
the shear force exceeds Vc, the capacity of the concrete shear-resisting mechanisms, 
defined by Eq.(4.72) (see also Section 4.7.5). Over this region, tension shift effects 
resulting from diagonal cracking will increase the apparent moment above the 
distribution corresponding to the lateral force vector. This influence can be reasonably 
represented by shifting the moment profile over the affected region up by a distance 
equal to half the wall length. In Fig. 13.13(b), inclined shear cracking is expected from the
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wall base to midway between levels 4 and 5. The shifted assessment moment profile is 
shown in Fig. 13.13(b) by the dashed line.

the small discrepancy immediately above the base due to the tension shift), then the 
inelastic first mode response may be based on a base hinge. The corresponding

Fig. 13.13(b), then plastic hinging is expected at this location, rather than at the column 
base. The corresponding displacement profile is shown by the dashed line in F ig.l3.13(c).

Step 5: Calculate the plastic hinge length (Eq.(6.7)). The plastic rotation capacity is given 
by Eq.(6.9b), where the plastic curvature <pp is found from the moment-curvature analyses 
of Step 1.

Step 6: The assessment displacement profile is found by addition of the plastic 
displacement profile to the yield displacement profile. For regular structures, the latter 
can be found from Eq.(6.5). The plastic displacement profile will depend on whether a 
plastic hinge is predicted at the base or at some level higher than the base. Taking the 
general case of a plastic hinge forming at height Hp above the base (.HP — 0  for a wall- 
base hinge), the assessment displacement profile, AAl can be defined by:

where the symbols are as defined in Chapter 6 .

Step 7: Determine the equivalent SDOF displacement (Eq.(3.26)), the effective height 
(Eq.(3.35)), the yield displacement at the effective height (Eq.(6.5)) with Hi = //e), and 
the displacement ductility capacity (Eq.(3.36)).

Step 8: Check to see if the displacement capacity is reduced by potential for shear failure. 
Note that the shear demand increases as the displacement ductility increases as a 
consequence of higher-mode effects (see Section 6.6.2), while the shear capacity in the 
plastic hinge region reduces as a consequence of reduced contribution of the concrete 
shear-resisting mechanisms (see Section 4.'7). The shear demand can conservatively be 
expressed by Eq.(6.49), while the assessment shear strength defined in Section 4.7 should 
be used. It may be necessary to check the shear capacity at a number of heights, 
particularly if reinforcement details vary up the wall height. This is illustrated for a single 
location up the wall height in Fig. 13.14.

Step 4: Compare the capacity and demand moment envelopes, which, of course are equal 
at the wall base. If the capacity exceeds demands at all elevations above the base (ignoring

displacement profile is shown in Fig.l 3.13(c) by the solid line. However, if the capacity is 
less than the demand envelope including tension shift, as is the case at level 3 in

(13.11b)

(13.11a)
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Fig.13.14 Determining Ductility Capacity of a Wall, including Dynamic
Amplification

In Fig.13.14 the calculated first-mode force-displacement response is shown in terms 
of base shear vs. ductility. The maximum flexural displacement ductility capacity is /If In 
this case /Jf ~ 3. The shear strength at the base hinge is computed in accordance with 
Secdon 4.7.5, and the envelope is shown as a function of displacement ductility in 
Fig.13.14 by the upper solid line. Since the first-mode response and the shear capacity do 
not intersect, it might be concluded that shear does not influence the displacement 
capacity. However, when the shear force from the first mode is amplified for higher
mode effects in accordance with Eq.(6.50) (see the dashed line in Fig.13.14) it is seen that 
the shear demand intersects the capacity envelope at a displacement ductility of fly < Mr- 
This reduced ductility capacity should be used in the assessment procedure.

It was pointed out in Section 4.7.5 that it may be conservative to reduce the shear 
capacity with ductility and compare with the amplified shear demand since it is unlikely 
that the peak shear demand will correspond to peak displacement ductility demand. It is 
tentatively suggested that the shear capacity be based on a reduced ductility demand, 
corresponding to 60% of the computed displacement ductility, while the full ductility 
demand be used to compute the dynamic amplification.

Note that at heights above the base, the shear capacity will not be reduced for ductility 
demand, unless plastic hinging occurs above the base.

Step 9: With the displacement capacity defined from Steps 7 and 8 , the equivalent 
viscous damping can be computed (from Eq.(3.17)), and the effective mass from 
Eq.(3.33). The rest of the assessment procedure follows the SDOF approach outlined in 
the steps following Fig. 13.4.
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13.3.4 Other Structures

The modification of the assessment procedures outlined in the previous two sections 
to dual wall/frame buildings, bridges, and other structures is straightforward, and need 
not be developed further in this text. Regular buildings will be assessed independently in 
the orthogonal principle directions. Where torsional eccentricity is present, the 
displacement capacity at the centre of mass should include considerations of twist as 
covered in Sections 3.8 and 6.4.



14
DRAFT DISPLACEMENT-BASED CODE FOR 
SEISMIC DESIGN OF BUILDINGS

The draft code for building structures provided in the following pages is designed to 
provide guidance as to how direct displacement-based design methodology can be 
codified. It is not intended to be a complete document covering all aspects of building 
seismic design, but a framework, establishing how the key elements of DDBD can be 
codified. More detail, and a number of topics treated in the book but left out of the draft 
code because of space limitations, would need to be incorporated. Some of these topics 
are identified in the code.

This chapter is presented in a traditional “Code + Commentary” format, on a split 
two-column page. The commentary is by and large terse, generally providing only 
reference to the appropriate equation or section of the book in which the code material 
and further discussion is to be found. However, in a number of cases, where the 
treatment requires interpretation above that already provided in the book, the 
commentary is more detailed. In the interests of brevity, the symbols used in the code 
have not been defined. These, however, are the same as those used in the book, and are 
defined in the Symbols list.

As noted, the draft code refers to building structures. It should be clear, following the 
logic of this draft code, how a similar document could be written for other structures, 
such as bridges, or wharves, using the detailed information in the relevant chapter to 
augment the basic approach outlined in Chapter 3.

677
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CODE

1. DESIGN SEISMICITY

1.1 Building structures shall be designed such that 
performance criteria defined in Clause 2 are met 
for levels of seismic intensity specified for the 
seismic zone designated for the building.

1.2 For buildings in Zone A (moderate to high 
seismicity) performance criteria for Level 1 and 2 
intensity shall be met.

1.3 For buildings in Zone B (low seismicity) 
performance criteria for Level 3 intensity shall be 
met.

1.3 The defined probability of exceedence for a 
given intensity level depends on the building 
occupancy usage and damage consequences, as 
defined in Table 1.

Table 1: Probability of Exceedence for 
Different Structural Categories

Intensity Normal
structures

Hospitals, 
Police 
HQ’s, CD 
HQ’s etc

Structures
containing
hazardous
materials

Level 1 50% in 
50 years

20% in 50 
years

20% in 50 
years

Level 2 10% in 
50 years

4% in 50 
years

2% in 50 
years

Level 3 2% in 50 
years

1 % in 50 
years

1 % in 50 
years

1.4 Design intensity for a specified level shall be 
expressed in terms of an elasdc displacement 
spectrum corresponding to an elasdc damping 
ratio of ^ — 0.05, characterized by a corner 
period Tc and displacement Ac,0.05 as shown in 
Fig.l.L Values of Tc and Ac,o.05 shall be based 
on local seismicity and the specified probability 
of exceedence.

COMMENTARY

Cl Two zones are specified. Zone A is 
representadve of reasonably high seismicity, 
where serviceability (Level 1 EQ) and damage 
control (Level 2 EQ) consideradons govern the 
design.
In Zone B earthquakes are rare. However, at 

very long return periods, significant seismic 
intensity may occur. For these structures it is 
inappropriate to design for serviceability or 
damage criteria, and the single requirement is that 
the building must not collapse, and there should 
be no loss of life under the Level 3 earthquake.

Table 1 lists tentative suggestions for seismic risk 
for the three categories of earthquake, and 
different occupancy levels. It is anticipated that 
these would be revised in an actual code.
Note that the approach taken is to define the 
acceptable risk for different categories of 
structure as a variable within an intensity level, 
but to have uniform performance criteria for all 
structures under a specified intensity level. This 
appears to us to have a more sound probabilistic 
background than variable performance criteria 
for a given probability of exceedence.

C1.4 It is anticipated that values of the corner 
period and elastic displacement would be 
specified geographically, in much the same way 
that existing codes specify local variation of 
PGA. The implication here is that the 
displacement spectrum is linear with period up to 
the corner period. This is, however, not a 
necessary assumption, and could be modified on 
the basis of locally assessed seismicity.
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Fig.l.1 Design Displacement Spectra

1.5 The basic elastic displacement spectra defined 
for the building site shall be modified for the 
calculated building equivalent viscous damping, 
defined in Clause 7.6 by multiplying the 
displacement ordinates in accordance with 
Eq.(l.l)

Ac^ -  ^A c.o.os (1-1)

where unless forward direcdvity effects are 
defined for the building site,

**4= (0.0'7/(0.02+§)^ (1.2)
For near-field sites where forward direcdvity is 
possible,

= (0.07/(0.02+5)°--25 0  -3)

2. PERFORMANCE CRITERIA

2.1 Structural performance under the specified 
design intensities shall be defined by strain and 
drift limits as follows:

2.1.1 Material strains associated with flexural 
action shall not exceed the values listed in Table 
2 for different intensity levels. For concrete 
compression the Level 2 limit strain is defined by

ecdc = 0 .004 + 1.4  (2.1)
f  cc

2.1.2 Interstorey drift angles shall not exceed the 
limits listed in Table 3 for different intensity 
levels.

COMMENTARY

C1.4: The design displacement elasdc spectra 
shown in Fig.l increases Linearly with period up 
to a corner period, typically in the range of 2 to 5 
seconds, with a plateau of constant displacement 
for larger displacements. As characterization of 
displacement spectra, based on condnuing 
research, improves it is probable that non-linear 
spectra will be defined. This does not affect the 
basic design methodology in any way.

Cl.5 There is condnuing debate over the correct 
formuladon for the reducdon of spectral 
displacements with equivalent viscous damping 
values different from % = 0.05. The values 
suggested here appear the best currently available 
opdons. For a discussion, refer to Secdon 2.2.3 
of this text.

C2. The design displacement for the building 
may be defined by material strain limits, or by 
drift limits, which primarily affect non-structural 
components of the building. The lower of the 
drifts from Table 3, or the drifts corresponding 
to the material strain limits of Table 2 will 
constrain the design.

The strain and drift limits have been selected 
such that under Level 1 (serviceability) intensity 
only insignificant damage can be expected, and 
any necessary repairs can be carried out without 
affecdng normal operations. Under Level 2 
(damage-control) intensity, damage should be 
economically repairable. Under Level 3 (near
collapse) intensity the building should not 
collapse, though repair may not be economically 
repairable.

Refer to Secdon 4.2.5 for discussion of Eq.(2.1)
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Table 2: Strain Limits for Different 
Design Intensity Levels

Material Level 1 Level 2 Level 3
Concrete 

comp, strain
0.004 Eq.(2.1)

<0.02
1.5Eq.(2.1)

Rebar 
tension strain

0.015 0.06e,u
<0.05

0.09esu
<0.08

Structural 
steel strain

0.010 0.025 0.04

Masonry 
comp, strain

0.003 F,q.(2.1)
<0.01

1.5Rq.(2.1)

Timber 
tension strain

0.75P., 0 .75ev 0.^5£v

Table 3: Drift Limits for Different Design 
Intensity Levels

Drift Limit Level 1 Level 2 Level 3
Structures 

without URM, 
or URM infill*

0.010 0.025 No
limit

Structures with 
URM or 

URM infill*

0.005 0.025 No
limit

*URM= unreinforced masonry

3. Design Material Strengths

3.1 Design Material strengths for Plastic 
hinge regions:

• Concrete compression: Pce — 1.3/^
• Masonry compression: f me — \.2fm
• Steel reinforcement: fve -  1.1 fy
• Structural steel: fye 1.1

3.2 Design Material strengths for Capacity- 
protected members or regions of members:

• Characteristic material strengths, 
without amplification shall be used.

4. Material strength-reduction factors:

4.1 Determination of flexural strength of 
plastic hinges:

• No material strength-reduction factors 
are applied

Table 2: Strain limits for structural steel are set 
lower than for concrete rebar, because of the 
potential for larger residual displacements with 
structural steel, and the susceptibility for local 
inelastic buckling of steel flanges of both beams 
and columns.
Timber strains are required to remain well within 
fracture strain values, since tensile failure of 
timber is brittle. This does not mean, however, 
that timber structures must respond to 
earthquakes within the elastic range. The 
appropriate design philosophy is to design timber 
structures with ductile connections using a 
capacity design approach to avoid timber failure. 
Refer to Chapter 9 of this text

Table 3: The drift limits for the Level 1
earthquake are intended to ensure that properly 
designed buildings will not suffer significant non- 
structural damage. Since masonry infill, and 
unreinforced masonry exhibit damage at drift 
limits significantly different from other infill 
materials, lower serviceability drift limits are 
specified.
No drift limits are specified for Level 3 intensity, 
for which the performance criteria only require 
no collapse. However, high drifts will imply 
significant P-A effects which must be included in 
the design. (Refer to Section 3.6 of this text)

C3. Refer to Section 4.2.6

C4. Refer to Section 4.2.6 and Section 4.7
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4.2 Determination of strength of capacity- 
protected actions:

• Normal material strength-reduction 
factors are applied

5. General Structural Considerations

Consideration of the following aspects shall be 
included in the seismic design:

• Selection of locations of intended 
plastic hinges to ensure a satisfactory 
mechanism of inelastic deformation.

• Increase of displacements resulting 
from torsional eccentricity.

• Reduction in lateral resistance, and 
hence increase in displacements as a 
consequence of P-A effects

• Appropriate combination of gravity 
and seismic effects.

• Protection in accordance with capacity 
design principles of members and 
actions required to remain within the 
elastic range of response.

6. Design Displacement Profile

The design displacement profile for building 
structures shall be determined from the most 
critical of drift or material limit strain criteria, in 
accordance with the following requirements:

6.1 Frame Buildings: The design displacement 
profile shall be determined from the calculated 
drift of the critical storey Ac, and the inelastic first 
mode shape &, in accordance with Eq.(l)

C5. In the interests of brevity, the important 
aspects signalled in Clause 5, though covered in 
the book in some detail, have not all been 
codified herein. The following sections of the 
book relate:

Location of plastic hinges: Sections 5.2.3 and 
6 .1 .1.

Torsional response: Sections 3.8 and 6.4 

P-A effects: Section 3.6

Combination of gravity and seismic effects: 
Section 3.7

Capacity Design protection (principles): Section 
3.9, but see also detailed considerations in 
Sections 4.7, 5.8, 6.6 and 7.3

C6: Direct displacement-based seismic design 
relies on determining the correct displacement 
profile corresponding to the specified intensity 
level, and from this, the characteristics of the 
equivalent SDOF model corresponding to the 
inelastic first mode response.

C6.1: Frame buildings: Refer to book Section
3.5.1, and Chapter 5

A, =(0„S, ■ (6.1)

6.1.1 Inelastic First Mode Shape: The inelastic C.6.1.1: Refer to book, Section 5.2.1
first mode shape to be used in Eq.(6.1) may 
determined by structural analysis, or by direct use 
of Eq.(6.2):
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6.1.2 Higher Mode Drift Amplification: The
design displacement profile of Eq.(6.1) shall 
include allowance for higher mode amplification 
of drift by reducing the design floor displace
ments by incorporation of the drift reduction 
factor (Dfc given by Eq.(6.3):

0*  = 1.15 - 0 .0034/ /  < 1.0 (6.3)

6.2 Cantilever Wall Buildings: The design 
displacement profile shall be defined by rational 
structural analysis, or by whichever of Eqs.(6.4) 
and (6.5) produces the lower displacements:

C6.1.2: For frame buildings of about 10 storeys 
or more, interstorey drifts can be significandy 
influenced by higher mode amplification. The 
analytical support for Eq.(6.3) is provided in 
book Section 5.4
Note that building frames will normally be 
governed by code drift limitations, rather than 
material strain limits. Consequently the normal 
design approach will be to design for drifts, and 
subsequendy check strain limits.

C.6.2: Refer to book Sections 3.5.2(b), and 6.2.1.

A  =  A  . +  A  . = —  H f \ |  +  
y  p I 3  H

i
, - ^ 1  LJi.

A .  =  A  . +  f a  —6 )H +
K \ 3HJ

( 6 . 4 )

H,

(6.5)

6.3 Dual Wall/Frame Buildings: The design 
displacement profile shall be defined by rational 
analysis, or by whichever of Eqs.(6.6) and (6.7) 
produces the lower displacements:

A „ =  A r ,. +  ( 4 - 0 , , j L P / / , .  ( 6 . 6 )

A D , . = A w  +  ( ^ c - ^ / / c f / 2 ) / / , .  ( 6 . 7 )

C.6.3: Dual wall/frame buildings are considered 
in book Chapter 7. Refer to Section 7.2.3 for 
background on displacement profiles.

6.3.1 Yield Displacement Profile: In Eqs.(6.6) 
and (6.7) the yield displacement profile is defined 
by

for Hj S Hey-
//,2 H ]

A ,y =  <t>yW 6 Hr
(6.8)

C.6.3.1: Refer to book Section 7.2.3

for Hj >HCf'
H i (6.9)
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In Eqs.(6.8) and (6.9) HCF is the height of the 
wall contraflexure point under the lateral seismic 
forces. The yield curvature is defined by
Eq.(6.10):

<pŷ = 2 e yllw (6.10)

7. EQUIVALENT SDOF STRUCTURE:
The structural parameters of the equivalent 
SDOF structure to be used for determining the 
required base shear are defined by Eqs.(7.1) to
(7.4).

7.1 Characteristic Displacement: The
characteristic displacement to be used for design 
shall be found from Eq.(7.1):

= Z('”,A/)/Z ('”A )
1=1 i=\

7.2 Effective Height: The effecdve height is 
defined by

//. = !> A t f , ) / !> A )  (7,2)»=1 1=1

7.3 Effective Mass: The effective mass of the 
equivalent SDOF structure is defined by

i», = 2 > A )/ A  (7’3)/=1

7.4 Displacement Ductility Demand: The
design displacement ductility7 demand of the 
equivalent SDOF structure shall be found from 
Eq.(7.4)

f l  =  Arf/Av (7’4)

7.5 Yield Displacement: The yield displacement
to be used in Eq.(7.4) shall be found from
rational structural analysis, or from the equations 
in Clauses 7.5.1 or 7.5.2:

COMMENTARY

Refer to book Section 7.2.2.

C7: The essence of the DDBD procedure is 
identification of the fundamental characteristics 
of the equivalent SDOF systems (sometimes 
termed the Substitute Structurej. These 
characteristics are based on the displacement 
profile, mass distribution, and geometry, and can 
be determined before the strength distribution is 
known. These characteristics are used to 
determine the required base shear force.

C7.1: Refer to book, Section 3.5.1

C7.2: Refer to book, Section 3.5.4

C.7.3: Refer to book, Section 3.5.3

C7.4: Refer to book, Section 3.5.4

C.7.5: Refer to book Section 3.5.4

7.5.1 Yield displacement of building frames:

A y =6yH, (7-5)

C7.5.1: Refer to book, Section 4.4.6
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In Eq.(7.5) the yield drift of frames may be taken

(a) reinforced concrete frames:

0=O.5£v^ -
>hb

(b) structural steel frames:

L.

(7.6a)

d„ =0.65£,,—
' K

(7.6b)

7.5.2 Yield displacement of Cantilever Walls:

A = ~ H ] {  1 — 1 0-7)
r L  {  3 / / „

7.5.3 Yield Displacement of Dual 
Wall/Frame Buildings : The yield displacement 
of dual wall frame buildings may be found 
substituting Hj = He in Eq.(6.8) if He <Hcf and 
in Eq.(6.9) if He > HCF:

7.6 Equivalent Viscous Damping: The
equivalent viscous damping to be used to 
characterize the design displacement spectrum 
for the SDOF structure, in accordance with 
Eqs.(1.2) and (1.3) shall be determined from 
results of comprehensive inelasdc dynamic 
analyses of structures with similar structural 
materials and structural forms as the building 
under consideration. In lieu of current analyses 
the appropriate equation from the following list 
may be used:

Concrete Wall Building, Bridges: 

= 0.05 +0.444

Concrete Frame Building: 

<? =0.05+ 0.565.(
I I™

Steel Frame Building:

QA

( l . \

£ = 0 . 0 5  + 0.577 Mzl
jdK

(7.8c)

C7.5.2: Refer to book, Section 3.5.2(b).

C7.5.3: Refer to book, Section 7.2.3

C7.6: Refer to book Section 3.4.3. The damping 
to be used is equivalent to the sum of elastic and 
hysteretic damping of the structure, and is 
calibrated by inelastic time-history analyses using 
realistic estimates of elastic damping, and 
hysteretic response. It is important the simplistic 
rules, such as the elastic-perfectly-plastic rule, 
with elastic damping of £  -  0.05 not be used.

Refer to book, Section 3.4.3(c).
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Hybrid Prestressed Frame ((3=0.35): Refer to book Section 3.4.3(d) for definition of (i.

£ = 0 . 0 5  + 0 . 1 8 6 . ( ^ ]  (7-8d)
y tu t)

Friction Slider:

^  = 0.05 + 0 . 6 7 0 j  (7'8e)

Bilinear Isolation System (r=0.2):

^  = 0.05 + 0 . 5 1 j  (7'8f^

7.7 Effective Response Period: The effecdve 
period of the SDOF structure is

7.8 Effective Stiffness: The effecdve sdffness of 
the SDOF structure is

Ke = 4jt2mJT*  (7-10)

Note: The equation for the bilinear system has a 
rather steep post-yield sdffness rado (r), and is 
appropriate for a specific seismic isoladon system 
only. Bilinear systems with other post-yield 
sdffness need individual calibration, since the 
equivalent viscous damping is sensidve to this 
parameter.
C7.7: This equation assumes a linear
displacement spectrum, as shown in F ig.(l.l). If a 
non-linear displacement spectrum is specified, 
then the period needs to be found by 
interpolation.

C7.8: Refer to book, Secdon 3.1. Eq.(7.10) is 
found from simple inversion of the equation for 
the period of a SDOF oscillator.

8 DESIGN BASE SHEAR FORCE

The design base shear force is determined 
from the design displacement and effective 
sdffness of the SDOF structure in accordance 
with Eq.(8.1):

8.1 Lateral Force Vector Derived from Base 
Shear Force: The base shear force shall be 
distributed to the locations of floor mass of the 
building in accordance with the relationship: 
Floors 1 to n-\:

F ^ k V ^ i m ,  A,)/£(iw,A,) (82a)
1 = 1

Roof (Floor n):

F, = (1 ■- k)VBase + k VBase (m„A„)/ £  (m, A ,) (8-2b)
i=1

For frame buildings, the value of k to be used in 
Eq.(8.2) is k -  0.9. For all other building 
structure, k~  1.0.

C8: Refer to book, Section 3.1 and Fig.3.1.

C8.1: The base shear force is distributed to the 
floor masses in proportion to floor mass and 
floor displacement. For frame buildings, 
particularly those of about 10 storeys or higher, 
10% of the base shear must be additionally 
applied at roof level to reduce higher-mode 
drifts.
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8.2 Structural Analysis to Determine 
Required Moment Capacity at Plastic 
Hinges:

8.2.1 The structure shall be analysed under the 
design Lateral force vector to determine the 
required moment capacity of potential plastic 
hinge locations

8.2.2 The structural analysis shall be based on 
effective stiffness of structural members at 
expected displacement response, or alternatively 
may be determined from a rational equilibrium 
analysis. Lateral forces should not be distributed 
to members based on elastic section properties.

9. CAPACITY DESIGN REQUIREMENTS

The intended distribution and location of plastic 
hinges must be ensured by application of an 
appropriate capacity design hierarchy of strength 
with design moments and shears amplified to 
account for possible increased material strength 
in plastic hinge locations, and higher mode 
dynamic amplification. Amplified moments and 
shears may be determined in accordance with the 
Effective M odal Superposition method of 
Section 8.1, or the Approximate method of 
Section 8.2

9.1 Effective Modal Superposition to 
Determine Capacity Design Force Levels:
Capacity design moments and shears may be 
determined by combining modal moments or 
shears by SSRS or CQC combination rules, from 
a modal analysis based on effective member 
stiffnesses at maximum displacement response. 
The first mode response Sj^j may be taken as the 
design moments or shears resulting from the 
strucairal analysis defined in Section ”\2, 
amplified for possible enhancement of material 
strengths. For the SSRS combination rule, the 
enhanced action, Scdj is found from Eq.(9.1):

COMMENTARY

C8.2: DDBD is intended to provide direct
information on the required flexural strength of 
plastic hinges. Two methods of structural analysis 
are suggested. The first involves a conventional 
structural analysis, though the member stiffness 
adopted in the analysis should be reduced from 
the elastic values by dividing by the expected 
member displacement, or rotational ductility. As 
noted in book Section 5.5.1, care is needed in 
modelling the stiffness of first-storey columns. 
The second method is based on equilibrium 
requirements, rather than stiffness properties. 
This procedure is outlined in book Section 5.5.2. 
In the case of frame buildings, die equilibrium 
method requires rational decisions to be made 
about the vertical distribution of beam seismic 
shear up the buildings.

C9.1: There are a number of modal analysis
procedures outlined in different chapters of the 
book that have been developed to determine 
capacity design forces. All are based on the 
assumption of a modal superposition combining 
the inelastic first mode forces with the elastic 
higher mode forces, and all give similar results. 
Although not fully checked on all structural 
types, it is believed that the Effective M odal 
Superposition approach, which is based on a 
structural model similar to the first option 
described in Clause C8.2 above provides the 
most consistent results.

ScD,i ~ V Dj)2 + ^2.i + ^3,i + “ + P - l )

The value of the overstrength factor (jfi may be 
determined from moment-curvature analysis of
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the plastic hinges. Alternatively a conservative 
value of (jP — 1.25 may be assumed.

9.2 Approximate Methods for Determining 
Capacity Design Force Levels: As an
alternative to the consistent approach of Section
9.1, the following conservative equations may be 
used for different structural types and acdons.

9.2.1 General Provisions: The dependable
strength of capacity-protected elements shall be 
determined from

SCF=</>°a£E (9.2)

9.2.2 Frame Buildings:

(a) Column Moments
(i)One way frames:

The dynamic amplification factor (fy for flexure 
is height and ductility dependent as shown in 
Fig-9.1, where from level 1 to the 3A point of 
structure height:

(Df c  = ] . 1 5  + O . 1 3 ( u / 0 ° - l )  (9-3)

and at the top and bottom of the frame

Oij = 1.00 (9-4)

Fig.9.1 Dynamic Amplification of 
Column Moments

COMMENTARY

C9.2: The equations in this section are based on 
analyses on extensive inelastic time-history 
analyses, and are adequately conservative for 
design purposes.

C9.2.1: The basic capacity design equation (9.1) 
relates the required dependable strength of the 
capacity-protected action (generally flexural 
strength or shear strength) to the value calculated 
from the design lateral force distribution, 
including an overstrength factor (ffi and a 
dynamic amplification factor QX The overstrength 
factor will normally be found from moment- 
curvature analysis in accordance with book 
Section 4.5, or may conservatively be taken as 
1.25, when design flexural strength follows the 
recommendations of book Section 4.2.6

C9.2.2(a): Refer to book Section 5.8.4(c).
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(ii) Two-way fram es: For two-way frames the 
design moment corresponding to lateral forces 
shall be based on biaxial response, with the 
displacement ductility factor f l in Eqs.(9.3) and
(9.4) being replaced by ///V2.

(b) Column shears : Overstrength and dynamic 
amplification factors for shear in columns shall 
be combined as in Eq.(9.5) which relates the 
required dependable shear strength to the shear 
determined from the lateral force distribution:

t sy„ > f v E+ o. w EMse < M1±ML (9.5)
H c

9.2.3 Structural Walls:

(a) Wall Momenta The design moments for 
cantilever walls shall conform to the bilinear 
envelope of Fig.9.2, where the wall-base moment 
is amplified for overstrength effects, and the 
moment capacity at mid height is defined by

M°0, H=C lTf M B (9.6)

where

Cli7= 0.4 + 0.0757; 0.4 (97 )

COMMENTARY

Refer to book, Secuon 5.8.5(c).

Refer to book, Secdon 6.6.2(a).

C9.2.3: The period 7} in Eq.(9.7) is the initial 
elastic period, including effects of cracking. Note 
that this period can be related with adequate 
accuracy to the effective period used in the 
DDBD process by Tt = Te/ V|JL For 
comparatively short walls, it will normally be 
appropriate to carry the flexural reinforcement up 
the full height of the wall without terminating any 
bars.
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In determining the required level of wall flexural 
reinforcement, allowance shall be made for 
variation of axial force with height, and for 
tension-shift effects.

(b) Wall Shear Forces: The provided shear 
strength of a cantilever wall shall conform to the 
linear envelope of Fig.9.3. The wall-base dynamic 
amplification factor for shear shall be taken as

®v=1 + ̂ 5"Q,7- ('9,8')

where

C 2J  =0.067 + 0 .4 (7 ;-0 .5 )  <1.15 (9.9)

The design moment capacity at the wall top shall 
be not less than

v°  = ( 0 .9 -0 .3 7 ;)yB° >0.3V°  (9.10 )

9.2.4 Dual Wall-Frame Buildings

When the proportion of base shear allocated to 
the frames of dual structural systems falls in the 
range 0.2<^-<0.6 the following provisions apply. 
When /?/r<0.2, the walls should be designed as 
cantilever walls to Cl.9.2.3, and when 0.6 the

COMMENTARY

Refer to book Section 6.6.2(b)

Refer to book Section 7.3.2.

C.9.2.4: When /?f<0.2, the frames may still be 
designed to the provisions of this section, and 
when fiF>0.6 the walls may be designed to these 
provisions.
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frames should be designed in accordance with 
Cl.9.2.2.

(a) Column Moments: Columns shall have 
dependable flexural strength not less than

M CiD =1.30° Mce (9.11)

(b) Column Shear Force: Columns shall have 
dependable shear strength not less than

FC>D=1.3*°A/Cfi (9.12)

(c) Wall Moments: Wall moments shall be 
designed to the bilinear envelope defined in 
C1.9.2.3(a).

(d) Wall Shear Forces: The provided shear 
strength of a wall of a dual structural system shall 
conform to the envelope of Fig.9.3, where

0

where

Cir  = 0.4 + 0.2(7;. - 0 .5 )  <1. 15 (8.14)

COMMENTARY

C.9.2.4(a): Influence of higher modes on
column moments is less apparent in frames of 
dual systems. Also it should be noted that the 
consequences of column plastic hinging are 
minimal, since the wall sdffness and strength will 
control the deformation, avoiding the potential 
for a soft-story mechanism to form.

C.9.2.4(d): The form of the wall shear force 
envelope is the same as for simple cantilever 
walls, but the system ductility, rather than the 
wall ductility is used, and the period-dependent 
coefficient, C^j results in lower amplification 
than in simple cantilever walls.

The shear force at the wall top may be taken as 

Fn° = 0 .4F S° (8.15)
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SYMBOLS LIST
Ae effective shear area of cracked section
Ah area without full cycle of stabilized force-displacement response
Ab \ Ah spiral or hoop bar cross-sectional area
A gross section area
Ar wall aspect ratio, measured at roof level
As area of tension reinforcement in concrete section
As effective shear area of uncracked section
A$h area of transverse reinforcement in section perpendicular to direction

considered
Ast total area of reinforcing steel in concrete or masonry section
Aw shear reinforcement in masonry wall
a depth of flexural compression zone; acceleration
Z(t) period-dependent acceleradon from response spectrum
B width of building plan
b f width of footing
b section width
bw width of web of flanged beam
C constant
Cm centre of mass
Cr centre of rigidity in torsional response calculations
Cs coefficient applied to peak response displacement for different soils
Cy centre of shear strength in torsional response calculations
CT basic seismic coefficient
C distance from extreme compression fibre to neutral axis
D diameter of circular section
D> diameter of confined core, to centreline of hoop or spiral
d effective depth of section to centroid of tension reinforcement
dbi reinforcing bar diameter
E modulus of elasticity
E force induced by seismic action
EP overstrength force induced by seismic action
Ec concrete modulus of elasticity
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Em masonry modulus of elasticity
Es steel modulus of elasticity
Fsec secant modulus of elasticity of confined concrete at peak strength
e eccentricity between centre-of-mass and centre of effective stiffness
£r rigidity eccentricity in torsional response calculations
ev strength eccentricity in torsional response calculations
F force
f d damping force
Fel seismic force corresponding to elastic spectrum
Fm maximum force
Fp axial force in member from prestressing
Fr seismic force reduced from elastic spectrum by force-reduction factor
Fy yield force
Pc specified (28 day) concrete compression strength
Pcc compression strength of confined concrete
1 ce expected compression strength for DDBD
1 CO maximum feasible concrete compression strength
p1 me masonry compression strength
fJpu specified prestressing steel ultimate strength
f1pue expected prestressing steel ultimate strength
ft tension strength

specified minimum or characteristic yield strength of steel
Pye expected yield strength of steel for DDBD
fyh yield strength of hoop or spiral transverse reinforcement
fyo maximum feasible steel strength
fu steel ultimate stress
G shear modulus; gravity load
Ql shear modulus of lead, in lead-rubber bearing
Gm masonry shear modulus
g acceleration due to gravity, 9.805m/s
H height
Hc column height
FIcf height of wall contraflexure in coupled wall or dual wall/frame building
HCP height from contraflexure point to deck soffit in bridge design
He effective height of SDOF approximation to multi-storey building
HF height of footing
Hig height from in-ground plastic hinge to superstructure
Ht height of mass / in building design
Ho height to contraflexure in masonry wall
Hn height of building to roof level
Hs storey height
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h section depth
hb beam section depth
hc column section depth
hn height of isolating or damping device
hcB height of coupling beam in coupled wall design
hss depth of bridge superstructure
I importance factor in force-based design; section moment of inertia
I multiplier applied to design seismic intensity level
It moment of inertia of beam section
lc moment of inertia of column section
hr moment of inertia of cracked concrete section
Igross moment of inertia of un-cracked concrete section
Iss moment of inertia of bridge superstructure
J r rotational stiffness

J r>m rotational stiffness for ductile response
K ejf effective rotational stiffness at design response displacement
K structure stiffness
k a assessed structure stiffness at limit state
Ke structure effective stiffness for DDBD
Ki initial (elastic) stiffness
k lr lateral stiffness of lead-rubber bearing
Kp lateral stiffness of friction-pendulum isolator
Kr lateral stiffness of rubber bearing
Ks structure secant stiffness
K. axial stiffness of bearing
Ke foundation elastic rotational stiffness
k element stiffness
k constant dependent on steel properties for strain penetration (Eq.(4.31a))
k bulk modulus of rubber
ki initial (elastic) stiffness, including effects of cracking
ks shear stiffness
kt instantaneous tangent stiffness
ky vertical subgrade modulus for foundation flexibility calculations
L length
Lb beam length
Lc distance from critical section to contraflexure point
l d length of damper coupling adjacent walls
Lcb length of coupling beam in coupled wail design
LP plastic hinge length
Lsp strain penetration length
Lss bridge superstructure span length
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lw wall length
M moment
M * dimensionless moment (Eq.(12.7))
Mb beam moment
Mcd design moment of column of two-way frame in diagonal direction
Mcr cracking moment of concrete or masonry section
m d design base moment; also dead-load moment
Jetties design moment
Me base moment resulting from elastic acceleration response spectrum
Mg moment caused by gravity load
Ml Jive load moment
Mmms moment from modified modal superposition approach (Section 6.6.1)
m n nominal moment capacity
Mp-Mp section plastic moment capacity
Mt torsional moment
Mw earthquake moment magnitude
Mu ultimate moment
N axial force on section (also P)
NsJ normal force acting on bearing
m mass
me effective mass participating in the fundamental mode
n number of storeys in multi-storey building
OTM overturning moment
P axial force on section (also TV)
p* axial load ratio
Pb.u ultimate soil bearing strength (also p u)
PGA peak ground acceleration
R force-reduction factor applied to elastic spectrum in force-based design
R reaction force
Rc radius of curvature of friction-pendulum isolator
Rd reaction force resulting from design-level actions
R° reaction force resulting from overstrength-level actions

* reduction factor applied to displacement spectrum for damping £
force-reduction factor related to ductility

RS relative superstructure/pier stiffness ratio in bridge response
R, force restraining uplift in rocking wall design
T ratio of post-yield to initial stiffness in bilinear approximation
r distance to fault plane in km.
S strength; shape factor
Sa(T) period-dependent response acceleration coefficient from response spectrum

design strength
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SE strain energ}̂
Se strength from design vector of lateral forces
Sout out-of-plane amplification factor related to structure response period
Sr required dependable strength
s spacing along member axis of transverse reinforcement
T period
T seismic tension force in column of frame
tb period at end of maximum spectral response acceleration plateau
Tc corner period in displacement response spectrum
Te effective period for DDBD
TeD effective period in diagonal direction
TeP effective period in principal direction
T> initial total tension force in prestressed section
Tout period of out-of-plane response of wall
t width of wall section; distance between adjacent plates in elastomeric 

bearing design
V shear force; shear strength
^Base base shear force
vBi seismic shear force in beam of frame at level i

Vc shear strength from concrete shear-resisting mechanisms
Vc column shear force
VCB shear force in coupling beam
VCD design shear force in column of two-way frame in diagonal direction
vv cap total shear strength of section
Vdes design (dependable) shear strength of member
VE shear force in member corresponding to design lateral force vector
VF shear force carried by frame is dual wall-frame building
Vmms shear force from modified modal superposition approach (Section 6.6.1)
Vy yield shear force
V>y shear force carried by wall
K ultimate shear force
V velocity
Aw wall displacement
Vj inertia force
Vi storey shear at level /
VN nominal shear strength
yo overstrength shear force
vP shear strength from axial force mechanisms
Vp shear strength of link member in EBF
Vs shear strength from transverse reinforcement mechanisms
Vsk shear force in shear key between wharf segments
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VA shear force at displacement A
w weight
WF footing weight
Ws superstructure weight transferred to pier in bridge design
m weight transferred to wail from slab at one level
Ww weight, including self-weight, supported at base of wall

masonry unit weight
Z site zone seismic intensity factor
Zp section plastic modulus
a mass-proportional coefficient for Rayleigh damping
a exponent in damping displacement-reduction equation (Eq.(2.8))
a factor for aspect rado in shear strength determination (Eq. (4.72a)
a unloading stiffness factor in modified Takeda hysteresis rule
a wall length ratio in torsion design
a angle of reinforcement to member axis in diagonally reinforced beam
a exponent to velocity in viscous damper design (Eq.(l 1.36))
p force-ratio in flag-shaped hysteresis rule (see Fig.3.9(f))
p stiffness-proportional coefficient in Rayleigh damping
p factor for longitudinal reinforcement ratio in shear strength calculations
p reloading factor in modified Takeda hysteresis rule
ficB proportion of structure OTM carried by coupling beams in coupled walls
f a proportion of structure OTM carried by dampers in coupled walls
Pf proportion of total building shear force carried by frame in dual wall-frame 

building
7 factor for curvature ductility in shear strength calculations (Fig.4.22)
7 link yield rotation in EBF analysis
7 allowable shear strain in bearing design
A displacement
Afl assessed displacement capacity
AB bearing displacement
A c design displacement at critical mass (Eq.(3.27))
Acap displacement capacity
A CM displacement at centre of mass
ACode displacement capacity required to satisfy code requirements, in assessment
Acr cracking displacement; critical displacement
Ad, Ad design displacement
A dem displacement demand
A ei elastic displacement
A/ displacement resulting from foundation flexibility
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A f,N flexural deformatdon at nominal strength
A , displacement at mass i
A/v; A ls limit-state displacement
A max maximum displacement
A n Displacement at roof level in building design
A  (T) period-dependent displacement
A  p variation in axial force
K plastic displacement
A PG peak ground displacement in earthquake
A , structural component of displacement
A s shear deformation
A T isolator temperature increase under simulated seismic response
Ay Yield displacement
A„ ultimate displacement
A„jM. ultimate displacement for out-of-plane masonry wall response
A h> wall displacement
4 value of dimensionless inelastic mode shape at cridcal mass (Eq.(3.27))

dimensionless elastic mode shape at mass i
4 dimensionless inelasdc mode shape at mass /
3/hua peak response displacement in response spectrum
£ strain
£c concrete strain
£c,s spalling (serviceability limit) strain for concrete or masonry
£cm ultimate compression strain of unreinforced masonry
£cu ultimate concrete strain (damage control limit state) defined by Eq.(4.21)
£sh steel strain at onset of strain-hardening
£smc strain at peak stress of confining reinforcement in wharf design
£smd strain at peak stress of dowel reinforcement in wharf design
£su steel strain at ultimate strength
£y yield strain of steel
&c(e) concrete stress-strain relationship
&s(e) steel stress-strain relationship
<!> curvature; strength or displacement reduction factor; friction angle
<!>cr curvature at cracking of concrete or masonry section
(ftdc damage-control limit-state curvature
<b\ <P* dimensionless curvature
<hy dimensionless yield curvature
</>A displacement reduction factor
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flexural strength reduction factor
\ihs limit-state curvature
p overstrength factor relating maximum feasible flexural strength to design 

strength

Qp plastic curvature
<k strength reduction factor related to action 5
0s shear strength reduction factor
0s serviceability limit-state curvature
</)y yield curvature of bilinear approximation to moment-curvature curve
fy curvature at first yield of reinforcing steel, or compression strain of 0.002
<f>U ultimate curvature
K constant used in effective damping equations
A wall strength ratio in torsion analysis (p330)
M ductility factor; friction factor
Mb beam displacement (or rotational) ductility factor
Md displacement ductility in diagonal direction
M° displacement ductility factor for overstrength response
Md > Mf friction factor
Mp displacement ductility in principal direction
Msys structure displacement ductility factor
Ma displacement ductility factor

M* curvature ductility factor
Mmc friction factor in unreinforced masonry design
e rotation; drift angle (displacement/height); angle
OcB coupling beam rotation
ey yield drift of frame
0A stability index in P-A design

nominal torsional rotation
Oy yield drift

e viscous damping ratio
modified damping ratio for tangent-stiffness modelling in Rayleigh damping

%CB equivalent viscous damping of ductile coupling beam

i ■ equivalent viscous damping ratio for DDBD
tel viscous damping ratio in elastic range of material response

£ , equivalent viscous damping ratio
t o * equivalent viscous damping associated with out-of-plane masonry wall response

& foundation damping ratio
£hyst hysteretic component of equivalent viscous damping ratio for DDBD
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£p equivalent viscous damping for a pile/column (Section 10.3.5(c))
pa area ratio of transverse reinforcement in section
Pi longitudinal reinforcement ratio in concrete or masonry section
pv volumetric ratio of transverse reinforcement
CO dynamic amplification factor for higher-mode effects; circular frequency
COf dynamic amplification factor for flexure.
(Qs dynamic amplification factor for shear
(De higher-mode drift reduction factor for DDBD of frames
(Oy shear dynamic amplification factor
£ angle between compression strut and member axis in shear design



ABBREVIATIONS USED IN TEXT
BI bilinear hysteresis rule
CBF concentrically braced frame
CD capacity design
CLE contingency level earthquake (POLA)
D/C demand/capacity ratio
DDBD direct displacement-based design
EBF eccentrically braced frame
EMS effective modal superposition
EP elasto-plastic
EPP elastic/perfecdy-plastic
EVD equivalent viscous damping
ETHA elastic time-history analysis
FPS friction-pendulum system
FS flag-shaped hysteresis rule
GPS global position system
HDRB high-damping rubber bearing
I/D isolator/damper device
ITHA inelastic time-history analysis
LPG liquid petroleum gas
MCE maximum considered earthquake
MDOF multi degree of freedom
MMS modified modal superposition
NEHRP national earthquake hazard reduction program
OLE operating level earthquake (POLA)
PGA peak ground acceleration
PGD peak ground displacement
POLA port of Los Angeles
PTFE polytetrafluoroethylene
RO Ramberg-Osgood hysteresis rule
SDOF single degree of freedom
SRSS square root sum of the squares
TF “fat” Takeda hysteresis rule
TH time-his to ry
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TR torsionally restrained
TT “thin” Takeda hysteresis rule
TU torsionally unrestrained



INDEX
Abutments: 

capacity-design effects, 513 
damping, 500 
of bridges, 470 

Accelerograms: 
characteristics of, 37 
choice of, 61 

Analysis (133): 
force-displacement, 133 
frames, lateral force, 242 
pushover, 218 
moment-curvature, 134 
verification, 192 

Anchorage deformation, 148 
Assessment (647):

DB methodology, 653 
force-based methodology, 649 
of frames, 661 
of structural walls, 672 

Base isolation: 
devices, 529 
flexible structures, 571 
rigid structures, 520, 559 

Base shear equation: 65, 91 
Beam design strength, 242 
Beam/column joint strength, 174 
Bearings: 

friction pendulum, 539 
isolation, 531 
laminated rubber, 531 
lead-rubber, 535 
non-seismic, 530

Biaxial excitation: 
of frames, 255, 259 
of walls, 344 
of wharves, 603 

Braced Frames: 
concentrically, 306 
dissipative, 586 
eccentrically, 307 

Bridges (465): 
bearings, 467, 487 
elastically responding, 477 
longitudinal design, 472 
movement joints, 470 
pier/deck connection, 467, 502 
pier section shapes of, 465 
relative stiffness index, 497 
seismic isolation of, 520, 579 
soil/structure interaction, 468 
system damping, 485, 489, 500 
transverse design, 494, 507 

Capacity design: 
analysis for, 165 
for DBD, 125 
introduction to, 5 
higher mode effects, 125, 165, 184 
of bridges, 512 
of frames, beam flexure, 263 
of frames, beam shear, 265 
of frames, column flexure, 266 
of frames, column shear, 271 
of isolation systems, 526 
of timber structures, 462
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of walls, 125, 184, 357 
of walls, simplified design, 363 
of wall/frames, 399 
of wall/frames, simplified, 401 
of wharves, 634 

Code, displacement-based, 677 
Collapse limit state, 72 
Columns: 

base moment in frames, 243, 257 
biaxial attack in frames, 255 
design strength in frames, 249 

Concrete: 
confined strength, 480 
confinement,136 
damage-control strain limit, 141 

Damage limit states: 
member, 69 
prestressed frames, 285 
return period, 54 
serviceability strain limit, 142 
strength for capacity design, 144 
strength for seismic design 144 
stress-strain characteristics, 140 
structure, 70 

Coupled walls: 
characteristics, 372 
coupling beam reinforcement, 378 
coupling beam drift limits, 380 
coupling by slabs, 374 
design example, 382 
equivalent viscous damping, 381 
yield displacement, 376 
with dissipative dampers, 590 

Cranes, container: 602, 603, 633 
Curvatures: 

limit state, of walls, 322 
yield, 165
of prestressed piles, 616, 620 

Dampers: 
damping data, 563 
electro-inducdve, 553 
heat problems with, 554 
magneto-rheological, 553

shape-memory alloy, 553 
steel, 544 
viscous, 548 

Damping:
(and isoladon), 519 
area-based correction, 87 
correction factors, 84 
effective, 100 
elastic, 81
equivalent viscous, 86 
for isolation systems, 523 
foundation flexibility, 101 
from soil, 488 
hysteretic, 76 
initial stiffness, 82 
secant stiffness, 82 
system, for bridges, 489, 500 
tangent stiffness, 82 

Design, force based, 8 
Design examples:

2.1 Design spectra, 55
3.1 Basic DDBD, 67
3.2 Equivalent viscous damping, 88
3.3 Simple bridge pier, 91
3.4 Flexible bridge pier, 93
3.5 Cantilever wall damping, 103
3.6 Cantilever wall moments 106
3.7 Cantilever wall, serviceability, 108
4.1 Bridge pier overstrength, 167
4.2 Bridge pier shear strength, 182
4.3 Bridge pier shear deformation, 188
5.1 Irregular frame, damping, 233
5.2 Irregular frame, forces, 277
5.3 Precast hybrid frame, 293
5.4 TH verification of 5.1 and 5.2, 310
6.1 Torsion, eccentric building, 346
6.2 Wall capacity design, 368
7.1 Wall/frame, 403
8.1 Masonry, coupled walls, 434
8.2 Reinforced coupled walls, 441
8.3 Masonry building, torsion, 447
8.4 Masonry Wall, out-of-plane, 449
10.1 Bridge design displacement, 481
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10.2 Bridge pile/column, 481
10.3 Bridge longitudinal design, 489
10.4 Bridge damping, transverse, 500
10.5 Bridge transverse design, 507
10.6 Bridge design verification, 516
11.1 Base isolation stiff building, 564
11.2 Base isolation wall building, 575
11.3 Base isolation, bridge deck, 582
11.4 Braced and damped frame, 588
11.5 Coupled wall with dampers, 592
11.6 Coupled walls, rocking, 594
11.7 TH verification of 11.3, 596
11.8 TH verification of 11.5, 597
12.1 Marginal wharf, 639
13.1 Bridge peer assessment, 656
13.2 Frame assessment, 666 

Design verification:
of frames, 274 
of walls, 359 
of wall frames, 397 
TH analysis, 192 

Diagonal excitation in frames: 255, 259 
Displacement: 

bridge profile, 98, 495 
design, 70, 92
dual wall frame profile, 394 
equivalence rules, 26 
frame profile, 97, 222 
isolated structure profile, 572 
wall profile, 97, 319 

Dissipative braces: 521, 586 
Dissipation: 

devices, 522 
steel dampers, 544 
viscous dampers, 548 

Drift:
amplification in frames, 239 
amplification in wall/frames, 395 
damage-control, 71 
frame, design values, 240 
residual, 69 
serviceability, 71 

Dual wall/frames (see Wall frames), 387

Ductility: 
bridge columns, 14 
concept, 2
influence of shear on, 180 
problems with, 12 

Dynamic amplification, 170 
Earthquake: 

intensity, 38 
magnitude, 37 
maximum considered, 55 
return periods, 54 

Equilibrium: 
analysis based on, 245 
in capacity design, 170 

Flexural strength: 
for capacity design, 173 
in beams, 263 
in columns, 266 

Force: 
bridge, distribution, 499 
distribution to masses, 104, 224 
frame distribution, 239 

Force-displacement: 
analysis: 133, 147 
of prestressed piles, 612 

Force-reduction factors: 2, 13 
Foundation flexibility: 17, 101, 354 
Frames (221): 

braced, with dampers, 586 
concrete, 226 
elastic response, 226 
design equations, 221 
inelastic mechanisms, 225 
irregular, 230 
precast prestressed, 285 
steel, 230, 238, 304 
steel, concentric braced, 306 
steel, eccentric braced, 307 
yield displacement, 164,226 

Gravity:
combination with seismic, 115, 251 
design recommendations, 120 

Hazard: 37,69, 647
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Height: 
contraflexure, 377, 430, 440 
effective, 223, 376 
influence on base shear force, 129 

Hybrid precast structures: 
concrete frames, 285 
concrete walls, 370 
timber frames, 456, 461 

Hysteresis: 
force-displacement shapes, 65 
of timber structures, 457, 461, 462 
rules, 200 

Input (37):
Intensity: 

influence on base shear force, 127 
magnitude and, 37 

Isolation and damping (519): 
DDBD of, 559 
systems, 522 

Isolation/dissipation examples, 520 
Link beams (in wall frames), 392 
Masonry (413):

contraflexure height, 430, 440 
damping of, 421 
design drifts, 420 
design of, 429 
failure modes, 417 
flanged walls, 414 
material strengths, 415 
out-of-plane response, 449 
plastic hinge length, 420 
reinforced, 423, 438 
shear strength of, 421 
stress-strain properties, 139 
torsion of, 447 
unreinforced, 413 
wall configurations, 415 
walls, coupling of, 425 
3-D response of, 446 

Mass: 
effective, 99 
discretization, 198

Modal superposition: 
effective, 363, 516, 529 
elastic, 358 
modified, 359 

Modelling: 
fibre elements, for, 195 
line elements, for, 193 
solid elements, for, 197 

Moment-curvature: 
analysis, 134
bi-linear approximation to, 144 
computer program “Cumbia” 145 

Moment redistribution, 116 
Movement joints, in wharves, 632 
Neutral axis depth, 480 
Overstrength: 144, 167, 170 
P-A: 

effects, 111
DDBD recommendations, 115 
design example with, 293 
in assessment, 655 
in bridges, 471 

Period: 
effective, 65
elastic, calculation of, 10 
height-dependent equation, 7 

Piers (599): see Wharves
Piles: 

for wharves, 601 
prestressed, curvatures of, 620 

Plastic hinge: 
length, beams and columns, 149 
length, masonry walls, 424 
length, walls, 320 

Plywood panels, 460 
Precast concrete: 

frames, 285 
damping, 293 
walls, 370 

Reinforcing steel: 
inelastic buckling, 142 
stress-strain properties, 140
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serviceability strain limit, 143 
Response verification, 192 
Return periods, 54 
Rocking: 

restraint of, 569 
seismic design for, 568 
structural, 557 

Seismic design: 
force-based, 5, 8 
philosophy-historical, 1 
displacement-based procedures, 30 

Serviceability design, 108 
Shape memory alloy dampers, 553 
Shear: 

deformations, 185 
keys, in wharves, 599 
sliding failure of masonry, 423 
strength of concrete members, 174 
strength of masonry, 421 
strength of walls, 183 

Soil/structure interaction: 
of bridges, 470 
of cantilever walls, 353 

Spandrels in masonry, 427 
Spectra: 

acceleration, 3, 45 
displacement, 3, 47 
inelastic, 34, 66 
near-field, 59, 106 
soil influence, 50 

Stability index, 112 
Steel: 

dampers, 544 
frames, 230, 238, 304 
reinforcement properties, 140 
wall/frame design example, 403 

Stiffness: 
beams, elastic, 159 
circular columns, elastic 152 
elastic, 10, 151 
frames, concrete, 162 
frames, steel, 164 
rectangular columns, elasdc 155

steel sections, elastic, 160 
walls, 157 

Strain limits: 
for reinforced concrete, 141 
for wharf piles, 609 

Strain penetration: 73, 148 
SuperPiles, in wharves, 631 
Sway potential index, 663 
Tension shift: 143, 148, 366 
Timber (455): 

capacity design of, 462 
DDBD recommendations, 462 
ductile connections, 457 
hybrid prestressed frames, 461 
material properties, 454 

Time-history analysis: 
elastic, 192 
inelastic, 192 

Torsion: 
accidental eccentricity, 122, 344 
bi-directional eccentricity, 344 
design recommendations, 339 
design example (6.1), 346 
elastic response, 120, 328 
inelastic response, 122, 331 
of masonry buildings, 447 
restrained systems, 334 
unrestrained systems, 331 

Viscous dampers, 548 
Vulnerability, 647 
Wall Buildings (313): 

contraflexure height, 377 
coupled walls, 372 
coupling by slabs, 374 
coupled masonry walls, 425 

Wall frame buildings (387): 
DDBD procedure for, 388 
capacity design of, 399 
design verification, 397 
equivalent viscous damping, 396 
frame moments in, 389 
link beams in, 392 
shear allocation, 388
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yield displacements of, 394 
Wharves and piers (599):

DDBD process 602 
marginal wharves, 19 
Wharf/crane interaction, 633 

Yield:

curvatures? 165, 472 
displacements of concrete frames, 226 
displacements, of steel frames, 238 
displacement, of piers, 472 
displacements, of walls, 97 
displacements of wall/frames, 394



STRUCTURAL ANALYSIS CD
The accompanying CD-ROM, found inside the back cover, features two stand-alone 

finite element programs capable of running inelastic dme history analysis (Ruaumoko 
2D  and SeismoStruct) , one program that can be used to carry out mo no tonic moment- 
curvature analysis and force-displacement response of reinforced concrete members 
(Cumbia), and a number of design verificadon examples from chapters 5, 6, 10 and 11.

All three software packages are accompanied with detailed user manuals, and may be 
freely used for non-commercial applications. Instructions on how to obtain technical 
support, in those cases where this is available, can also be found in the aforementioned 
user manuals and/or help systems. It is also noted that the program Ruaumoko 2D is 
provided in its Educational version, thus featuring a limitation in the size of the models 
that may be created.

For the design verification examples, in addition to the corresponding input and 
output program files, brief documents describing the adopted modeling assumptions as 
well as the attained results can also be found. These complement the information already 
provided at the end of the chapters to which the examples refer.

The contents of this CD-ROM, as described above, are organized in the following 
folders:

• Design Verificadon Examples
Design Example 5.4 
Design Example 10.6 
Design Example 11.7 
Design Example 11.8

• Structural Analysis Software
Cumbia
Ruaumoko 2D -  Educational Version 
SeismoStruct v4.0
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